-
1
-
-
84940737344
-
Prediction of outcome in acute lower gastrointestinal bleeding using gradient boosting
-
[FREE Full text] [Medline: 26172121]
-
Ayaru L, Ypsilantis P, Nanapragasam A, Choi RC, Thillanathan A, Min-Ho L, et al. Prediction of outcome in acute lower gastrointestinal bleeding using gradient boosting. PLoS One 2015;10(7):e0132485 [FREE Full text] [doi: 10.1371/journal.pone.0132485] [Medline: 26172121]
-
(2015)
PLoS One
, vol.10
, Issue.7
, pp. e0132485
-
-
Ayaru, L.1
Ypsilantis, P.2
Nanapragasam, A.3
Choi, R.C.4
Thillanathan, A.5
Min-Ho, L.6
-
2
-
-
84863316272
-
Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions
-
Ogutu J, Schulz-Streeck T, Piepho HP. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc 2012;6(Suppl 2):S10. [doi: 10.1186/1753-6561-6-S2-S10]
-
(2012)
BMC Proc
, vol.6
, pp. S10
-
-
Ogutu, J.1
Schulz-Streeck, T.2
Piepho, H.P.3
-
3
-
-
84899564545
-
Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments
-
Mar [FREE Full text] [Medline: 24628849]
-
Tran T, Luo W, Phung D, Harvey R, Berk M, Kennedy RL, et al. Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments. BMC Psychiatry 2014 Mar 14;14:76 [FREE Full text] [doi: 10.1186/1471-244X-14-76] [Medline: 24628849]
-
(2014)
BMC Psychiatry
, vol.14
, Issue.14
, pp. 76
-
-
Tran, T.1
Luo, W.2
Phung, D.3
Harvey, R.4
Berk, M.5
Kennedy, R.L.6
-
5
-
-
84937801713
-
Machine learning: Trends perspectives and prospects
-
Jul 17 [Medline: 26185243]
-
Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015 Jul 17;349(6245):255-260. [doi: 10.1126/science.aaa8415] [Medline: 26185243]
-
(2015)
Science
, vol.349
, Issue.6245
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
6
-
-
84930631638
-
Probabilistic machine learning and artificial intelligence
-
May 28 [Medline: 26017444]
-
Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature 2015 May 28;521(7553):452-459. [doi: 10.1038/nature14541] [Medline: 26017444]
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 452-459
-
-
Ghahramani, Z.1
-
7
-
-
84939888491
-
Applying machine learning to facilitate autism diagnostics: Pitfalls and promises
-
May [FREE Full text] [Medline: 25294649]
-
Bone D, Goodwin MS, Black MP, Lee C, Audhkhasi K, Narayanan S. Applying machine learning to facilitate autism diagnostics: pitfalls and promises. J Autism Dev Disord 2015 May;45(5):1121-1136 [FREE Full text] [doi: 10.1007/s10803-014-2268-6] [Medline: 25294649]
-
(2015)
J Autism Dev Disord
, vol.45
, Issue.5
, pp. 1121-1136
-
-
Bone, D.1
Goodwin, M.S.2
Black, M.P.3
Lee, C.4
Audhkhasi, K.5
Narayanan, S.6
-
9
-
-
84860196341
-
Why the pirate party won the German election of 2009 or the trouble with predictions: A response to tumasjan a, sprenger to, sander pg, & welpe im "predicting elections with twitter: What 140 characters reveal about political sentiment"
-
Apr 25
-
Jungherr A, Jurgens P, Schoen H. Why the pirate party won the German election of 2009 or the trouble with predictions: a response to Tumasjan A, Sprenger TO, Sander PG, & Welpe IM "Predicting elections with Twitter: what 140 characters reveal about political sentiment". Social Science Computer Review 2011 Apr 25;30(2):229-234. [doi: 10.1177/0894439311404119]
-
(2011)
Social Science Computer Review
, vol.30
, Issue.2
, pp. 229-234
-
-
Jungherr, A.1
Jurgens, P.2
Schoen, H.3
-
10
-
-
84896056107
-
Big data. The parable of google flu: Traps in big data analysis
-
Mar 14 [Medline: 24626916]
-
Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google flu: traps in big data analysis. Science 2014 Mar 14;343(6176):1203-1205. [doi: 10.1126/science.1248506] [Medline: 24626916]
-
(2014)
Science
, vol.343
, Issue.6176
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
11
-
-
84907019464
-
Machine learning, medical diagnosis, and biomedical engineering research-commentary
-
Jul [FREE Full text] [Medline: 24998888]
-
Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research-commentary. Biomed Eng Online 2014 Jul 05;13:94 [FREE Full text] [doi: 10.1186/1475-925X-13-94] [Medline: 24998888]
-
(2014)
Biomed Eng Online
, vol.5
, Issue.13
, pp. 94
-
-
Foster, K.R.1
Koprowski, R.2
Skufca, J.D.3
-
12
-
-
77949539217
-
Pitfalls of supervised feature selection
-
Feb 1 [FREE Full text] [Medline: 19880370]
-
Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature selection. Bioinformatics 2010 Feb 1;26(3):440-443 [FREE Full text] [doi: 10.1093/bioinformatics/btp621] [Medline: 19880370]
-
(2010)
Bioinformatics
, vol.26
, Issue.3
, pp. 440-443
-
-
Smialowski, P.1
Frishman, D.2
Kramer, S.3
-
13
-
-
2442695245
-
What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models
-
[Medline: 15184705]
-
Babyak M. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med 2004;66(3):411-421. [Medline: 15184705]
-
(2004)
Psychosom Med
, vol.66
, Issue.3
, pp. 411-421
-
-
Babyak, M.1
-
14
-
-
1642380461
-
The problem of overfitting
-
[Medline: 14741005]
-
Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci 2004;44(1):1-12. [doi: 10.1021/ci0342472] [Medline: 14741005]
-
(2004)
J Chem Inf Comput Sci
, vol.44
, Issue.1
, pp. 1-12
-
-
Hawkins, D.M.1
-
15
-
-
84888128154
-
Overfitting in prediction models-is it a problem only in high dimensions?
-
Nov [Medline: 23811117]
-
Subramanian J, Simon R. Overfitting in prediction models-is it a problem only in high dimensions? Contemp Clin Trials 2013 Nov;36(2):636-641. [doi: 10.1016/j.cct.2013.06.011] [Medline: 23811117]
-
(2013)
Contemp Clin Trials
, vol.36
, Issue.2
, pp. 636-641
-
-
Subramanian, J.1
Simon, R.2
-
19
-
-
0000149045
-
Two further applications of a model for binary regression
-
Dec
-
Cox D. Two further applications of a model for binary regression. Biometrika 1958 Dec;45(3/4):562-565. [doi: 10.2307/2333203]
-
(1958)
Biometrika
, vol.45
, Issue.3-4
, pp. 562-565
-
-
Cox, D.1
-
20
-
-
0023417432
-
Simplifying decision trees
-
Sep
-
Quinlan J. Simplifying decision trees. Int J Man Mach Stud 1987 Sep;27(3):221-234. [doi: 10.1016/S0020-7373(87)80053-6]
-
(1987)
Int J Man Mach Stud
, vol.27
, Issue.3
, pp. 221-234
-
-
Quinlan, J.1
-
21
-
-
33744584654
-
Induction of decision trees
-
Mar
-
Quinlan J. Induction of decision trees. Mach Learn 1986 Mar;1(1):81-106. [doi: 10.1007/BF00116251]
-
(1986)
Mach Learn
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.1
-
22
-
-
0036778479
-
Decision trees: An overview and their use in medicine
-
Oct. [Medline: 12182209]
-
Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. J Med Syst 2002 Oct;26(5):445-463. [Medline: 12182209]
-
(2002)
J Med Syst
, vol.26
, Issue.5
, pp. 445-463
-
-
Podgorelec, V.1
Kokol, P.2
Stiglic, B.3
Rozman, I.4
-
23
-
-
84876485723
-
Decision trees: A recent overview
-
Jun 29
-
Kotsiantis S. Decision trees: a recent overview. Artif Intell Rev 2011 Jun 29;39(4):261-283. [doi: 10.1007/s10462-011-9272-4]
-
(2011)
Artif Intell Rev
, vol.39
, Issue.4
, pp. 261-283
-
-
Kotsiantis, S.1
-
24
-
-
51349111653
-
What are decision trees?
-
Sep [FREE Full text] [Medline: 18779814]
-
Kingsford C, Salzberg SL. What are decision trees? Nat Biotechnol 2008 Sep;26(9):1011-1013 [FREE Full text] [doi: 10.1038/nbt0908-1011] [Medline: 18779814]
-
(2008)
Nat Biotechnol
, vol.26
, Issue.9
, pp. 1011-1013
-
-
Kingsford, C.1
Salzberg, S.L.2
-
26
-
-
84947255106
-
Applying classification trees to hospital administrative data to identify patients with lower gastrointestinal bleeding
-
[FREE Full text] [Medline: 26406318]
-
Siddique J, Ruhnke GW, Flores A, Prochaska MT, Paesch E, Meltzer DO, et al. Applying classification trees to hospital administrative data to identify patients with lower gastrointestinal bleeding. PLoS One 2015;10(9):e0138987 [FREE Full text] [doi: 10.1371/journal.pone.0138987] [Medline: 26406318]
-
(2015)
PLoS One
, vol.10
, Issue.9
, pp. e0138987
-
-
Siddique, J.1
Ruhnke, G.W.2
Flores, A.3
Prochaska, M.T.4
Paesch, E.5
Meltzer, D.O.6
-
27
-
-
84941919066
-
Prediction by data mining, of suicide attempts in Korean adolescents: A national study
-
[FREE Full text] [Medline: 26396521]
-
Bae S, Lee SA, Lee SH. Prediction by data mining, of suicide attempts in Korean adolescents: a national study. Neuropsychiatr Dis Treat 2015;11:2367-2375 [FREE Full text] [doi: 10.2147/NDT.S91111] [Medline: 26396521]
-
(2015)
Neuropsychiatr Dis Treat
, vol.11
, pp. 2367-2375
-
-
Bae, S.1
Lee, S.A.2
Lee, S.H.3
-
28
-
-
84941745768
-
Predictability of the future development of aggressive behavior of cranial dural arteriovenous fistulas based on decision tree analysis
-
Jul [Medline: 25859811]
-
Satomi J, Ghaibeh AA, Moriguchi H, Nagahiro S. Predictability of the future development of aggressive behavior of cranial dural arteriovenous fistulas based on decision tree analysis. J Neurosurg 2015 Jul;123(1):86-90. [doi: 10.3171/2014.10.JNS141429] [Medline: 25859811]
-
(2015)
J Neurosurg
, vol.123
, Issue.1
, pp. 86-90
-
-
Satomi, J.1
Ghaibeh, A.A.2
Moriguchi, H.3
Nagahiro, S.4
-
29
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001;45(1):5-32. [doi: 10.1023/A:1010933404324]
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
30
-
-
84873187093
-
Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
-
Oct 18
-
Boulesteix A, Janitza S, Kruppa J, König I. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining Knowl Discov 2012 Oct 18;2(6):493-507. [doi: 10.1002/widm.1072]
-
(2012)
WIREs Data Mining Knowl Discov
, vol.2
, Issue.6
, pp. 493-507
-
-
Boulesteix, A.1
Janitza, S.2
Kruppa, J.3
König, I.4
-
31
-
-
72449170109
-
An introduction to recursive partitioning: Rationale application and characteristics of classification and regression trees bagging and random forests
-
Dec [FREE Full text] [Medline: 19968396]
-
Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 2009 Dec;14(4):323-348 [FREE Full text] [doi: 10.1037/a0016973] [Medline: 19968396]
-
(2009)
Psychol Methods
, vol.14
, Issue.4
, pp. 323-348
-
-
Strobl, C.1
Malley, J.2
Tutz, G.3
-
32
-
-
84871787691
-
Data mining in the life sciences with random forest: A walk in the park or lost in the jungle?
-
2013 May [FREE Full text] [Medline: 22786785]
-
Touw W, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, et al. Data mining in the Life Sciences with random forest: a walk in the park or lost in the jungle? Brief Bioinform 2013 May;14(3):315-326 [FREE Full text] [doi: 10.1093/bib/bbs034] [Medline: 22786785]
-
Brief Bioinform
, vol.14
, Issue.3
, pp. 315-326
-
-
Touw, W.1
Bayjanov, J.R.2
Overmars, L.3
Backus, L.4
Boekhorst, J.5
Wels, M.6
-
33
-
-
84898922018
-
Combining multiple hrt parameters using the random forests method improves the diagnostic accuracy of glaucoma in emmetropic and highly myopic eyes
-
Apr 17 [Medline: 24609628]
-
Asaoka R, Iwase A, Tsutsumi T, Saito H, Otani S, Miyata K, et al. Combining multiple HRT parameters using the 'Random Forests' method improves the diagnostic accuracy of glaucoma in emmetropic and highly myopic eyes. Invest Ophthalmol Vis Sci 2014 Apr 17;55(4):2482-2490. [doi: 10.1167/iovs.14-14009] [Medline: 24609628]
-
(2014)
Invest Ophthalmol Vis Sci
, vol.55
, Issue.4
, pp. 2482-2490
-
-
Asaoka, R.1
Iwase, A.2
Tsutsumi, T.3
Saito, H.4
Otani, S.5
Miyata, K.6
-
34
-
-
84940312803
-
Discriminating between glaucoma and normal eyes using optical coherence tomography and the random forests classifier
-
[FREE Full text] [Medline: 25167053]
-
Yoshida T, Iwase A, Hirasawa H, Murata H, Mayama C, Araie M, et al. Discriminating between glaucoma and normal eyes using optical coherence tomography and the 'Random Forests' classifier. PLoS One 2014;9(8):e106117 [FREE Full text] [doi: 10.1371/journal.pone.0106117] [Medline: 25167053]
-
(2014)
PLoS One
, vol.9
, Issue.8
, pp. e106117
-
-
Yoshida, T.1
Iwase, A.2
Hirasawa, H.3
Murata, H.4
Mayama, C.5
Araie, M.6
-
37
-
-
84888206480
-
A survey of l1 regression
-
Oct 24
-
Vidaurre D, Bielza C, Larrañaga P. A survey of L1 regression. Int Stat Rev 2013 Oct 24;81(3):361-387. [doi: 10.1111/insr.12023]
-
(2013)
Int Stat Rev
, vol.81
, Issue.3
, pp. 361-387
-
-
Vidaurre, D.1
Bielza, C.2
Larrañaga, P.3
-
38
-
-
58349104057
-
Least angle and l 1 penalized regression: A review
-
Hesterberg T, Choi N, Meier L, Fraley C. Least angle and l 1 penalized regression: A review. Statist Surv 2008;2:61-93. [doi: 10.1214/08-SS035]
-
(2008)
Statist Surv
, vol.2
, pp. 61-93
-
-
Hesterberg, T.1
Choi, N.2
Meier, L.3
Fraley, C.4
-
39
-
-
84939644196
-
Applying "lasso" regression to predict future visual field progression in glaucoma patients
-
Apr [Medline: 25698708]
-
Fujino Y, Murata H, Mayama C, Asaoka R. Applying "lasso" regression to predict future visual field progression in glaucoma patients. Invest Ophthalmol Vis Sci 2015 Apr;56(4):2334-2339. [doi: 10.1167/iovs.15-16445] [Medline: 25698708]
-
(2015)
Invest Ophthalmol Vis Sci
, vol.56
, Issue.4
, pp. 2334-2339
-
-
Fujino, Y.1
Murata, H.2
Mayama, C.3
Asaoka, R.4
-
40
-
-
84929094161
-
Toward probabilistic diagnosis and understanding of depression based on functional mri data analysis with logistic group lasso
-
[FREE Full text][Medline: 25932629]
-
Shimizu Y, Yoshimoto J, Toki S, Takamura M, Yoshimura S, Okamoto Y, et al. Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO. PLoS One 2015;10(5):e0123524 [FREE Full text] [doi: 10.1371/journal.pone.0123524] [Medline: 25932629]
-
(2015)
PLoS One
, vol.10
, Issue.5
, pp. e0123524
-
-
Shimizu, Y.1
Yoshimoto, J.2
Toki, S.3
Takamura, M.4
Yoshimura, S.5
Okamoto, Y.6
-
41
-
-
84896541567
-
Using multivariate regression model with least absolute shrinkage and selection operator (lasso) to predict the incidence of xerostomia after intensity-modulated radiotherapy for head and neck cancer
-
[FREE Full text] [Medline: 24586971]
-
Lee T, Chao P, Ting H, Chang L, Huang Y, Wu J, et al. Using multivariate regression model with least absolute shrinkage and selection operator (LASSO) to predict the incidence of Xerostomia after intensity-modulated radiotherapy for head and neck cancer. PLoS One 2014;9(2):e89700 [FREE Full text] [doi: 10.1371/journal.pone.0089700] [Medline: 24586971]
-
(2014)
PLoS One
, vol.9
, Issue.2
, pp. e89700
-
-
Lee, T.1
Chao, P.2
Ting, H.3
Chang, L.4
Huang, Y.5
Wu, J.6
-
42
-
-
0037186544
-
Stochastic gradient boosting
-
Feb
-
Friedman J. Stochastic gradient boosting. Comput Stat Data Anal 2002 Feb;38(4):367-378. [doi: 10.1016/S0167-9473(01)00065-2]
-
(2002)
Comput Stat Data Anal
, vol.38
, Issue.4
, pp. 367-378
-
-
Friedman, J.1
-
43
-
-
84892667860
-
Gradient boosting machines, a tutorial
-
[FREE Full text] [Medline: 24409142]
-
Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot 2013;7:21 [FREE Full text] [doi: 10.3389/fnbot.2013.00021] [Medline: 24409142]
-
(2013)
Front Neurorobot
, vol.7
, pp. 21
-
-
Natekin, A.1
Knoll, A.2
-
44
-
-
34247115449
-
Boosted trees for ecological modeling and prediction
-
Jan. [Medline: 17489472]
-
De'ath G. Boosted trees for ecological modeling and prediction. Ecology 2007 Jan;88(1):243-251. [Medline: 17489472]
-
(2007)
Ecology
, vol.88
, Issue.1
, pp. 243-251
-
-
De'Ath, G.1
-
45
-
-
84914169260
-
The evolution of boosting algorithms. from machine learning to statistical modelling
-
[Medline: 25112367]
-
Mayr A, Binder H, Gefeller O, Schmid M. The evolution of boosting algorithms. From machine learning to statistical modelling. Methods Inf Med 2014;53(6):419-427. [doi: 10.3414/ME13-01-0122] [Medline: 25112367]
-
(2014)
Methods Inf Med
, vol.53
, Issue.6
, pp. 419-427
-
-
Mayr, A.1
Binder, H.2
Gefeller, O.3
Schmid, M.4
-
46
-
-
84871610662
-
The gradient boosting algorithm and random boosting for genome-Assisted evaluation in large data sets
-
Jan [Medline: 23102953]
-
González-Recio O, Jiménez-Montero JA, Alenda R. The gradient boosting algorithm and random boosting for genome-Assisted evaluation in large data sets. J Dairy Sci 2013 Jan;96(1):614-624. [doi: 10.3168/jds.2012-5630] [Medline: 23102953]
-
(2013)
J Dairy Sci
, vol.96
, Issue.1
, pp. 614-624
-
-
González-Recio, O.1
Jiménez-Montero, J.A.2
Alenda, R.3
-
48
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273-297. [doi: 10.1023/A:1022627411411]
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
49
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998;2(2):121-167. [doi: 10.1023/A:1009715923555]
-
(1998)
Data Min Knowl Discov
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.1
-
50
-
-
4043137356
-
A tutorial on support vector regression
-
Aug
-
Smola A, Schölkopf B. A tutorial on support vector regression. Stat Comput 2004 Aug;14(3):199-222. [doi: 10.1023/B:STCO.0000035301.49549.88]
-
(2004)
Stat Comput
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.1
Schölkopf, B.2
-
52
-
-
85096855936
-
One-class svms for document classification
-
Manevitz L, Yousef M. One-class SVMs for document classification. J Mach Learn Res 2001;2:139-154.
-
(2001)
J Mach Learn Res
, vol.2
, pp. 139-154
-
-
Manevitz, L.1
Yousef, M.2
-
54
-
-
77949774358
-
A division algebraic framework for multidimensional support vector regression
-
Apr [Medline: 19737676]
-
Shilton A, Lai DT, Palaniswami M. A division algebraic framework for multidimensional support vector regression. IEEE Trans Syst Man Cybern B Cybern 2010 Apr;40(2):517-528. [doi: 10.1109/TSMCB.2009.2028314] [Medline: 19737676]
-
(2010)
IEEE Trans Syst Man Cybern B Cybern
, vol.40
, Issue.2
, pp. 517-528
-
-
Shilton, A.1
Lai, D.T.2
Palaniswami, M.3
-
55
-
-
85156208493
-
Taxonomy of large margin principle algorithms for ordinal regression problems
-
Shashua A, Levin A. Taxonomy of large margin principle algorithms for ordinal regression problems. Adv Neural Inf Process Syst 2002;15:937-944.
-
(2002)
Adv Neural Inf Process Syst
, vol.15
, pp. 937-944
-
-
Shashua, A.1
Levin, A.2
|