-
1
-
-
0036721292
-
Performance parameters for screening and diagnostic mammography: Specialist and general radiologists
-
Sickles EA, Wolverton DE, Dee KE. Performance parameters for screening and diagnostic mammography: specialist and general radiologists. Radiology 2002;224:861-869.
-
(2002)
Radiology
, vol.224
, pp. 861-869
-
-
Sickles, E.A.1
Wolverton, D.E.2
Dee, K.E.3
-
2
-
-
6344252203
-
-
American College of Radiology, 4th ed. Reston, VA: American College of Radiology
-
American College of Radiology. Breast Imaging Reporting and Data System, breast imaging atlas. 4th ed. Reston, VA: American College of Radiology, 2003.
-
(2003)
Breast Imaging Reporting and Data System, Breast Imaging Atlas
-
-
-
3
-
-
0029095797
-
Breast cancer: Prediction with artificial neural network based on BI-RADS standardized lexicon
-
Baker JA, Kornguth PJ, Lo JY, Williford ME, Floyd CE Jr. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology 1995;196:817-822.
-
(1995)
Radiology
, vol.196
, pp. 817-822
-
-
Baker, J.A.1
Kornguth, P.J.2
Lo, J.Y.3
Williford, M.E.4
Floyd, C.E.5
-
4
-
-
0030048533
-
Artificial neural network: Improving the quality of breast biopsy recommendations
-
Baker JA, Kornguth PJ, Lo JY, Floyd CE Jr. Artificial neural network: improving the quality of breast biopsy recommendations. Radiology 1996;198:131-135.
-
(1996)
Radiology
, vol.198
, pp. 131-135
-
-
Baker, J.A.1
Kornguth, P.J.2
Lo, J.Y.3
Floyd, C.E.4
-
5
-
-
63849134851
-
A logistic regression model based on the national mammography database format to aid breast cancer diagnosis
-
Chhatwal J, Alagoz O, Lindstrom MJ, Kahn CE Jr., Shaffer KA, Burnside ES. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. AJR Am J Roentgenol 2009;192:1117-1127.
-
(2009)
AJR am J Roentgenol
, vol.192
, pp. 1117-1127
-
-
Chhatwal, J.1
Alagoz, O.2
Lindstrom, M.J.3
Kahn, C.E.4
Shaffer, K.A.5
Burnside, E.S.6
-
6
-
-
3042620538
-
The influence of clinical information on the accuracy of diagnostic mammography
-
Houssami N, Irwig L, Simpson JM, McKessar M, Blome S, Noakes J. The influence of clinical information on the accuracy of diagnostic mammography. Breast Cancer Res Treat 2004;85:223-228.
-
(2004)
Breast Cancer Res Treat
, vol.85
, pp. 223-228
-
-
Houssami, N.1
Irwig, L.2
Simpson, J.M.3
McKessar, M.4
Blome, S.5
Noakes, J.6
-
7
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Methodol 1996;58:267-288.
-
(1996)
J R Stat Soc Series B Methodol
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
8
-
-
68649086910
-
Simultaneous analysis of Lasso and dantzig selector
-
Bickel PJ, Ritov Y, Tsybakov AB. Simultaneous analysis of Lasso and dantzig selector. Ann Stat 2009;37:1705-1732.
-
(2009)
Ann Stat
, vol.37
, pp. 1705-1732
-
-
Bickel, P.J.1
Ritov, Y.2
Tsybakov, A.B.3
-
10
-
-
84941670014
-
A modified local quadratic approximation algorithm for penalized optimization problems
-
Lee S, Kwon S, Kim Y. A modified local quadratic approximation algorithm for penalized optimization problems. Comput Stat Data Anal 2016;94:275-286.
-
(2016)
Comput Stat Data Anal
, vol.94
, pp. 275-286
-
-
Lee, S.1
Kwon, S.2
Kim, Y.3
-
11
-
-
85059995937
-
Clinical data as an adjunct to ultrasound reduces the false-negative malignancy rate in BI-RADS 3 breast lesions
-
Ackermann S, Schoenenberger CA, Zanetti-Dallenbach R. Clinical data as an adjunct to ultrasound reduces the false-negative malignancy rate in BI-RADS 3 breast lesions. Ultrasound Int Open 2016;2:E83-E89.
-
(2016)
Ultrasound Int Open
, vol.2
, pp. E83-E89
-
-
Ackermann, S.1
Schoenenberger, C.A.2
Zanetti-Dallenbach, R.3
-
12
-
-
77950117039
-
Informatics in radiology: Comparison of logistic regression and artificial neural network models in breast cancer risk estimation
-
Ayer T, Chhatwal J, Alagoz O, Kahn CE Jr., Woods RW, Burnside ES. Informatics in radiology: comparison of logistic regression and artificial neural network models in breast cancer risk estimation. Radiographics 2010;30:13-22.
-
(2010)
Radiographics
, vol.30
, pp. 13-22
-
-
Ayer, T.1
Chhatwal, J.2
Alagoz, O.3
Kahn, C.E.4
Woods, R.W.5
Burnside, E.S.6
-
13
-
-
84870043235
-
A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability
-
Kim SM, Han H, Park JM, Choi YJ, Yoon HS, Sohn JH, et al. A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability. J Digit Imaging 2012;25:599-606.
-
(2012)
J Digit Imaging
, vol.25
, pp. 599-606
-
-
Kim, S.M.1
Han, H.2
Park, J.M.3
Choi, Y.J.4
Yoon, H.S.5
Sohn, J.H.6
-
14
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol 2005;67:301-320.
-
(2005)
J R Stat Soc Series B Stat Methodol
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
15
-
-
80052846970
-
The sparse Laplacian shrinkage estimator for high-dimensional regression
-
Huang J, Ma S, Li H, Zhang CH. The sparse Laplacian shrinkage estimator for high-dimensional regression. Ann Stat 2011;39:2021-2046.
-
(2011)
Ann Stat
, vol.39
, pp. 2021-2046
-
-
Huang, J.1
Ma, S.2
Li, H.3
Zhang, C.H.4
|