메뉴 건너뛰기




Volumn 18, Issue 12, 2016, Pages

Guidelines for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view

Author keywords

Clinical prediction rule; Guideline; Machine learning

Indexed keywords

ADOPTION; CONSENSUS DEVELOPMENT; DATA ANALYSIS; DELPHI STUDY; HUMAN; MACHINE LEARNING; MEDICAL RESEARCH; MODEL; PREDICTION; BIOLOGICAL MODEL; INTERDISCIPLINARY EDUCATION; PROCEDURES; STANDARDS; STATISTICAL ANALYSIS;

EID: 85008451521     PISSN: None     EISSN: 14388871     Source Type: Journal    
DOI: 10.2196/jmir.5870     Document Type: Article
Times cited : (681)

References (55)
  • 1
    • 84940737344 scopus 로고    scopus 로고
    • Prediction of outcome in acute lower gastrointestinal bleeding using gradient boosting
    • [FREE Full text] [Medline: 26172121]
    • Ayaru L, Ypsilantis P, Nanapragasam A, Choi RC, Thillanathan A, Min-Ho L, et al. Prediction of outcome in acute lower gastrointestinal bleeding using gradient boosting. PLoS One 2015;10(7):e0132485 [FREE Full text] [doi: 10.1371/journal.pone.0132485] [Medline: 26172121]
    • (2015) PLoS One , vol.10 , Issue.7 , pp. e0132485
    • Ayaru, L.1    Ypsilantis, P.2    Nanapragasam, A.3    Choi, R.C.4    Thillanathan, A.5    Min-Ho, L.6
  • 2
    • 84863316272 scopus 로고    scopus 로고
    • Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions
    • Ogutu J, Schulz-Streeck T, Piepho HP. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc 2012;6(Suppl 2):S10. [doi: 10.1186/1753-6561-6-S2-S10]
    • (2012) BMC Proc , vol.6 , pp. S10
    • Ogutu, J.1    Schulz-Streeck, T.2    Piepho, H.P.3
  • 3
    • 84899564545 scopus 로고    scopus 로고
    • Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments
    • Mar [FREE Full text] [Medline: 24628849]
    • Tran T, Luo W, Phung D, Harvey R, Berk M, Kennedy RL, et al. Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments. BMC Psychiatry 2014 Mar 14;14:76 [FREE Full text] [doi: 10.1186/1471-244X-14-76] [Medline: 24628849]
    • (2014) BMC Psychiatry , vol.14 , Issue.14 , pp. 76
    • Tran, T.1    Luo, W.2    Phung, D.3    Harvey, R.4    Berk, M.5    Kennedy, R.L.6
  • 5
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends perspectives and prospects
    • Jul 17 [Medline: 26185243]
    • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015 Jul 17;349(6245):255-260. [doi: 10.1126/science.aaa8415] [Medline: 26185243]
    • (2015) Science , vol.349 , Issue.6245 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 6
    • 84930631638 scopus 로고    scopus 로고
    • Probabilistic machine learning and artificial intelligence
    • May 28 [Medline: 26017444]
    • Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature 2015 May 28;521(7553):452-459. [doi: 10.1038/nature14541] [Medline: 26017444]
    • (2015) Nature , vol.521 , Issue.7553 , pp. 452-459
    • Ghahramani, Z.1
  • 7
    • 84939888491 scopus 로고    scopus 로고
    • Applying machine learning to facilitate autism diagnostics: Pitfalls and promises
    • May [FREE Full text] [Medline: 25294649]
    • Bone D, Goodwin MS, Black MP, Lee C, Audhkhasi K, Narayanan S. Applying machine learning to facilitate autism diagnostics: pitfalls and promises. J Autism Dev Disord 2015 May;45(5):1121-1136 [FREE Full text] [doi: 10.1007/s10803-014-2268-6] [Medline: 25294649]
    • (2015) J Autism Dev Disord , vol.45 , Issue.5 , pp. 1121-1136
    • Bone, D.1    Goodwin, M.S.2    Black, M.P.3    Lee, C.4    Audhkhasi, K.5    Narayanan, S.6
  • 9
    • 84860196341 scopus 로고    scopus 로고
    • Why the pirate party won the German election of 2009 or the trouble with predictions: A response to tumasjan a, sprenger to, sander pg, & welpe im "predicting elections with twitter: What 140 characters reveal about political sentiment"
    • Apr 25
    • Jungherr A, Jurgens P, Schoen H. Why the pirate party won the German election of 2009 or the trouble with predictions: a response to Tumasjan A, Sprenger TO, Sander PG, & Welpe IM "Predicting elections with Twitter: what 140 characters reveal about political sentiment". Social Science Computer Review 2011 Apr 25;30(2):229-234. [doi: 10.1177/0894439311404119]
    • (2011) Social Science Computer Review , vol.30 , Issue.2 , pp. 229-234
    • Jungherr, A.1    Jurgens, P.2    Schoen, H.3
  • 10
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of google flu: Traps in big data analysis
    • Mar 14 [Medline: 24626916]
    • Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google flu: traps in big data analysis. Science 2014 Mar 14;343(6176):1203-1205. [doi: 10.1126/science.1248506] [Medline: 24626916]
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 11
    • 84907019464 scopus 로고    scopus 로고
    • Machine learning, medical diagnosis, and biomedical engineering research-commentary
    • Jul [FREE Full text] [Medline: 24998888]
    • Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research-commentary. Biomed Eng Online 2014 Jul 05;13:94 [FREE Full text] [doi: 10.1186/1475-925X-13-94] [Medline: 24998888]
    • (2014) Biomed Eng Online , vol.5 , Issue.13 , pp. 94
    • Foster, K.R.1    Koprowski, R.2    Skufca, J.D.3
  • 12
    • 77949539217 scopus 로고    scopus 로고
    • Pitfalls of supervised feature selection
    • Feb 1 [FREE Full text] [Medline: 19880370]
    • Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature selection. Bioinformatics 2010 Feb 1;26(3):440-443 [FREE Full text] [doi: 10.1093/bioinformatics/btp621] [Medline: 19880370]
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 440-443
    • Smialowski, P.1    Frishman, D.2    Kramer, S.3
  • 13
    • 2442695245 scopus 로고    scopus 로고
    • What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models
    • [Medline: 15184705]
    • Babyak M. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med 2004;66(3):411-421. [Medline: 15184705]
    • (2004) Psychosom Med , vol.66 , Issue.3 , pp. 411-421
    • Babyak, M.1
  • 14
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • [Medline: 14741005]
    • Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci 2004;44(1):1-12. [doi: 10.1021/ci0342472] [Medline: 14741005]
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.1 , pp. 1-12
    • Hawkins, D.M.1
  • 15
    • 84888128154 scopus 로고    scopus 로고
    • Overfitting in prediction models-is it a problem only in high dimensions?
    • Nov [Medline: 23811117]
    • Subramanian J, Simon R. Overfitting in prediction models-is it a problem only in high dimensions? Contemp Clin Trials 2013 Nov;36(2):636-641. [doi: 10.1016/j.cct.2013.06.011] [Medline: 23811117]
    • (2013) Contemp Clin Trials , vol.36 , Issue.2 , pp. 636-641
    • Subramanian, J.1    Simon, R.2
  • 19
    • 0000149045 scopus 로고
    • Two further applications of a model for binary regression
    • Dec
    • Cox D. Two further applications of a model for binary regression. Biometrika 1958 Dec;45(3/4):562-565. [doi: 10.2307/2333203]
    • (1958) Biometrika , vol.45 , Issue.3-4 , pp. 562-565
    • Cox, D.1
  • 20
    • 0023417432 scopus 로고
    • Simplifying decision trees
    • Sep
    • Quinlan J. Simplifying decision trees. Int J Man Mach Stud 1987 Sep;27(3):221-234. [doi: 10.1016/S0020-7373(87)80053-6]
    • (1987) Int J Man Mach Stud , vol.27 , Issue.3 , pp. 221-234
    • Quinlan, J.1
  • 21
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Mar
    • Quinlan J. Induction of decision trees. Mach Learn 1986 Mar;1(1):81-106. [doi: 10.1007/BF00116251]
    • (1986) Mach Learn , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.1
  • 22
    • 0036778479 scopus 로고    scopus 로고
    • Decision trees: An overview and their use in medicine
    • Oct. [Medline: 12182209]
    • Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. J Med Syst 2002 Oct;26(5):445-463. [Medline: 12182209]
    • (2002) J Med Syst , vol.26 , Issue.5 , pp. 445-463
    • Podgorelec, V.1    Kokol, P.2    Stiglic, B.3    Rozman, I.4
  • 23
    • 84876485723 scopus 로고    scopus 로고
    • Decision trees: A recent overview
    • Jun 29
    • Kotsiantis S. Decision trees: a recent overview. Artif Intell Rev 2011 Jun 29;39(4):261-283. [doi: 10.1007/s10462-011-9272-4]
    • (2011) Artif Intell Rev , vol.39 , Issue.4 , pp. 261-283
    • Kotsiantis, S.1
  • 24
    • 51349111653 scopus 로고    scopus 로고
    • What are decision trees?
    • Sep [FREE Full text] [Medline: 18779814]
    • Kingsford C, Salzberg SL. What are decision trees? Nat Biotechnol 2008 Sep;26(9):1011-1013 [FREE Full text] [doi: 10.1038/nbt0908-1011] [Medline: 18779814]
    • (2008) Nat Biotechnol , vol.26 , Issue.9 , pp. 1011-1013
    • Kingsford, C.1    Salzberg, S.L.2
  • 26
    • 84947255106 scopus 로고    scopus 로고
    • Applying classification trees to hospital administrative data to identify patients with lower gastrointestinal bleeding
    • [FREE Full text] [Medline: 26406318]
    • Siddique J, Ruhnke GW, Flores A, Prochaska MT, Paesch E, Meltzer DO, et al. Applying classification trees to hospital administrative data to identify patients with lower gastrointestinal bleeding. PLoS One 2015;10(9):e0138987 [FREE Full text] [doi: 10.1371/journal.pone.0138987] [Medline: 26406318]
    • (2015) PLoS One , vol.10 , Issue.9 , pp. e0138987
    • Siddique, J.1    Ruhnke, G.W.2    Flores, A.3    Prochaska, M.T.4    Paesch, E.5    Meltzer, D.O.6
  • 27
    • 84941919066 scopus 로고    scopus 로고
    • Prediction by data mining, of suicide attempts in Korean adolescents: A national study
    • [FREE Full text] [Medline: 26396521]
    • Bae S, Lee SA, Lee SH. Prediction by data mining, of suicide attempts in Korean adolescents: a national study. Neuropsychiatr Dis Treat 2015;11:2367-2375 [FREE Full text] [doi: 10.2147/NDT.S91111] [Medline: 26396521]
    • (2015) Neuropsychiatr Dis Treat , vol.11 , pp. 2367-2375
    • Bae, S.1    Lee, S.A.2    Lee, S.H.3
  • 28
    • 84941745768 scopus 로고    scopus 로고
    • Predictability of the future development of aggressive behavior of cranial dural arteriovenous fistulas based on decision tree analysis
    • Jul [Medline: 25859811]
    • Satomi J, Ghaibeh AA, Moriguchi H, Nagahiro S. Predictability of the future development of aggressive behavior of cranial dural arteriovenous fistulas based on decision tree analysis. J Neurosurg 2015 Jul;123(1):86-90. [doi: 10.3171/2014.10.JNS141429] [Medline: 25859811]
    • (2015) J Neurosurg , vol.123 , Issue.1 , pp. 86-90
    • Satomi, J.1    Ghaibeh, A.A.2    Moriguchi, H.3    Nagahiro, S.4
  • 29
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001;45(1):5-32. [doi: 10.1023/A:1010933404324]
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 30
    • 84873187093 scopus 로고    scopus 로고
    • Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
    • Oct 18
    • Boulesteix A, Janitza S, Kruppa J, König I. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining Knowl Discov 2012 Oct 18;2(6):493-507. [doi: 10.1002/widm.1072]
    • (2012) WIREs Data Mining Knowl Discov , vol.2 , Issue.6 , pp. 493-507
    • Boulesteix, A.1    Janitza, S.2    Kruppa, J.3    König, I.4
  • 31
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale application and characteristics of classification and regression trees bagging and random forests
    • Dec [FREE Full text] [Medline: 19968396]
    • Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 2009 Dec;14(4):323-348 [FREE Full text] [doi: 10.1037/a0016973] [Medline: 19968396]
    • (2009) Psychol Methods , vol.14 , Issue.4 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 32
    • 84871787691 scopus 로고    scopus 로고
    • Data mining in the life sciences with random forest: A walk in the park or lost in the jungle?
    • 2013 May [FREE Full text] [Medline: 22786785]
    • Touw W, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, et al. Data mining in the Life Sciences with random forest: a walk in the park or lost in the jungle? Brief Bioinform 2013 May;14(3):315-326 [FREE Full text] [doi: 10.1093/bib/bbs034] [Medline: 22786785]
    • Brief Bioinform , vol.14 , Issue.3 , pp. 315-326
    • Touw, W.1    Bayjanov, J.R.2    Overmars, L.3    Backus, L.4    Boekhorst, J.5    Wels, M.6
  • 33
    • 84898922018 scopus 로고    scopus 로고
    • Combining multiple hrt parameters using the random forests method improves the diagnostic accuracy of glaucoma in emmetropic and highly myopic eyes
    • Apr 17 [Medline: 24609628]
    • Asaoka R, Iwase A, Tsutsumi T, Saito H, Otani S, Miyata K, et al. Combining multiple HRT parameters using the 'Random Forests' method improves the diagnostic accuracy of glaucoma in emmetropic and highly myopic eyes. Invest Ophthalmol Vis Sci 2014 Apr 17;55(4):2482-2490. [doi: 10.1167/iovs.14-14009] [Medline: 24609628]
    • (2014) Invest Ophthalmol Vis Sci , vol.55 , Issue.4 , pp. 2482-2490
    • Asaoka, R.1    Iwase, A.2    Tsutsumi, T.3    Saito, H.4    Otani, S.5    Miyata, K.6
  • 34
    • 84940312803 scopus 로고    scopus 로고
    • Discriminating between glaucoma and normal eyes using optical coherence tomography and the random forests classifier
    • [FREE Full text] [Medline: 25167053]
    • Yoshida T, Iwase A, Hirasawa H, Murata H, Mayama C, Araie M, et al. Discriminating between glaucoma and normal eyes using optical coherence tomography and the 'Random Forests' classifier. PLoS One 2014;9(8):e106117 [FREE Full text] [doi: 10.1371/journal.pone.0106117] [Medline: 25167053]
    • (2014) PLoS One , vol.9 , Issue.8 , pp. e106117
    • Yoshida, T.1    Iwase, A.2    Hirasawa, H.3    Murata, H.4    Mayama, C.5    Araie, M.6
  • 37
    • 84888206480 scopus 로고    scopus 로고
    • A survey of l1 regression
    • Oct 24
    • Vidaurre D, Bielza C, Larrañaga P. A survey of L1 regression. Int Stat Rev 2013 Oct 24;81(3):361-387. [doi: 10.1111/insr.12023]
    • (2013) Int Stat Rev , vol.81 , Issue.3 , pp. 361-387
    • Vidaurre, D.1    Bielza, C.2    Larrañaga, P.3
  • 38
    • 58349104057 scopus 로고    scopus 로고
    • Least angle and l 1 penalized regression: A review
    • Hesterberg T, Choi N, Meier L, Fraley C. Least angle and l 1 penalized regression: A review. Statist Surv 2008;2:61-93. [doi: 10.1214/08-SS035]
    • (2008) Statist Surv , vol.2 , pp. 61-93
    • Hesterberg, T.1    Choi, N.2    Meier, L.3    Fraley, C.4
  • 39
    • 84939644196 scopus 로고    scopus 로고
    • Applying "lasso" regression to predict future visual field progression in glaucoma patients
    • Apr [Medline: 25698708]
    • Fujino Y, Murata H, Mayama C, Asaoka R. Applying "lasso" regression to predict future visual field progression in glaucoma patients. Invest Ophthalmol Vis Sci 2015 Apr;56(4):2334-2339. [doi: 10.1167/iovs.15-16445] [Medline: 25698708]
    • (2015) Invest Ophthalmol Vis Sci , vol.56 , Issue.4 , pp. 2334-2339
    • Fujino, Y.1    Murata, H.2    Mayama, C.3    Asaoka, R.4
  • 40
    • 84929094161 scopus 로고    scopus 로고
    • Toward probabilistic diagnosis and understanding of depression based on functional mri data analysis with logistic group lasso
    • [FREE Full text][Medline: 25932629]
    • Shimizu Y, Yoshimoto J, Toki S, Takamura M, Yoshimura S, Okamoto Y, et al. Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO. PLoS One 2015;10(5):e0123524 [FREE Full text] [doi: 10.1371/journal.pone.0123524] [Medline: 25932629]
    • (2015) PLoS One , vol.10 , Issue.5 , pp. e0123524
    • Shimizu, Y.1    Yoshimoto, J.2    Toki, S.3    Takamura, M.4    Yoshimura, S.5    Okamoto, Y.6
  • 41
    • 84896541567 scopus 로고    scopus 로고
    • Using multivariate regression model with least absolute shrinkage and selection operator (lasso) to predict the incidence of xerostomia after intensity-modulated radiotherapy for head and neck cancer
    • [FREE Full text] [Medline: 24586971]
    • Lee T, Chao P, Ting H, Chang L, Huang Y, Wu J, et al. Using multivariate regression model with least absolute shrinkage and selection operator (LASSO) to predict the incidence of Xerostomia after intensity-modulated radiotherapy for head and neck cancer. PLoS One 2014;9(2):e89700 [FREE Full text] [doi: 10.1371/journal.pone.0089700] [Medline: 24586971]
    • (2014) PLoS One , vol.9 , Issue.2 , pp. e89700
    • Lee, T.1    Chao, P.2    Ting, H.3    Chang, L.4    Huang, Y.5    Wu, J.6
  • 42
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Feb
    • Friedman J. Stochastic gradient boosting. Comput Stat Data Anal 2002 Feb;38(4):367-378. [doi: 10.1016/S0167-9473(01)00065-2]
    • (2002) Comput Stat Data Anal , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.1
  • 43
    • 84892667860 scopus 로고    scopus 로고
    • Gradient boosting machines, a tutorial
    • [FREE Full text] [Medline: 24409142]
    • Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot 2013;7:21 [FREE Full text] [doi: 10.3389/fnbot.2013.00021] [Medline: 24409142]
    • (2013) Front Neurorobot , vol.7 , pp. 21
    • Natekin, A.1    Knoll, A.2
  • 44
    • 34247115449 scopus 로고    scopus 로고
    • Boosted trees for ecological modeling and prediction
    • Jan. [Medline: 17489472]
    • De'ath G. Boosted trees for ecological modeling and prediction. Ecology 2007 Jan;88(1):243-251. [Medline: 17489472]
    • (2007) Ecology , vol.88 , Issue.1 , pp. 243-251
    • De'Ath, G.1
  • 45
    • 84914169260 scopus 로고    scopus 로고
    • The evolution of boosting algorithms. from machine learning to statistical modelling
    • [Medline: 25112367]
    • Mayr A, Binder H, Gefeller O, Schmid M. The evolution of boosting algorithms. From machine learning to statistical modelling. Methods Inf Med 2014;53(6):419-427. [doi: 10.3414/ME13-01-0122] [Medline: 25112367]
    • (2014) Methods Inf Med , vol.53 , Issue.6 , pp. 419-427
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 46
    • 84871610662 scopus 로고    scopus 로고
    • The gradient boosting algorithm and random boosting for genome-Assisted evaluation in large data sets
    • Jan [Medline: 23102953]
    • González-Recio O, Jiménez-Montero JA, Alenda R. The gradient boosting algorithm and random boosting for genome-Assisted evaluation in large data sets. J Dairy Sci 2013 Jan;96(1):614-624. [doi: 10.3168/jds.2012-5630] [Medline: 23102953]
    • (2013) J Dairy Sci , vol.96 , Issue.1 , pp. 614-624
    • González-Recio, O.1    Jiménez-Montero, J.A.2    Alenda, R.3
  • 48
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273-297. [doi: 10.1023/A:1022627411411]
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 49
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998;2(2):121-167. [doi: 10.1023/A:1009715923555]
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 50
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Aug
    • Smola A, Schölkopf B. A tutorial on support vector regression. Stat Comput 2004 Aug;14(3):199-222. [doi: 10.1023/B:STCO.0000035301.49549.88]
    • (2004) Stat Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 52
    • 85096855936 scopus 로고    scopus 로고
    • One-class svms for document classification
    • Manevitz L, Yousef M. One-class SVMs for document classification. J Mach Learn Res 2001;2:139-154.
    • (2001) J Mach Learn Res , vol.2 , pp. 139-154
    • Manevitz, L.1    Yousef, M.2
  • 54
    • 77949774358 scopus 로고    scopus 로고
    • A division algebraic framework for multidimensional support vector regression
    • Apr [Medline: 19737676]
    • Shilton A, Lai DT, Palaniswami M. A division algebraic framework for multidimensional support vector regression. IEEE Trans Syst Man Cybern B Cybern 2010 Apr;40(2):517-528. [doi: 10.1109/TSMCB.2009.2028314] [Medline: 19737676]
    • (2010) IEEE Trans Syst Man Cybern B Cybern , vol.40 , Issue.2 , pp. 517-528
    • Shilton, A.1    Lai, D.T.2    Palaniswami, M.3
  • 55
    • 85156208493 scopus 로고    scopus 로고
    • Taxonomy of large margin principle algorithms for ordinal regression problems
    • Shashua A, Levin A. Taxonomy of large margin principle algorithms for ordinal regression problems. Adv Neural Inf Process Syst 2002;15:937-944.
    • (2002) Adv Neural Inf Process Syst , vol.15 , pp. 937-944
    • Shashua, A.1    Levin, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.