-
1
-
-
80054881110
-
Hospital readmissions and the Affordable Care Act: Paying for coordinated quality care
-
Kocher RP, Adashi EY, Hospital readmissions and the Affordable Care Act: paying for coordinated quality care. JAMA 2011 306 1794 1795. doi: 10.1001/jama.2011.1561
-
(2011)
JAMA
, vol.306
, pp. 1794-1795
-
-
Kocher, R.P.1
Adashi, E.Y.2
-
2
-
-
84872764931
-
Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia
-
Dharmarajan K, Hsieh AF, Lin Z, Bueno H, Ross JS, Horwitz LI, Barreto-Filho JA, Kim N, Bernheim SM, Suter LG, Drye EE, Krumholz HM, Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA 2013 309 355 363. doi: 10.1001/jama.2012.216476
-
(2013)
JAMA
, vol.309
, pp. 355-363
-
-
Dharmarajan, K.1
Hsieh, A.F.2
Lin, Z.3
Bueno, H.4
Ross, J.S.5
Horwitz, L.I.6
Barreto-Filho, J.A.7
Kim, N.8
Bernheim, S.M.9
Suter, L.G.10
Drye, E.E.11
Krumholz, H.M.12
-
3
-
-
76549113397
-
Recent national trends in readmission rates after heart failure hospitalization
-
Ross JS, Chen J, Lin Z, Bueno H, Curtis JP, Keenan PS, Normand SL, Schreiner G, Spertus JA, Vidán MT, Wang Y, Wang Y, Krumholz HM, Recent national trends in readmission rates after heart failure hospitalization. Circ Heart Fail 2010 3 97 103. doi: 10.1161/CIRCHEARTFAILURE.109.885210
-
(2010)
Circ Heart Fail
, vol.3
, pp. 97-103
-
-
Ross, J.S.1
Chen, J.2
Lin, Z.3
Bueno, H.4
Curtis, J.P.5
Keenan, P.S.6
Normand, S.L.7
Schreiner, G.8
Spertus, J.A.9
Vidán, M.T.10
Wang, Y.11
Wang, Y.12
Krumholz, H.M.13
-
4
-
-
80054764509
-
Risk prediction models for hospital readmission: A systematic review
-
Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, Kripalani S, Risk prediction models for hospital readmission: a systematic review. JAMA 2011 306 1688 1698. doi: 10.1001/jama.2011.1515
-
(2011)
JAMA
, vol.306
, pp. 1688-1698
-
-
Kansagara, D.1
Englander, H.2
Salanitro, A.3
Kagen, D.4
Theobald, C.5
Freeman, M.6
Kripalani, S.7
-
5
-
-
84919949889
-
Strategies to reduce 30-day readmissions in older patients hospitalized with heart failure and acute myocardial infarction
-
Dharmarajan K, Krumholz HM, Strategies to reduce 30-day readmissions in older patients hospitalized with heart failure and acute myocardial infarction. Curr Geriatr Rep 2014 3 306 315. doi: 10.1007/s13670-014-0103-8
-
(2014)
Curr Geriatr Rep
, vol.3
, pp. 306-315
-
-
Dharmarajan, K.1
Krumholz, H.M.2
-
6
-
-
47549100563
-
Statistical models and patient predictors of readmission for heart failure: A systematic review
-
Ross JS, Mulvey GK, Stauffer B, Patlolla V, Bernheim SM, Keenan PS, Krumholz HM, Statistical models and patient predictors of readmission for heart failure: a systematic review. Arch Intern Med 2008 168 1371 1386. doi: 10.1001/archinte.168.13.1371
-
(2008)
Arch Intern Med
, vol.168
, pp. 1371-1386
-
-
Ross, J.S.1
Mulvey, G.K.2
Stauffer, B.3
Patlolla, V.4
Bernheim, S.M.5
Keenan, P.S.6
Krumholz, H.M.7
-
7
-
-
84908071827
-
Risk prediction in patients with heart failure: A systematic review and analysis
-
Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, Woodward M, Patel A, McMurray J, MacMahon S, Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail 2014 2 440 446. doi: 10.1016/j.jchf.2014.04.008
-
(2014)
JACC Heart Fail
, vol.2
, pp. 440-446
-
-
Rahimi, K.1
Bennett, D.2
Conrad, N.3
Williams, T.M.4
Basu, J.5
Dwight, J.6
Woodward, M.7
Patel, A.8
McMurray, J.9
MacMahon, S.10
-
8
-
-
84924897878
-
Risk prediction tools in patients with heart failure
-
Lupón J, Vila J, Bayes-Genis A, Risk prediction tools in patients with heart failure. JACC Heart Fail 2015 3 267. doi: 10.1016/j.jchf.2014.10.010
-
(2015)
JACC Heart Fail
, vol.3
, pp. 267
-
-
Lupón, J.1
Vila, J.2
Bayes-Genis, A.3
-
9
-
-
78049334037
-
An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data
-
Amarasingham R, Moore BJ, Tabak YP, Drazner MH, Clark CA, Zhang S, Reed WG, Swanson TS, Ma Y, Halm EA, An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care 2010 48 981 988. doi: 10.1097/MLR.0b013e3181ef60d9
-
(2010)
Med Care
, vol.48
, pp. 981-988
-
-
Amarasingham, R.1
Moore, B.J.2
Tabak, Y.P.3
Drazner, M.H.4
Clark, C.A.5
Zhang, S.6
Reed, W.G.7
Swanson, T.S.8
Ma, Y.9
Halm, E.A.10
-
10
-
-
84951788538
-
Do non-clinical factors improve prediction of readmission risk?: Results from the Tele-HF study
-
Krumholz HM, Chaudhry SI, Spertus JA, Mattera JA, Hodshon B, Herrin J, Do non-clinical factors improve prediction of readmission risk?: Results from the Tele-HF study. JACC Heart Fail 2016 4 12 20. doi: 10.1016/j.jchf.2015.07.017
-
(2016)
JACC Heart Fail
, vol.4
, pp. 12-20
-
-
Krumholz, H.M.1
Chaudhry, S.I.2
Spertus, J.A.3
Mattera, J.A.4
Hodshon, B.5
Herrin, J.6
-
11
-
-
84908060399
-
Heart failure risk prediction models: What have we learned?
-
Levy WC, Anand IS, Heart failure risk prediction models: what have we learned? JACC Heart Fail 2014 2 437 439. doi: 10.1016/j.jchf.2014.05.006
-
(2014)
JACC Heart Fail
, vol.2
, pp. 437-439
-
-
Levy, W.C.1
Anand, I.S.2
-
12
-
-
84908077088
-
Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure
-
Ouwerkerk W, Voors AA, Zwinderman AH, Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure. JACC Heart Fail 2014 2 429 436. doi: 10.1016/j.jchf.2014.04.006
-
(2014)
JACC Heart Fail
, vol.2
, pp. 429-436
-
-
Ouwerkerk, W.1
Voors, A.A.2
Zwinderman, A.H.3
-
14
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-Uriarte R, Alvarez de Andrés S, Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006 7 3. doi: 10.1186/1471-2105-7-3
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Díaz-Uriarte, R.1
Alvarez De Andrés, S.2
-
15
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov A, Wang L, Aliferis CF, A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008 9 319. doi: 10.1186/1471-2105-9-319
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 319
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.F.3
-
16
-
-
0003684449
-
-
Springer
-
Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R, The Elements of Statistical Learning 2009 Springer
-
(2009)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Hastie, T.4
Friedman, J.5
Tibshirani, R.6
-
17
-
-
68949140728
-
A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
-
Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, Hamprecht FA, A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 2009 10 213. doi: 10.1186/1471-2105-10-213
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 213
-
-
Menze, B.H.1
Kelm, B.M.2
Masuch, R.3
Himmelreich, U.4
Bachert, P.5
Petrich, W.6
Hamprecht, F.A.7
-
18
-
-
33751531805
-
Aggregate features and AdaBoost for music classification
-
Bergstra J, Casagrande N, Erhan D, Eck D, Kégl B, Aggregate features and AdaBoost for music classification. Mach Learn 2006 65 473 484
-
(2006)
Mach Learn
, vol.65
, pp. 473-484
-
-
Bergstra, J.1
Casagrande, N.2
Erhan, D.3
Eck, D.4
Kégl, B.5
-
19
-
-
33747399029
-
-
Intelligent Transportation Systems, 2005 Proceedings; IEEE
-
Khammari A, Nashashibi F, Abramson Y, Laurgeau C, Vehicle detection combining gradient analysis and AdaBoost classification 2005 Intelligent Transportation Systems, 2005 Proceedings; IEEE 66 71
-
(2005)
Vehicle Detection Combining Gradient Analysis and AdaBoost Classification
, pp. 66-71
-
-
Khammari, A.1
Nashashibi, F.2
Abramson, Y.3
Laurgeau, C.4
-
20
-
-
84907734954
-
Data-driven decisions for reducing readmissions for heart failure: General methodology and case study
-
Bayati M, Braverman M, Gillam M, Mack KM, Ruiz G, Smith MS, Horvitz E, Data-driven decisions for reducing readmissions for heart failure: general methodology and case study. PLoS One 2014 9 e109264. doi: 10.1371/journal.pone.0109264
-
(2014)
PLoS One
, vol.9
, pp. e109264
-
-
Bayati, M.1
Braverman, M.2
Gillam, M.3
Mack, K.M.4
Ruiz, G.5
Smith, M.S.6
Horvitz, E.7
-
23
-
-
10044233701
-
Recognizing human actions: a local SVM approach
-
Schuldt C, Laptev I, Caputo B, 2004 3 Recognizing human actions: a local SVM approach. Pattern Recognition, 2004 ICPR 2004 Proceedings of the 17th International Conference on 32 36
-
(2004)
Pattern Recognition, 2004 ICPR 2004 Proceedings of the 17th International Conference on
, vol.3
, pp. 32-36
-
-
Schuldt, C.1
Laptev, I.2
Caputo, B.3
-
24
-
-
0034845232
-
Shape deformation: SVM regression and application to medical image segmentation
-
Wang S, Zhu W, Liang Z-P, 2001 2 Shape deformation: SVM regression and application to medical image segmentation. Computer Vision, 2001 ICCV 2001 Proceedings Eighth IEEE International Conference on 209 216
-
(2001)
Computer Vision, 2001 ICCV 2001 Proceedings Eighth IEEE International Conference on
, vol.2
, pp. 209-216
-
-
Wang, S.1
Zhu, W.2
Liang, Z.-P.3
-
25
-
-
84942636420
-
Multiple model recognition for near-realistic exergaming
-
Mortazavi B, Pourhomayoun M, Nyamathi S, Wu B, Lee SI, Sarrafzadeh M, 2015 Multiple model recognition for near-realistic exergaming. Pervasive Computing and Communications (PerCom), 2015 IEEE International Conference on 140 148
-
(2015)
Pervasive Computing and Communications (PerCom), 2015 IEEE International Conference on
, pp. 140-148
-
-
Mortazavi, B.1
Pourhomayoun, M.2
Nyamathi, S.3
Wu, B.4
Lee, S.I.5
Sarrafzadeh, M.6
-
26
-
-
84877753184
-
Patient risk stratification for hospital-associated c. Diff as a time-series classification task
-
Wiens J, Horvitz E, Guttag JV, Patient risk stratification for hospital-associated c. diff as a time-series classification task. Adv Neural Inf Process Syst 2012 467 475
-
(2012)
Adv Neural Inf Process Syst
, pp. 467-475
-
-
Wiens, J.1
Horvitz, E.2
Guttag, J.V.3
-
27
-
-
84867404699
-
Predicting risk of hospitalization or death among patients with heart failure in the Veterans Health Administration
-
Wang L, Porter B, Maynard C, Bryson C, Sun H, Lowy E, McDonell M, Frisbee K, Nielson C, Fihn SD, Predicting risk of hospitalization or death among patients with heart failure in the Veterans Health Administration. Am J Cardiol 2012 110 1342 1349. doi: 10.1016/j.amjcard.2012.06.038
-
(2012)
Am J Cardiol
, vol.110
, pp. 1342-1349
-
-
Wang, L.1
Porter, B.2
Maynard, C.3
Bryson, C.4
Sun, H.5
Lowy, E.6
McDonell, M.7
Frisbee, K.8
Nielson, C.9
Fihn, S.D.10
-
28
-
-
61649110277
-
The analysis of count data: A gentle introduction to poisson regression and its alternatives
-
Coxe S, West SG, Aiken LS, The analysis of count data: a gentle introduction to poisson regression and its alternatives. J Pers Assess 2009 91 121 136. doi: 10.1080/00223890802634175
-
(2009)
J Pers Assess
, vol.91
, pp. 121-136
-
-
Coxe, S.1
West, S.G.2
Aiken, L.S.3
-
29
-
-
78649835638
-
Telemonitoring in patients with heart failure
-
Chaudhry SI, Mattera JA, Curtis JP, Spertus JA, Herrin J, Lin Z, Phillips CO, Hodshon BV, Cooper LS, Krumholz HM, Telemonitoring in patients with heart failure. N Engl J Med 2010 363 2301 2309. doi: 10.1056/NEJMoa1010029
-
(2010)
N Engl J Med
, vol.363
, pp. 2301-2309
-
-
Chaudhry, S.I.1
Mattera, J.A.2
Curtis, J.P.3
Spertus, J.A.4
Herrin, J.5
Lin, Z.6
Phillips, C.O.7
Hodshon, B.V.8
Cooper, L.S.9
Krumholz, H.M.10
-
30
-
-
36048973531
-
Randomized trial of Telemonitoring to Improve Heart Failure Outcomes (Tele-HF): Study design
-
Chaudhry SI, Barton B, Mattera J, Spertus J, Krumholz HM, Randomized trial of Telemonitoring to Improve Heart Failure Outcomes (Tele-HF): study design. J Card Fail 2007 13 709 714. doi: 10.1016/j.cardfail.2007.06.720
-
(2007)
J Card Fail
, vol.13
, pp. 709-714
-
-
Chaudhry, S.I.1
Barton, B.2
Mattera, J.3
Spertus, J.4
Krumholz, H.M.5
-
31
-
-
84932151063
-
Opportunities and challenges for reducing hospital revisits
-
Dharmarajan K, Krumholz HM, Opportunities and challenges for reducing hospital revisits. Ann Intern Med 2015 162 793 794. doi: 10.7326/M15-0878
-
(2015)
Ann Intern Med
, vol.162
, pp. 793-794
-
-
Dharmarajan, K.1
Krumholz, H.M.2
-
32
-
-
0035478854
-
Random forests
-
Breiman L, Random forests. Mach Learn 2001 45 5 32
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
34
-
-
80052815986
-
New predictive models of heart failure mortality using time-series measurements and ensemble models
-
Subramanian D, Subramanian V, Deswal A, Mann DL, New predictive models of heart failure mortality using time-series measurements and ensemble models. Circ Heart Fail 2011 4 456 462. doi: 10.1161/CIRCHEARTFAILURE.110.958496
-
(2011)
Circ Heart Fail
, vol.4
, pp. 456-462
-
-
Subramanian, D.1
Subramanian, V.2
Deswal, A.3
Mann, D.L.4
-
35
-
-
84890117399
-
Net reclassification indices for evaluating risk prediction instruments: A critical review
-
Kerr KF, Wang Z, Janes H, McClelland RL, Psaty BM, Pepe MS, Net reclassification indices for evaluating risk prediction instruments: a critical review. Epidemiology 2014 25 114 121. doi: 10.1097/EDE.0000000000000018
-
(2014)
Epidemiology
, vol.25
, pp. 114-121
-
-
Kerr, K.F.1
Wang, Z.2
Janes, H.3
McClelland, R.L.4
Psaty, B.M.5
Pepe, M.S.6
-
36
-
-
84904008367
-
A note on the evaluation of novel biomarkers: Do not rely on integrated discrimination improvement and net reclassification index
-
Hilden J, Gerds TA, A note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index. Stat Med 2014 33 3405 3414. doi: 10.1002/sim.5804
-
(2014)
Stat Med
, vol.33
, pp. 3405-3414
-
-
Hilden, J.1
Gerds, T.A.2
|