-
2
-
-
0003802343
-
-
Baton Roca, FL, Chapman and Hall/CRC
-
Brieman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Baton Roca, FL: Chapman and Hall/CRC, 1984.
-
(1984)
Classification and Regression Trees
-
-
Brieman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
3
-
-
84890116365
-
Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis
-
Navarro Silvera SA, Mayne ST, Gammon MD et al. Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis. Ann Epidemiol 2014; 24: 50–57.
-
(2014)
Ann Epidemiol
, vol.24
, pp. 50-57
-
-
Navarro Silvera, S.A.1
Mayne, S.T.2
Gammon, M.D.3
-
5
-
-
84864886849
-
Prediction of length of ICU stay using data-mining techniques: an example of old critically Ill postoperative gastric cancer patients
-
Zhang XC, Zhang ZD, Huang DS. Prediction of length of ICU stay using data-mining techniques: an example of old critically Ill postoperative gastric cancer patients. Asian Pac J Cancer Prev 2012; 13: 97–101.
-
(2012)
Asian Pac J Cancer Prev
, vol.13
, pp. 97-101
-
-
Zhang, X.C.1
Zhang, Z.D.2
Huang, D.S.3
-
6
-
-
84887606555
-
Comparative analysis of a-priori and a-posteriori dietary patterns using state-of-the-art classification algorithms: a case/case-control study
-
Kastorini CM, Papadakis G, Milionis HJ et al. Comparative analysis of a-priori and a-posteriori dietary patterns using state-of-the-art classification algorithms: a case/case-control study. Artif Intell Med 2013; 59: 175–83.
-
(2013)
Artif Intell Med
, vol.59
, pp. 175-183
-
-
Kastorini, C.M.1
Papadakis, G.2
Milionis, H.J.3
-
7
-
-
84947063447
-
Interdisciplinary lifestyle intervention for weight management in a community population (HealthTrack study): study design and baseline sample characteristics
-
Tapsell LC, Lonergan M, Martin A, Batterham MJ, Neale EP. Interdisciplinary lifestyle intervention for weight management in a community population (HealthTrack study): study design and baseline sample characteristics. Contemp Clin Trials 2015; 45: 394–403.
-
(2015)
Contemp Clin Trials
, vol.45
, pp. 394-403
-
-
Tapsell, L.C.1
Lonergan, M.2
Martin, A.3
Batterham, M.J.4
Neale, E.P.5
-
8
-
-
84868709239
-
Several steps/day indicators predict changes in anthropometric outcomes: HUB City steps
-
Thomson JL, Landry AS, Zoellner JM et al. Several steps/day indicators predict changes in anthropometric outcomes: HUB City steps. BMC Public Health 2012; 12: 983.
-
(2012)
BMC Public Health
, vol.12
, pp. 983
-
-
Thomson, J.L.1
Landry, A.S.2
Zoellner, J.M.3
-
9
-
-
0442291779
-
How many steps/day are enough? Preliminary pedometer indices for public health
-
Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med 2004; 34: 1–8.
-
(2004)
Sports Med
, vol.34
, pp. 1-8
-
-
Tudor-Locke, C.1
Bassett, D.R.2
-
12
-
-
84883401319
-
Rattle: a data mining GUI for R
-
Williams G. Rattle: a data mining GUI for R. R J 2009; 1: 45–55.
-
(2009)
R J
, vol.1
, pp. 45-55
-
-
Williams, G.1
-
13
-
-
0034831905
-
An assessment of the construct validity of the SF-12 summary scores across ethnic groups
-
Jenkinson C, Chandola T, Coulter A, Bruster S. An assessment of the construct validity of the SF-12 summary scores across ethnic groups. J Public Health 2001; 23: 187–94.
-
(2001)
J Public Health
, vol.23
, pp. 187-194
-
-
Jenkinson, C.1
Chandola, T.2
Coulter, A.3
Bruster, S.4
-
15
-
-
0034732869
-
Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests
-
Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 2000; 45: 23–41.
-
(2000)
Prev Vet Med
, vol.45
, pp. 23-41
-
-
Greiner, M.1
Pfeiffer, D.2
Smith, R.D.3
-
17
-
-
70350115240
-
An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
-
Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 2009; 107: 1300–7.
-
(2009)
J Appl Physiol
, vol.107
, pp. 1300-1307
-
-
Staudenmayer, J.1
Pober, D.2
Crouter, S.3
Bassett, D.4
Freedson, P.5
-
18
-
-
84952863604
-
Classification of team sport activities using a single wearable tracking device
-
Wundersitz DW, Josman C, Gupta R, Netto KJ, Gastin PB, Robertson S. Classification of team sport activities using a single wearable tracking device. J Biomech 2015; 48: 3975–81.
-
(2015)
J Biomech
, vol.48
, pp. 3975-3981
-
-
Wundersitz, D.W.1
Josman, C.2
Gupta, R.3
Netto, K.J.4
Gastin, P.B.5
Robertson, S.6
-
19
-
-
84873041764
-
Comparison of artificial neural networks with logistic regression for detection of obesity
-
Heydari ST, Ayatollahi SM, Zare N. Comparison of artificial neural networks with logistic regression for detection of obesity. J Med Syst 2012; 36: 2449–54.
-
(2012)
J Med Syst
, vol.36
, pp. 2449-2454
-
-
Heydari, S.T.1
Ayatollahi, S.M.2
Zare, N.3
-
20
-
-
85011002563
-
Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior
-
Isma'eel HA, Sakr GE, Almedawar MM et al. Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior. Cardiovasc Diagn Ther 2015; 5: 219–28.
-
(2015)
Cardiovasc Diagn Ther
, vol.5
, pp. 219-228
-
-
Isma'eel, H.A.1
Sakr, G.E.2
Almedawar, M.M.3
-
21
-
-
0006574123
-
Fast learning from sparse data
-
In, Lasky KB, Prade H, eds., Stockholm, Morgan Kaufmann Publishers
-
Chickering DM, Heckerman D. Fast learning from sparse data. In: Lasky KB, Prade H, eds. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Stockholm: Morgan Kaufmann Publishers, 1999; 109–15.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 109-115
-
-
Chickering, D.M.1
Heckerman, D.2
-
22
-
-
0003684449
-
-
New York, NY, Springer
-
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York, NY: Springer, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
23
-
-
84904546870
-
A posteriori dietary patterns: how many patterns to retain?
-
Fransen HP, May AM, Stricker MD et al. A posteriori dietary patterns: how many patterns to retain? J Nutr 2014; 144: 1274–82.
-
(2014)
J Nutr
, vol.144
, pp. 1274-1282
-
-
Fransen, H.P.1
May, A.M.2
Stricker, M.D.3
-
24
-
-
84924073834
-
Modest validity and fair reproducibility of dietary patterns derived by cluster analysis
-
Funtikova AN, Benitez-Arciniega AA, Fito M, Schroder H. Modest validity and fair reproducibility of dietary patterns derived by cluster analysis. Nutr Res 2015; 35: 265–8.
-
(2015)
Nutr Res
, vol.35
, pp. 265-268
-
-
Funtikova, A.N.1
Benitez-Arciniega, A.A.2
Fito, M.3
Schroder, H.4
-
25
-
-
84876116427
-
Dietary patterns in Irish adolescents: a comparison of cluster and principal component analyses
-
Hearty AP, Gibney MJ. Dietary patterns in Irish adolescents: a comparison of cluster and principal component analyses. Public Health Nutr 2013; 16: 848–57.
-
(2013)
Public Health Nutr
, vol.16
, pp. 848-857
-
-
Hearty, A.P.1
Gibney, M.J.2
-
26
-
-
84907367774
-
Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study
-
Walthouwer MJ, Oenema A, Soetens K, Lechner L, de Vries H. Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study. Appetite 2014; 82: 154–9.
-
(2014)
Appetite
, vol.82
, pp. 154-159
-
-
Walthouwer, M.J.1
Oenema, A.2
Soetens, K.3
Lechner, L.4
de Vries, H.5
-
27
-
-
84961391307
-
Identification of dietary patterns associated with blood pressure in a sample of overweight australian adults
-
Anil S, Charlton KE, Tapsell LC, Probst Y, Ndanuko R, Batterham M. Identification of dietary patterns associated with blood pressure in a sample of overweight australian adults. J Hum Hypertens 2016; 30: 672–8.
-
(2016)
J Hum Hypertens
, vol.30
, pp. 672-678
-
-
Anil, S.1
Charlton, K.E.2
Tapsell, L.C.3
Probst, Y.4
Ndanuko, R.5
Batterham, M.6
-
28
-
-
84961736570
-
Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults
-
Batis C, Mendez MA, Gordon-Larsen P, Sotres-Alvarez D, Adair L, Popkin B. Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr 2016; 19: 195–203.
-
(2016)
Public Health Nutr
, vol.19
, pp. 195-203
-
-
Batis, C.1
Mendez, M.A.2
Gordon-Larsen, P.3
Sotres-Alvarez, D.4
Adair, L.5
Popkin, B.6
-
29
-
-
84978518714
-
A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians
-
Thorpe MG, Milte CM, Crawford D, McNaughton SA. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians. Int J Behav Nutr Phys Act 2016; 13: 30.
-
(2016)
Int J Behav Nutr Phys Act
, vol.13
, pp. 30
-
-
Thorpe, M.G.1
Milte, C.M.2
Crawford, D.3
McNaughton, S.A.4
-
30
-
-
84959566849
-
Dietary patterns of obese and normal-weight women of reproductive age in urban slum areas in Central Jakarta
-
Khusun H, Fahmida U. Dietary patterns of obese and normal-weight women of reproductive age in urban slum areas in Central Jakarta. Br J Nutr 2016; 116: 1–8.
-
(2016)
Br J Nutr
, vol.116
, pp. 1-8
-
-
Khusun, H.1
Fahmida, U.2
-
32
-
-
78149239835
-
How many subjects does it take to do a regression analysis
-
Green SB. How many subjects does it take to do a regression analysis. Multivariate Behav Res 1991; 26: 499–510.
-
(1991)
Multivariate Behav Res
, vol.26
, pp. 499-510
-
-
Green, S.B.1
-
33
-
-
84928929655
-
The number of subjects per variable required in linear regression analyses
-
Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 2015; 68: 627–36.
-
(2015)
J Clin Epidemiol
, vol.68
, pp. 627-636
-
-
Austin, P.C.1
Steyerberg, E.W.2
|