메뉴 건너뛰기




Volumn 17, Issue 1, 2017, Pages

Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data

Author keywords

Cardiovascular disease; Classification; Coronary Artery Syndrome; Myocardial infarction; Prognostic Modelling; Registries; Supervised machine learning

Indexed keywords

AGED; ALGORITHM; BIOLOGICAL MODEL; CAUSE OF DEATH; CLASSIFICATION; COMPARATIVE STUDY; EPIDEMIOLOGY; FEMALE; HEART INFARCTION; HUMAN; MALE; MIDDLE AGED; MORTALITY; PROGNOSIS; PROSPECTIVE STUDY; REGISTER; REPRODUCIBILITY; RISK ASSESSMENT; RISK FACTOR; SUPPORT VECTOR MACHINE; SURVIVAL ANALYSIS; SWEDEN; VERY ELDERLY;

EID: 85021694998     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/s12911-017-0500-y     Document Type: Article
Times cited : (57)

References (37)
  • 1
    • 49449104281 scopus 로고    scopus 로고
    • Acute myocardial infarction
    • 1:CAS:528:DC%2BD1cXpvFKgsLg%3D 18707987
    • White HD, Chew DP. Acute myocardial infarction. Lancet. 2008;372:570-84.
    • (2008) Lancet , vol.372 , pp. 570-584
    • White, H.D.1    Chew, D.P.2
  • 2
    • 84898037597 scopus 로고    scopus 로고
    • Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: The Global Burden of Disease 2010 study
    • Accessed 18 Aug 2016
    • Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129:1483-92. http://circ.ahajournals.org/content/129/14/1483. Accessed 18 Aug 2016
    • (2014) Circulation , vol.129 , pp. 1483-1492
    • Moran, A.E.1    Forouzanfar, M.H.2    Roth, G.A.3
  • 3
    • 84920703518 scopus 로고    scopus 로고
    • Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease study 2013
    • GBD 2013 Mortality and Causes of Death Collaborators Accessed 12 Aug 2016
    • GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease study 2013. Lancet. 2014;385:117-71. http://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2814%2961682-2/fulltext. Accessed 12 Aug 2016
    • (2014) Lancet , vol.385 , pp. 117-171
  • 4
    • 84862119222 scopus 로고    scopus 로고
    • European guidelines on cardiovascular disease prevention in clinical practice (version 2012)
    • The fifth joint task force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) Accessed 18 Aug 2016
    • Perk J, De Backer G, Gohlke H, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth joint task force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J. 2012;33:1635-701. http://eurheartj.oxfordjournals.org/content/33/13/1635.long. Accessed 18 Aug 2016
    • (2012) Eur Heart J , vol.33 , pp. 1635-1701
    • Perk, J.1    De Backer, G.2    Gohlke, H.3
  • 5
    • 0344058997 scopus 로고    scopus 로고
    • WHO. Global Health and Ageing WHO Accessed 16 Aug 2016.
    • WHO. Global Health and Ageing. U.S. Department of Health and Human Services. WHO; 2011. http://www.who.int/ageing/publications/global-health.pdf. Accessed 16 Aug 2016.
    • (2011) U.S. Department of Health and Human Services
  • 6
    • 80054813853 scopus 로고    scopus 로고
    • Prevalence of coronary heart disease - United States, 2006-2010
    • Centers for Disease Control and Prevention Accessed 15 Aug 2016
    • Centers for Disease Control and Prevention. Prevalence of coronary heart disease - United States, 2006-2010. Morb Mortal Wkly Rep. 2011;60:1377-81. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6040a1.htm. Accessed 15 Aug 2016
    • (2011) Morb Mortal Wkly Rep , vol.60 , pp. 1377-1381
  • 7
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Accessed 11 Mar 2016
    • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349:255-60. http://science.sciencemag.org/content/349/6245/255.full. Accessed 11 Mar 2016.
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 8
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Accessed 14 Aug 2016
    • Guyon IM, Weston J, Barnhill S, Vapnik VN. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46:389-422. http://link.springer.com/article/10.1023/A:1012487302797. Accessed 14 Aug 2016
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.M.1    Weston, J.2    Barnhill, S.3    Vapnik, V.N.4
  • 9
    • 58549083944 scopus 로고    scopus 로고
    • Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI
    • 18846369. Accessed 24 Aug 2016
    • Magnin B, Mesrob L, Kinkingnehun S, et al. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology. 2009;51:73-83. http://link.springer.com/article/10.1007%2Fs00234-008-0463-x. Accessed 24 Aug 2016
    • (2009) Neuroradiology , vol.51 , pp. 73-83
    • Magnin, B.1    Mesrob, L.2    Kinkingnehun, S.3
  • 10
    • 84895809445 scopus 로고    scopus 로고
    • Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy
    • 24520356 3919736 Accessed 24 Aug 2016
    • Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS One. 2014;9:e88225. http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0088225. Accessed 24 Aug 2016
    • (2014) PLoS One , vol.9 , pp. e88225
    • Asadi, H.1    Dowling, R.2    Yan, B.3    Mitchell, P.4
  • 11
    • 33845257322 scopus 로고    scopus 로고
    • Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: Prospective multinational observational study (GRACE)
    • 17032691 1661748 Accessed 5 Mar 2015
    • Fox KA, Dabbous OH, Goldberg RJ, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). BMJ. 2006;333:1091. http://www.bmj.com/content/333/7578/1091.long. Accessed 5 Mar 2015
    • (2006) BMJ , vol.333 , pp. 1091
    • Fox, K.A.1    Dabbous, O.H.2    Goldberg, R.J.3
  • 12
    • 84874118623 scopus 로고    scopus 로고
    • Improved cardiovascular risk prediction using nonparametric regression and electronic health record data
    • 23269109 4081533 Accessed 24 Aug 2016
    • Kennedy EH, Wiitala WL, Hayward RA, Sussman JB. Improved cardiovascular risk prediction using nonparametric regression and electronic health record data. Med Care. 2013;51:251-8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081533/. Accessed 24 Aug 2016
    • (2013) Med Care , vol.51 , pp. 251-258
    • Kennedy, E.H.1    Wiitala, W.L.2    Hayward, R.A.3    Sussman, J.B.4
  • 13
    • 85021713503 scopus 로고    scopus 로고
    • SWEDEHEART Accessed 11 July 2016
    • SWEDEHEART. http://www.ucr.uu.se/swedeheart/arsrapport-2015/aeldre-arsrapporter-older-reports/arsrapport-2014. Accessed 11 July 2016.
  • 14
    • 0000209388 scopus 로고
    • The regression analysis of binary sequences
    • Accessed 29 June 2016
    • Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B. 1958;20:215-42. https://www.jstor.org/stable/2983890?seq=1#page-scan-tab-contents. Accessed 29 June 2016
    • (1958) J R Stat Soc ser B , vol.20 , pp. 215-242
    • Cox, D.R.1
  • 15
    • 0015831257 scopus 로고
    • Multivariate analysis of risk factors for coronary heart disease
    • 1:STN:280:DyaE2c%2FivVKqtw%3D%3D 4751960. Accessed 24 Aug 2016
    • Wilhelmsen L, Wedel H, Tibblin G. Multivariate analysis of risk factors for coronary heart disease. Circulation. 1973;48:950-8. http://circ.ahajournals.org/content/48/5/950.long. Accessed 24 Aug 2016.
    • (1973) Circulation , vol.48 , pp. 950-958
    • Wilhelmsen, L.1    Wedel, H.2    Tibblin, G.3
  • 17
    • 85021694829 scopus 로고    scopus 로고
    • Socialstyrelsen Accessed 12 Aug 2016
    • Socialstyrelsen. Causes of death 2013. Socialstyrelsen; 2015. http://www.socialstyrelsen.se/Lists/Artikelkatalog/Attachments/19736/2015-2-42.pdf. Accessed 12 Aug 2016.
    • (2015)
  • 18
    • 77958158373 scopus 로고    scopus 로고
    • Feature selection with the Boruta package
    • Accessed 1 Sept 2016
    • Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36:1-13. http://www.jstatsoft.org/v36/i11/. Accessed 1 Sept 2016.
    • (2010) J Stat Softw , vol.36 , pp. 1-13
    • Kursa, M.B.1    Rudnicki, W.R.2
  • 19
    • 79953732420 scopus 로고    scopus 로고
    • Mice: Multivariate imputation
    • Accessed 1 Sept 2016
    • van Buuren S, Groothuis-Oudshoorn K. mice: multivariate imputation. J Stat Softw. 2011;45:1-67. https://stat.ethz.ch/education/semesters/ss2012/ams/paper/mice.pdf. Accessed 1 Sept 2016.
    • (2011) J Stat Softw , vol.45 , pp. 1-67
    • Van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 20
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Accessed 1 Sept 2016
    • Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1-26. https://www.jstatsoft.org/article/view/v028i05. Accessed 1 Sept 2016.
    • (2008) J Stat Softw , vol.28 , pp. 1-26
    • Kuhn, M.1
  • 22
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Accessed 18 Aug 2016
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27:861-74. https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf. Accessed 18 Aug 2016.
    • (2006) Pattern Recogn Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 25
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • 1:CAS:528:DC%2BD2sXotVOisbY%3D Accessed 1 Sept 2016 Accessed 1 Sept 2016
    • Wu X, Kumar V, Ross Quinlan J, et al. Top 10 algorithms in data mining. Knowl Inf Sys. 2007;14:1-37.
    • (2007) Knowl Inf Sys , vol.14 , pp. 1-37
    • Wu, X.1    Kumar, V.2    Ross Quinlan, J.3
  • 26
    • 85057943047 scopus 로고
    • Third International Conference on Document Analysis and Recognition Montreal. Accessed 1 Sept 2016
    • Ho TK. Random decision forests. Montreal: Third International Conference on Document Analysis and Recognition; 1995. p. 278-82. http://ect.bell-labs.com/who/tkh/publications/papers/odt.pdf. Accessed 1 Sept 2016
    • (1995) Random Decision Forests , pp. 278-282
    • Ho, T.K.1
  • 27
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Accessed 1 Sept 2016
    • Breiman L. Random Forests. Mach Learn. 2001;45:5-32. URL: http://link.springer.com/article/10.1023/A:1010933404324. Accessed 1 Sept 2016
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 29
    • 34249753618 scopus 로고
    • Support-vector networks
    • Accessed 1 Sept 2016
    • Cortes C, Vapnik VN. Support-vector networks. Mach Learn. 1995;20:273-97. http://image.diku.dk/imagecanon/material/cortes-vapnik95.pdf. Accessed 1 Sept 2016
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 30
    • 84964927929 scopus 로고    scopus 로고
    • R Development Core Team Foundation for Statistical Computing Vienna Accessed 1 Sept 2016
    • R Development Core Team. R: a language and environment for statistical computing. Vienna: Foundation for Statistical Computing; 2015. https://www.r-project.org/. Accessed 1 Sept 2016
    • (2015) R: A Language and Environment for Statistical Computing
  • 31
    • 11244352554 scopus 로고    scopus 로고
    • Kernlab - An S4 package for kernel methods in R
    • Accessed 1 Sept 2016
    • Karatzoglou A, Smola A, Hornik K, Zeileis A. Kernlab - an S4 package for kernel methods in R. J Stat Softw. 2004;11:1-20. https://core.ac.uk/download/files/328/18228756.pdf. Accessed 1 Sept 2016
    • (2004) J Stat Softw , vol.11 , pp. 1-20
    • Karatzoglou, A.1    Smola, A.2    Hornik, K.3    Zeileis, A.4
  • 32
    • 79961232797 scopus 로고    scopus 로고
    • The split-apply-combine strategy for data analysis
    • https://www.jstatsoft.org/article/view/v040i01. Accessed 1 Sept 2016
    • Wickham H. The split-apply-combine strategy for data analysis. J Stat Softw. 2011;40:1-29. https://www.jstatsoft.org/article/view/v040i01. Accessed 1 Sept 2016
    • (2011) J Stat Softw , vol.40 , pp. 1-29
    • Wickham, H.1
  • 33
    • 79952709519 scopus 로고    scopus 로고
    • PROC: An open-source package for R and S+ to analyze and compare ROC curves
    • 21414208 3068975 Accessed 18 Aug 2016
    • Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-77. Accessed 18 Aug 2016
    • (2011) BMC Bioinformatics , vol.12 , pp. 77
    • Robin, X.1    Turck, N.2    Hainard, A.3
  • 34
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Accessed 1 Sept 2016
    • Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18-22. http://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf. Accessed 1 Sept 2016.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 35
    • 0032661851 scopus 로고    scopus 로고
    • Linearly combining density estimators via stacking
    • Accessed 1 Sept 2016
    • Smyth P, Wolpert D. Linearly combining density estimators via stacking. Mach Learn. 1999;36:59-83. http://link.springer.com/article/10.1023/A:1007511322260. Accessed 1 Sept 2016.
    • (1999) Mach Learn , vol.36 , pp. 59-83
    • Smyth, P.1    Wolpert, D.2
  • 36
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • 1:CAS:528:DC%2BC2MXht1WlurzP 26017442 Accessed 18 Aug 2016
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-44. http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html. Accessed 18 Aug 2016.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.