메뉴 건너뛰기




Volumn 74, Issue 1, 2017, Pages 3-10

Data mining: Potential applications in research on nutrition and health

Author keywords

artificial neural network; classification and regression tree; data mining; support vector machine

Indexed keywords


EID: 85010977146     PISSN: 14466368     EISSN: 17470080     Source Type: Journal    
DOI: 10.1111/1747-0080.12337     Document Type: Article
Times cited : (12)

References (33)
  • 3
    • 84890116365 scopus 로고    scopus 로고
    • Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis
    • Navarro Silvera SA, Mayne ST, Gammon MD et al. Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis. Ann Epidemiol 2014; 24: 50–57.
    • (2014) Ann Epidemiol , vol.24 , pp. 50-57
    • Navarro Silvera, S.A.1    Mayne, S.T.2    Gammon, M.D.3
  • 4
    • 84867402004 scopus 로고    scopus 로고
    • Dietary patterns analysis using data mining method. An application to data from the CYKIDS study
    • Lazarou C, Karaolis M, Matalas AL, Panagiotakos DB. Dietary patterns analysis using data mining method. An application to data from the CYKIDS study. Comput Methods Programs Biomed 2012; 108: 706–14.
    • (2012) Comput Methods Programs Biomed , vol.108 , pp. 706-714
    • Lazarou, C.1    Karaolis, M.2    Matalas, A.L.3    Panagiotakos, D.B.4
  • 5
    • 84864886849 scopus 로고    scopus 로고
    • Prediction of length of ICU stay using data-mining techniques: an example of old critically Ill postoperative gastric cancer patients
    • Zhang XC, Zhang ZD, Huang DS. Prediction of length of ICU stay using data-mining techniques: an example of old critically Ill postoperative gastric cancer patients. Asian Pac J Cancer Prev 2012; 13: 97–101.
    • (2012) Asian Pac J Cancer Prev , vol.13 , pp. 97-101
    • Zhang, X.C.1    Zhang, Z.D.2    Huang, D.S.3
  • 6
    • 84887606555 scopus 로고    scopus 로고
    • Comparative analysis of a-priori and a-posteriori dietary patterns using state-of-the-art classification algorithms: a case/case-control study
    • Kastorini CM, Papadakis G, Milionis HJ et al. Comparative analysis of a-priori and a-posteriori dietary patterns using state-of-the-art classification algorithms: a case/case-control study. Artif Intell Med 2013; 59: 175–83.
    • (2013) Artif Intell Med , vol.59 , pp. 175-183
    • Kastorini, C.M.1    Papadakis, G.2    Milionis, H.J.3
  • 7
    • 84947063447 scopus 로고    scopus 로고
    • Interdisciplinary lifestyle intervention for weight management in a community population (HealthTrack study): study design and baseline sample characteristics
    • Tapsell LC, Lonergan M, Martin A, Batterham MJ, Neale EP. Interdisciplinary lifestyle intervention for weight management in a community population (HealthTrack study): study design and baseline sample characteristics. Contemp Clin Trials 2015; 45: 394–403.
    • (2015) Contemp Clin Trials , vol.45 , pp. 394-403
    • Tapsell, L.C.1    Lonergan, M.2    Martin, A.3    Batterham, M.J.4    Neale, E.P.5
  • 8
    • 84868709239 scopus 로고    scopus 로고
    • Several steps/day indicators predict changes in anthropometric outcomes: HUB City steps
    • Thomson JL, Landry AS, Zoellner JM et al. Several steps/day indicators predict changes in anthropometric outcomes: HUB City steps. BMC Public Health 2012; 12: 983.
    • (2012) BMC Public Health , vol.12 , pp. 983
    • Thomson, J.L.1    Landry, A.S.2    Zoellner, J.M.3
  • 9
    • 0442291779 scopus 로고    scopus 로고
    • How many steps/day are enough? Preliminary pedometer indices for public health
    • Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med 2004; 34: 1–8.
    • (2004) Sports Med , vol.34 , pp. 1-8
    • Tudor-Locke, C.1    Bassett, D.R.2
  • 12
    • 84883401319 scopus 로고    scopus 로고
    • Rattle: a data mining GUI for R
    • Williams G. Rattle: a data mining GUI for R. R J 2009; 1: 45–55.
    • (2009) R J , vol.1 , pp. 45-55
    • Williams, G.1
  • 13
    • 0034831905 scopus 로고    scopus 로고
    • An assessment of the construct validity of the SF-12 summary scores across ethnic groups
    • Jenkinson C, Chandola T, Coulter A, Bruster S. An assessment of the construct validity of the SF-12 summary scores across ethnic groups. J Public Health 2001; 23: 187–94.
    • (2001) J Public Health , vol.23 , pp. 187-194
    • Jenkinson, C.1    Chandola, T.2    Coulter, A.3    Bruster, S.4
  • 15
    • 0034732869 scopus 로고    scopus 로고
    • Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests
    • Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 2000; 45: 23–41.
    • (2000) Prev Vet Med , vol.45 , pp. 23-41
    • Greiner, M.1    Pfeiffer, D.2    Smith, R.D.3
  • 17
    • 70350115240 scopus 로고    scopus 로고
    • An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
    • Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 2009; 107: 1300–7.
    • (2009) J Appl Physiol , vol.107 , pp. 1300-1307
    • Staudenmayer, J.1    Pober, D.2    Crouter, S.3    Bassett, D.4    Freedson, P.5
  • 19
    • 84873041764 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with logistic regression for detection of obesity
    • Heydari ST, Ayatollahi SM, Zare N. Comparison of artificial neural networks with logistic regression for detection of obesity. J Med Syst 2012; 36: 2449–54.
    • (2012) J Med Syst , vol.36 , pp. 2449-2454
    • Heydari, S.T.1    Ayatollahi, S.M.2    Zare, N.3
  • 20
    • 85011002563 scopus 로고    scopus 로고
    • Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior
    • Isma'eel HA, Sakr GE, Almedawar MM et al. Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior. Cardiovasc Diagn Ther 2015; 5: 219–28.
    • (2015) Cardiovasc Diagn Ther , vol.5 , pp. 219-228
    • Isma'eel, H.A.1    Sakr, G.E.2    Almedawar, M.M.3
  • 23
    • 84904546870 scopus 로고    scopus 로고
    • A posteriori dietary patterns: how many patterns to retain?
    • Fransen HP, May AM, Stricker MD et al. A posteriori dietary patterns: how many patterns to retain? J Nutr 2014; 144: 1274–82.
    • (2014) J Nutr , vol.144 , pp. 1274-1282
    • Fransen, H.P.1    May, A.M.2    Stricker, M.D.3
  • 24
    • 84924073834 scopus 로고    scopus 로고
    • Modest validity and fair reproducibility of dietary patterns derived by cluster analysis
    • Funtikova AN, Benitez-Arciniega AA, Fito M, Schroder H. Modest validity and fair reproducibility of dietary patterns derived by cluster analysis. Nutr Res 2015; 35: 265–8.
    • (2015) Nutr Res , vol.35 , pp. 265-268
    • Funtikova, A.N.1    Benitez-Arciniega, A.A.2    Fito, M.3    Schroder, H.4
  • 25
    • 84876116427 scopus 로고    scopus 로고
    • Dietary patterns in Irish adolescents: a comparison of cluster and principal component analyses
    • Hearty AP, Gibney MJ. Dietary patterns in Irish adolescents: a comparison of cluster and principal component analyses. Public Health Nutr 2013; 16: 848–57.
    • (2013) Public Health Nutr , vol.16 , pp. 848-857
    • Hearty, A.P.1    Gibney, M.J.2
  • 26
    • 84907367774 scopus 로고    scopus 로고
    • Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study
    • Walthouwer MJ, Oenema A, Soetens K, Lechner L, de Vries H. Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study. Appetite 2014; 82: 154–9.
    • (2014) Appetite , vol.82 , pp. 154-159
    • Walthouwer, M.J.1    Oenema, A.2    Soetens, K.3    Lechner, L.4    de Vries, H.5
  • 27
    • 84961391307 scopus 로고    scopus 로고
    • Identification of dietary patterns associated with blood pressure in a sample of overweight australian adults
    • Anil S, Charlton KE, Tapsell LC, Probst Y, Ndanuko R, Batterham M. Identification of dietary patterns associated with blood pressure in a sample of overweight australian adults. J Hum Hypertens 2016; 30: 672–8.
    • (2016) J Hum Hypertens , vol.30 , pp. 672-678
    • Anil, S.1    Charlton, K.E.2    Tapsell, L.C.3    Probst, Y.4    Ndanuko, R.5    Batterham, M.6
  • 28
    • 84961736570 scopus 로고    scopus 로고
    • Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults
    • Batis C, Mendez MA, Gordon-Larsen P, Sotres-Alvarez D, Adair L, Popkin B. Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr 2016; 19: 195–203.
    • (2016) Public Health Nutr , vol.19 , pp. 195-203
    • Batis, C.1    Mendez, M.A.2    Gordon-Larsen, P.3    Sotres-Alvarez, D.4    Adair, L.5    Popkin, B.6
  • 29
    • 84978518714 scopus 로고    scopus 로고
    • A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians
    • Thorpe MG, Milte CM, Crawford D, McNaughton SA. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians. Int J Behav Nutr Phys Act 2016; 13: 30.
    • (2016) Int J Behav Nutr Phys Act , vol.13 , pp. 30
    • Thorpe, M.G.1    Milte, C.M.2    Crawford, D.3    McNaughton, S.A.4
  • 30
    • 84959566849 scopus 로고    scopus 로고
    • Dietary patterns of obese and normal-weight women of reproductive age in urban slum areas in Central Jakarta
    • Khusun H, Fahmida U. Dietary patterns of obese and normal-weight women of reproductive age in urban slum areas in Central Jakarta. Br J Nutr 2016; 116: 1–8.
    • (2016) Br J Nutr , vol.116 , pp. 1-8
    • Khusun, H.1    Fahmida, U.2
  • 32
    • 78149239835 scopus 로고
    • How many subjects does it take to do a regression analysis
    • Green SB. How many subjects does it take to do a regression analysis. Multivariate Behav Res 1991; 26: 499–510.
    • (1991) Multivariate Behav Res , vol.26 , pp. 499-510
    • Green, S.B.1
  • 33
    • 84928929655 scopus 로고    scopus 로고
    • The number of subjects per variable required in linear regression analyses
    • Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 2015; 68: 627–36.
    • (2015) J Clin Epidemiol , vol.68 , pp. 627-636
    • Austin, P.C.1    Steyerberg, E.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.