메뉴 건너뛰기




Volumn 37, Issue 1, 2018, Pages 36-42

Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography

Author keywords

Breast; Breast neoplasms; Diagnosis; Logistic models; Ultrasonography

Indexed keywords

ADULT; ALCOHOL CONSUMPTION; ARTICLE; BENIGN NEOPLASM; BODY WEIGHT; BREAST BIOPSY; BREAST CALCIFICATION; BREAST CANCER; CANCER SCREENING; DIAGNOSTIC ACCURACY; DIAGNOSTIC TEST ACCURACY STUDY; ECHOGRAPHY; FAMILY HISTORY; FEMALE; FINE NEEDLE ASPIRATION BIOPSY; HUMAN; IMAGE ANALYSIS; INCIDENCE; INFORMATION PROCESSING; INTERVENTIONAL ULTRASONOGRAPHY; MAJOR CLINICAL STUDY; MALIGNANT NEOPLASM; MATHEMATICAL ANALYSIS; MEDICAL RECORD; MIDDLE AGED; OCCUPATION; RETROSPECTIVE STUDY; TUMOR VOLUME;

EID: 85046455671     PISSN: 22885919     EISSN: 22885943     Source Type: Journal    
DOI: 10.14366/usg.16045     Document Type: Article
Times cited : (82)

References (15)
  • 1
    • 0036721292 scopus 로고    scopus 로고
    • Performance parameters for screening and diagnostic mammography: Specialist and general radiologists
    • Sickles EA, Wolverton DE, Dee KE. Performance parameters for screening and diagnostic mammography: specialist and general radiologists. Radiology 2002;224:861-869.
    • (2002) Radiology , vol.224 , pp. 861-869
    • Sickles, E.A.1    Wolverton, D.E.2    Dee, K.E.3
  • 2
    • 6344252203 scopus 로고    scopus 로고
    • American College of Radiology, 4th ed. Reston, VA: American College of Radiology
    • American College of Radiology. Breast Imaging Reporting and Data System, breast imaging atlas. 4th ed. Reston, VA: American College of Radiology, 2003.
    • (2003) Breast Imaging Reporting and Data System, Breast Imaging Atlas
  • 3
    • 0029095797 scopus 로고
    • Breast cancer: Prediction with artificial neural network based on BI-RADS standardized lexicon
    • Baker JA, Kornguth PJ, Lo JY, Williford ME, Floyd CE Jr. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology 1995;196:817-822.
    • (1995) Radiology , vol.196 , pp. 817-822
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3    Williford, M.E.4    Floyd, C.E.5
  • 4
    • 0030048533 scopus 로고    scopus 로고
    • Artificial neural network: Improving the quality of breast biopsy recommendations
    • Baker JA, Kornguth PJ, Lo JY, Floyd CE Jr. Artificial neural network: improving the quality of breast biopsy recommendations. Radiology 1996;198:131-135.
    • (1996) Radiology , vol.198 , pp. 131-135
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3    Floyd, C.E.4
  • 5
    • 63849134851 scopus 로고    scopus 로고
    • A logistic regression model based on the national mammography database format to aid breast cancer diagnosis
    • Chhatwal J, Alagoz O, Lindstrom MJ, Kahn CE Jr., Shaffer KA, Burnside ES. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. AJR Am J Roentgenol 2009;192:1117-1127.
    • (2009) AJR am J Roentgenol , vol.192 , pp. 1117-1127
    • Chhatwal, J.1    Alagoz, O.2    Lindstrom, M.J.3    Kahn, C.E.4    Shaffer, K.A.5    Burnside, E.S.6
  • 7
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Methodol 1996;58:267-288.
    • (1996) J R Stat Soc Series B Methodol , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 8
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and dantzig selector
    • Bickel PJ, Ritov Y, Tsybakov AB. Simultaneous analysis of Lasso and dantzig selector. Ann Stat 2009;37:1705-1732.
    • (2009) Ann Stat , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 10
    • 84941670014 scopus 로고    scopus 로고
    • A modified local quadratic approximation algorithm for penalized optimization problems
    • Lee S, Kwon S, Kim Y. A modified local quadratic approximation algorithm for penalized optimization problems. Comput Stat Data Anal 2016;94:275-286.
    • (2016) Comput Stat Data Anal , vol.94 , pp. 275-286
    • Lee, S.1    Kwon, S.2    Kim, Y.3
  • 11
    • 85059995937 scopus 로고    scopus 로고
    • Clinical data as an adjunct to ultrasound reduces the false-negative malignancy rate in BI-RADS 3 breast lesions
    • Ackermann S, Schoenenberger CA, Zanetti-Dallenbach R. Clinical data as an adjunct to ultrasound reduces the false-negative malignancy rate in BI-RADS 3 breast lesions. Ultrasound Int Open 2016;2:E83-E89.
    • (2016) Ultrasound Int Open , vol.2 , pp. E83-E89
    • Ackermann, S.1    Schoenenberger, C.A.2    Zanetti-Dallenbach, R.3
  • 12
    • 77950117039 scopus 로고    scopus 로고
    • Informatics in radiology: Comparison of logistic regression and artificial neural network models in breast cancer risk estimation
    • Ayer T, Chhatwal J, Alagoz O, Kahn CE Jr., Woods RW, Burnside ES. Informatics in radiology: comparison of logistic regression and artificial neural network models in breast cancer risk estimation. Radiographics 2010;30:13-22.
    • (2010) Radiographics , vol.30 , pp. 13-22
    • Ayer, T.1    Chhatwal, J.2    Alagoz, O.3    Kahn, C.E.4    Woods, R.W.5    Burnside, E.S.6
  • 13
    • 84870043235 scopus 로고    scopus 로고
    • A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability
    • Kim SM, Han H, Park JM, Choi YJ, Yoon HS, Sohn JH, et al. A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability. J Digit Imaging 2012;25:599-606.
    • (2012) J Digit Imaging , vol.25 , pp. 599-606
    • Kim, S.M.1    Han, H.2    Park, J.M.3    Choi, Y.J.4    Yoon, H.S.5    Sohn, J.H.6
  • 14
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol 2005;67:301-320.
    • (2005) J R Stat Soc Series B Stat Methodol , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 15
    • 80052846970 scopus 로고    scopus 로고
    • The sparse Laplacian shrinkage estimator for high-dimensional regression
    • Huang J, Ma S, Li H, Zhang CH. The sparse Laplacian shrinkage estimator for high-dimensional regression. Ann Stat 2011;39:2021-2046.
    • (2011) Ann Stat , vol.39 , pp. 2021-2046
    • Huang, J.1    Ma, S.2    Li, H.3    Zhang, C.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.