메뉴 건너뛰기




Volumn 30, Issue 1, 2016, Pages

Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes

Author keywords

Artificial neutral Network; Diabetes; Hypertension; Joint logistic regression; Prediction

Indexed keywords


EID: 85041753735     PISSN: 10161430     EISSN: 22516840     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (16)

References (18)
  • 1
    • 0032887429 scopus 로고    scopus 로고
    • Likelihood models for clustered binary and continuous outcomes Application to Developmental toxicology
    • Regan MM, Catalano PJ. Likelihood models for clustered binary and continuous outcomes Application to Developmental toxicology, Biometrics 1999; 55: 760-768.
    • (1999) Biometrics , vol.55 , pp. 760-768
    • Regan, M.M.1    Catalano, P.J.2
  • 2
    • 0001571385 scopus 로고    scopus 로고
    • Latent variable models for mixed discrete and continuous outcomes, Journal of the Royal Statistical Society
    • Sammel MD, Ryan LM, Legler JM. Latent variable models for mixed discrete and continuous outcomes, Journal of the Royal Statistical Society. Series B (Methodological) 1997; 59: 667-678.
    • (1997) Series B (Methodological) , vol.59 , pp. 667-678
    • Sammel, M.D.1    Ryan, L.M.2    Legler, J.M.3
  • 5
    • 0032518739 scopus 로고    scopus 로고
    • Choosing among generalized linear models applied to medical data, Stat
    • Lindsey JK, Jones B. Choosing among generalized linear models applied to medical data, Stat. Med 1998; 17: 59-68.
    • (1998) Med , vol.17 , pp. 59-68
    • Lindsey, J.K.1    Jones, B.2
  • 8
    • 84956932000 scopus 로고    scopus 로고
    • The knowledge of hospitalized patients about major risk factors of IHD in University hospitals of Tehran
    • [Persian]
    • Sadeghian S. The knowledge of hospitalized patients about major risk factors of IHD in University hospitals of Tehran, Daneshvar Medicine 2001; 35:55-60.[Persian]
    • (2001) Daneshvar Medicine , vol.35 , pp. 55-60
    • Sadeghian, S.1
  • 9
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin. Epidemiol 1996.; 49(11):1225-31.
    • (1996) J Clin. Epidemiol , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 13
    • 65249161888 scopus 로고    scopus 로고
    • World Health Organization
    • Preventing Chronic Diseases. A Vital Investment, World Health Organization, 2005.
    • (2005) A Vital Investment
  • 14
    • 0030951433 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with non-small cell lung carcinoma
    • Jefferson MF, Pendleton N, Lucas SB, Horan MA. Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with non-small cell lung carcinoma. Cancer 1997;79:1338-1342.
    • (1997) Cancer , vol.79 , pp. 1338-1342
    • Jefferson, M.F.1    Pendleton, N.2    Lucas, S.B.3    Horan, M.A.4
  • 15
    • 33750936249 scopus 로고    scopus 로고
    • Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room
    • Green M, Bjork J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M. Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room, Artif intel med 2006, 38:305-318.
    • (2006) Artif intel med , vol.38 , pp. 305-318
    • Green, M.1    Bjork, J.2    Forberg, J.3    Ekelund, U.4    Edenbrandt, L.5    Ohlsson, M.6
  • 16
    • 15844411613 scopus 로고    scopus 로고
    • Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
    • Jaimes F, Farbiarz J, Alvarez D, Martínez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room, Critical Care 2005, 9: R150-R156.
    • (2005) Critical Care , vol.9 , pp. R150-R156
    • Jaimes, F.1    Farbiarz, J.2    Alvarez, D.3    Martínez, C.4
  • 17
    • 77951578153 scopus 로고    scopus 로고
    • Comparison of Artificial Neural Network, Logistic Regression and Discriminant Analysis Methods in Prediction of Metabolic Syndrome
    • Sedehi M, Mehrabi Y, Kazemnejad A, Hadaegh, F. Comparison of Artificial Neural Network, Logistic Regression and Discriminant Analysis Methods in Prediction of Metabolic Syndrome, Ir J Endocrino & Metabol 2010, 11:639-646.
    • (2010) Ir J Endocrino & Metabol , vol.11 , pp. 639-646
    • Sedehi, M.1    Mehrabi, Y.2    Kazemnejad, A.3    Hadaegh, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.