메뉴 건너뛰기




Volumn 44, Issue 2, 2016, Pages 368-374

Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards

Author keywords

Algorithms; Artificial Intelligence; Heart Arrest; Intensive Care Units; Machine learning; Models Statistical

Indexed keywords

CREATININE;

EID: 84954349720     PISSN: 00903493     EISSN: 15300293     Source Type: Journal    
DOI: 10.1097/CCM.0000000000001571     Document Type: Conference Paper
Times cited : (439)

References (35)
  • 2
    • 84911925260 scopus 로고    scopus 로고
    • What's so different about big data? A primer for clinicians trained to think epidemiologically
    • Iwashyna TJ, Liu V, What's so different about big data? A primer for clinicians trained to think epidemiologically. Ann Am Thorac Soc 2014 11 1130 1135
    • (2014) Ann Am Thorac Soc , vol.11 , pp. 1130-1135
    • Iwashyna, T.J.1    Liu, V.2
  • 4
    • 0026409568 scopus 로고
    • The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults
    • Knaus WA, Wagner DP, Draper EA, The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991 100 1619 1636
    • (1991) Chest , vol.100 , pp. 1619-1636
    • Knaus, W.A.1    Wagner, D.P.2    Draper, E.A.3
  • 5
    • 0027132478 scopus 로고
    • A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study
    • Le Gall JR, Lemeshow S, Saulnier F, A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993 270 2957 2963
    • (1993) JAMA , vol.270 , pp. 2957-2963
    • Le Gall, J.R.1    Lemeshow, S.2    Saulnier, F.3
  • 6
    • 84919773193 scopus 로고    scopus 로고
    • Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
    • Fernandez-Delgado M, Cernadas E, Barro S, Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? J Mach Learn Res 2014 15 3133 3181
    • (2014) J Mach Learn Res , vol.15 , pp. 3133-3181
    • Fernandez-Delgado, M.1    Cernadas, E.2    Barro, S.3
  • 7
    • 84921666735 scopus 로고    scopus 로고
    • Gleaning knowledge from data in the intensive care unit
    • Pinsky MR, Dubrawski A, Gleaning knowledge from data in the intensive care unit. Am J Respir Crit Care Med 2014 190 606 610
    • (2014) Am J Respir Crit Care Med , vol.190 , pp. 606-610
    • Pinsky, M.R.1    Dubrawski, A.2
  • 8
    • 84921697939 scopus 로고    scopus 로고
    • Multicenter development and validation of a risk stratification tool for ward patients
    • Churpek MM, Yuen TC, Winslow C, Multicenter development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med 2014 190 649 655
    • (2014) Am J Respir Crit Care Med , vol.190 , pp. 649-655
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3
  • 10
    • 84995523796 scopus 로고    scopus 로고
    • New York, NY Springer Available at: Accessed December 9, 2015
    • Kuhn M, Johnson K., Applied predictive modeling 2013 New York, NY Springer. Available at: http://dx.doi.org/10.1007/978-1-4614-6849-3. Accessed December 9, 2015
    • (2013) Applied Predictive Modeling
    • Kuhn, M.1    Johnson, K.2
  • 11
    • 0000339458 scopus 로고
    • Its about Time-Using Discrete-Time Survival Analysis to Study Duration and the Timing of Events
    • Singer JD, Willett JB, Its About Time-Using Discrete-Time Survival Analysis to Study Duration and the Timing of Events. J Educ Stat 1993 18 155 195
    • (1993) J Educ Stat , vol.18 , pp. 155-195
    • Singer, J.D.1    Willett, J.B.2
  • 13
    • 0034781186 scopus 로고    scopus 로고
    • Validation of a modified Early Warning Score in medical admissions
    • Subbe CP, Kruger M, Rutherford P, Validation of a modified Early Warning Score in medical admissions. QJM 2001 94 521 526
    • (2001) QJM , vol.94 , pp. 521-526
    • Subbe, C.P.1    Kruger, M.2    Rutherford, P.3
  • 14
    • 84875239334 scopus 로고    scopus 로고
    • The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death
    • Smith GB, Prytherch DR, Meredith P, The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 2013 84 465 470
    • (2013) Resuscitation , vol.84 , pp. 465-470
    • Smith, G.B.1    Prytherch, D.R.2    Meredith, P.3
  • 15
    • 67651009834 scopus 로고    scopus 로고
    • Clinical prediction models a practical approach to development, validation, and updating
    • New York Springer Available at: Accessed December 9, 2015
    • Steyerberg EW, Clinical prediction models a practical approach to development, validation, and updating. Stat Biol Health 2009 New York Springer. Available at: http://dx.doi.org/10.1007/978-0-387-77244-8. Accessed December 9, 2015
    • (2009) Stat Biol Health
    • Steyerberg, E.W.1
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman JH, Greedy function approximation: A gradient boosting machine. Annals of Statistics 2001 29 1189 1232
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 17
    • 84923873960 scopus 로고    scopus 로고
    • Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints
    • van der Ploeg T, Austin PC, Steyerberg EW, Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014 14 137
    • (2014) BMC Med Res Methodol , vol.14 , pp. 137
    • Van Der Ploeg, T.1    Austin, P.C.2    Steyerberg, E.W.3
  • 18
    • 84920273517 scopus 로고    scopus 로고
    • Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): A population-based study
    • Pirracchio R, Petersen ML, Carone M, Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. Lancet Respir Med 2015 3 42 52
    • (2015) Lancet Respir Med , vol.3 , pp. 42-52
    • Pirracchio, R.1    Petersen, M.L.2    Carone, M.3
  • 20
    • 84893930308 scopus 로고    scopus 로고
    • Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS)
    • Badriyah T, Briggs JS, Meredith P, Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS). Resuscitation 2014 85 418 423
    • (2014) Resuscitation , vol.85 , pp. 418-423
    • Badriyah, T.1    Briggs, J.S.2    Meredith, P.3
  • 21
    • 0242608650 scopus 로고    scopus 로고
    • Comparison of Cox regression with other methods for determining prediction models and nomograms
    • discussion S10
    • Kattan MW, Comparison of Cox regression with other methods for determining prediction models and nomograms. J Urol 2003 170 S6 9; discussion S10
    • (2003) J Urol , vol.170 , pp. S6-9
    • Kattan, M.W.1
  • 22
    • 84865535937 scopus 로고    scopus 로고
    • Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?
    • Austin PC, Lee DS, Steyerberg EW, Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods? Biom J 2012 54 657 673
    • (2012) Biom J , vol.54 , pp. 657-673
    • Austin, P.C.1    Lee, D.S.2    Steyerberg, E.W.3
  • 23
    • 80054870131 scopus 로고    scopus 로고
    • Prediction of intracranial findings on CT-scans by alternative modelling techniques
    • van der Ploeg T, Smits M, Dippel DW, Prediction of intracranial findings on CT-scans by alternative modelling techniques. BMC Med Res Methodol 2011 11 143
    • (2011) BMC Med Res Methodol , vol.11 , pp. 143
    • Van Der Ploeg, T.1    Smits, M.2    Dippel, D.W.3
  • 24
    • 33847181085 scopus 로고    scopus 로고
    • Proceedings of the 6th Online World Conference of Soft Computing in Industrial Applications
    • Wolpert D, The supervised learning no-free-lunch theorems. 2001 Proceedings of the 6th Online World Conference of Soft Computing in Industrial Applications 10 24
    • (2001) The Supervised Learning No-free-lunch Theorems. , pp. 10-24
    • Wolpert, D.1
  • 25
    • 84859069072 scopus 로고    scopus 로고
    • A mathematical model for interpretable clinical decision support with applications in gynecology
    • Van Belle VM, Van Calster B, Timmerman D, A mathematical model for interpretable clinical decision support with applications in gynecology. PLoS One 2012 7 e34312
    • (2012) PLoS One , vol.7 , pp. e34312
    • Van Belle, V.M.1    Van Calster, B.2    Timmerman, D.3
  • 26
    • 84860555453 scopus 로고    scopus 로고
    • Predicting cardiac arrest on the wards: A nested case-control study
    • Churpek MM, Yuen TC, Huber MT, Predicting cardiac arrest on the wards: a nested case-control study. Chest 2012 141 1170 1176
    • (2012) Chest , vol.141 , pp. 1170-1176
    • Churpek, M.M.1    Yuen, T.C.2    Huber, M.T.3
  • 27
    • 84861960489 scopus 로고    scopus 로고
    • Early detection of impending physiologic deterioration among patients who are not in intensive care: Development of predictive models using data from an automated electronic medical record
    • Escobar GJ, LaGuardia JC, Turk BJ, Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J Hosp Med 2012 7 388 395
    • (2012) J Hosp Med , vol.7 , pp. 388-395
    • Escobar, G.J.1    LaGuardia, J.C.2    Turk, B.J.3
  • 28
    • 79952166676 scopus 로고    scopus 로고
    • Implementation of a real-time computerized sepsis alert in nonintensive care unit patients
    • Sawyer AM, Deal EN, Labelle AJ, Implementation of a real-time computerized sepsis alert in nonintensive care unit patients. Crit Care Med 2011 39 469 473
    • (2011) Crit Care Med , vol.39 , pp. 469-473
    • Sawyer, A.M.1    Deal, E.N.2    Labelle, A.J.3
  • 29
    • 84877644877 scopus 로고    scopus 로고
    • A trial of a real-time alert for clinical deterioration in patients hospitalized on general medical wards
    • Bailey TC, Chen Y, Mao Y, A trial of a real-time alert for clinical deterioration in patients hospitalized on general medical wards. J Hosp Med 2013 8 236 242
    • (2013) J Hosp Med , vol.8 , pp. 236-242
    • Bailey, T.C.1    Chen, Y.2    Mao, Y.3
  • 30
    • 78651236781 scopus 로고    scopus 로고
    • Limiting ventilator-induced lung injury through individual electronic medical record surveillance
    • Herasevich V, Tsapenko M, Kojicic M, Limiting ventilator-induced lung injury through individual electronic medical record surveillance. Crit Care Med 2011 39 34 39
    • (2011) Crit Care Med , vol.39 , pp. 34-39
    • Herasevich, V.1    Tsapenko, M.2    Kojicic, M.3
  • 31
    • 78651234038 scopus 로고    scopus 로고
    • Cardiorespiratory instability before and after implementing an integrated monitoring system
    • Hravnak M, Devita MA, Clontz A, Cardiorespiratory instability before and after implementing an integrated monitoring system. Crit Care Med 2011 39 65 72
    • (2011) Crit Care Med , vol.39 , pp. 65-72
    • Hravnak, M.1    Devita, M.A.2    Clontz, A.3
  • 32
    • 84927594219 scopus 로고    scopus 로고
    • Temporal distribution of instability events in continuously monitored step-down unit patients: Implications for Rapid Response Systems
    • Hravnak M, Chen L, Dubrawski A, Temporal distribution of instability events in continuously monitored step-down unit patients: implications for Rapid Response Systems. Resuscitation 2015 89 99 105
    • (2015) Resuscitation , vol.89 , pp. 99-105
    • Hravnak, M.1    Chen, L.2    Dubrawski, A.3
  • 33
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • Biganzoli E, Boracchi P, Mariani L, Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 1998 17 1169 1186
    • (1998) Stat Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3
  • 34
    • 80053998602 scopus 로고    scopus 로고
    • Discrete-time survival trees and forests with time-varying covariates: Application to bankruptcy data
    • Bou-Hamad I, Larocque D, Ben-Ameur H, Discrete-time survival trees and forests with time-varying covariates: application to bankruptcy data. Stat Model 2011 11 429 446
    • (2011) Stat Model , vol.11 , pp. 429-446
    • Bou-Hamad, I.1    Larocque, D.2    Ben-Ameur, H.3
  • 35
    • 0343081009 scopus 로고    scopus 로고
    • Machine learning for survival analysis: A case study on recurrence of prostate cancer
    • Zupan B, Demsar J, Kattan MW, Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif Intell Med 2000 20 59 75
    • (2000) Artif Intell Med , vol.20 , pp. 59-75
    • Zupan, B.1    Demsar, J.2    Kattan, M.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.