메뉴 건너뛰기




Volumn 16, Issue 1, 2016, Pages

Prediction and detection models for acute kidney injury in hospitalized older adults

Author keywords

Acute kidney injury (AKI); Detection; Elderly; Machine learning; Modeling; Prediction

Indexed keywords

ACUTE KIDNEY INJURY; AGED; FEMALE; HOSPITALIZATION; HUMAN; MACHINE LEARNING; MALE; MIDDLE AGED; PROGNOSIS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; THEORETICAL MODEL; VERY ELDERLY;

EID: 85007609237     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/s12911-016-0277-4     Document Type: Article
Times cited : (134)

References (26)
  • 2
    • 33644874086 scopus 로고    scopus 로고
    • Acute kidney injury, mortality, length of stay, and costs in hospitalized patients
    • Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365-70.
    • (2005) J Am Soc Nephrol. , vol.16 , Issue.11 , pp. 3365-3370
    • Chertow, G.M.1    Burdick, E.2    Honour, M.3    Bonventre, J.V.4    Bates, D.W.5
  • 3
    • 34447646450 scopus 로고    scopus 로고
    • Defining acute renal failure: The RIFLE criteria
    • Venkataraman R, Kellum JA. Defining acute renal failure: The RIFLE criteria. J Intensive Care Med. 2007;22(4):187-93.
    • (2007) J Intensive Care Med. , vol.22 , Issue.4 , pp. 187-193
    • Venkataraman, R.1    Kellum, J.A.2
  • 4
    • 0037231962 scopus 로고    scopus 로고
    • Prediction of acute renal failure after cardiac surgery: Retrospective crossvalidation of a clinical algorithm
    • Eriksen BO, Hoff KR, Solberg S. Prediction of acute renal failure after cardiac surgery: retrospective crossvalidation of a clinical algorithm. Nephrol Dial Transplant. 2003;18(1):77-81.
    • (2003) Nephrol Dial Transplant. , vol.18 , Issue.1 , pp. 77-81
    • Eriksen, B.O.1    Hoff, K.R.2    Solberg, S.3
  • 5
    • 84876296700 scopus 로고    scopus 로고
    • KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury
    • Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61(5):649-72.
    • (2013) Am J Kidney Dis. , vol.61 , Issue.5 , pp. 649-672
    • Palevsky, P.M.1    Liu, K.D.2    Brophy, P.D.3
  • 6
    • 77955972575 scopus 로고    scopus 로고
    • The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: Design and methods
    • Go AS, Parikh CR, Ikizler TA, et al. The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: design and methods. BMC Nephrol. 2010;11(1):22.
    • (2010) BMC Nephrol. , vol.11 , Issue.1 , pp. 22
    • Go, A.S.1    Parikh, C.R.2    Ikizler, T.A.3
  • 7
    • 84930482849 scopus 로고    scopus 로고
    • Risk factors for acute kidney injury in older adults with critical illness: A retrospective cohort study
    • Kane-Gill SL, Sileanu FE, Murugan R, Trietley GS, Handler SM, Kellum JA. Risk factors for acute kidney injury in older adults with critical illness: A retrospective cohort study. Am J Kidney Dis. 2015;65(6):860-9.
    • (2015) Am J Kidney Dis. , vol.65 , Issue.6 , pp. 860-869
    • Kane-Gill, S.L.1    Sileanu, F.E.2    Murugan, R.3    Trietley, G.S.4    Handler, S.M.5    Kellum, J.A.6
  • 11
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • Berlin Heidelberg: Springer
    • Lewis DD. Naive (Bayes) at forty: The independence assumption in information retrieval. Machine learning: ECML-98. Berlin Heidelberg: Springer; 1998. p. 4-15.
    • (1998) Machine Learning: ECML-98 , pp. 4-15
    • Lewis, D.D.1
  • 12
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Berlin Heidelberg: Springer
    • Dietterich TG. Ensemble methods in machine learning. Multiple classifier systems. Berlin Heidelberg: Springer; 2000. p. 1-15.
    • (2000) Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.G.1
  • 15
    • 0034129084 scopus 로고    scopus 로고
    • Predicting acute renal failure after coronary bypass surgery: Cross-validation of two risk-stratification algorithms
    • Fortescue EB, Bates DW, Chertow GM. Predicting acute renal failure after coronary bypass surgery: cross-validation of two risk-stratification algorithms. Kidney Int. 2000;57(6):2594-602.
    • (2000) Kidney Int. , vol.57 , Issue.6 , pp. 2594-2602
    • Fortescue, E.B.1    Bates, D.W.2    Chertow, G.M.3
  • 16
    • 84888289654 scopus 로고    scopus 로고
    • Simplified clinical risk score to predict acute kidney injury after aortic surgery
    • Kim WH, Lee SM, Choi JW, et al. Simplified clinical risk score to predict acute kidney injury after aortic surgery. J Cardiothorac Vasc Anesth. 2013;27(6):1158-66.
    • (2013) J Cardiothorac Vasc Anesth. , vol.27 , Issue.6 , pp. 1158-1166
    • Kim, W.H.1    Lee, S.M.2    Choi, J.W.3
  • 17
    • 84887101395 scopus 로고    scopus 로고
    • A risk prediction score for kidney failure or mortality in rhabdomyolysis
    • McMahon GM, Zeng X, Waikar SS. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA internal medicine. 2013;173(19):1821-7.
    • (2013) JAMA Internal Medicine. , vol.173 , Issue.19 , pp. 1821-1827
    • McMahon, G.M.1    Zeng, X.2    Waikar, S.S.3
  • 18
    • 33751219227 scopus 로고    scopus 로고
    • Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery
    • Mehta RH, Grab JD, O'Brien SM, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208-16.
    • (2006) Circulation. , vol.114 , Issue.21 , pp. 2208-2216
    • Mehta, R.H.1    Grab, J.D.2    O'Brien, S.M.3
  • 19
    • 80052063328 scopus 로고    scopus 로고
    • Automated identification of postoperative complications within an electronic medical record using natural language processing
    • Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. Jama. 2011;306(8):848-55.
    • (2011) Jama. , vol.306 , Issue.8 , pp. 848-855
    • Murff, H.J.1    FitzHenry, F.2    Matheny, M.E.3
  • 20
    • 78650824776 scopus 로고    scopus 로고
    • Development of inpatient risk stratification models of acute kidney injury for use in electronic health records
    • Matheny ME, Miller RA, Ikizler TA, et al. Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. Med Decis Making. 2010;30(6):639-50.
    • (2010) Med Decis Making. , vol.30 , Issue.6 , pp. 639-650
    • Matheny, M.E.1    Miller, R.A.2    Ikizler, T.A.3
  • 21
    • 84929606720 scopus 로고    scopus 로고
    • Automated, electronic alerts for acute kidney injury: A single-blind, parallel-group, randomised controlled trial
    • Wilson FP, Shashaty M, Testani J, et al. Automated, electronic alerts for acute kidney injury: A single-blind, parallel-group, randomised controlled trial. The Lancet. 2015;385(9981):1966-74.
    • (2015) The Lancet. , vol.385 , Issue.9981 , pp. 1966-1974
    • Wilson, F.P.1    Shashaty, M.2    Testani, J.3
  • 22
    • 84938548657 scopus 로고    scopus 로고
    • Combined use of nonsteroidal anti-inflammatory drugs with diuretics and/or renin-angiotensin system inhibitors in the community increases the risk of acute kidney injury
    • Dreischulte T, Morales DR, Bell S, Guthrie B. Combined use of nonsteroidal anti-inflammatory drugs with diuretics and/or renin-angiotensin system inhibitors in the community increases the risk of acute kidney injury. Kidney Int. 2015;88(2):396-403.
    • (2015) Kidney Int. , vol.88 , Issue.2 , pp. 396-403
    • Dreischulte, T.1    Morales, D.R.2    Bell, S.3    Guthrie, B.4
  • 23
    • 84916927571 scopus 로고    scopus 로고
    • Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease
    • CIRCULATIONAHA. 114. 010622
    • Rydén L, Sartipy U, Evans MHolzmann MJ. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation. 2014: CIRCULATIONAHA. 114. 010622.
    • (2014) Circulation
    • Rydén, L.1    Sartipy, U.2    Evans Mholzmann, M.J.3
  • 24
    • 84873635776 scopus 로고    scopus 로고
    • Acute kidney injury following coronary artery bypass surgery and long-term risk of heart failure
    • Olsson D, Sartipy U, Braunschweig FHolzmann MJ. Acute kidney injury following coronary artery bypass surgery and long-term risk of heart failure. Circulation. 2013;6(1):83-90.
    • (2013) Circulation. , vol.6 , Issue.1 , pp. 83-90
    • Olsson, D.1    Sartipy, U.2    Braunschweig FHolzmann, M.J.3
  • 25
    • 84910126655 scopus 로고    scopus 로고
    • Acute respiratory distress syndrome and risk of AKI among critically ill patients
    • Darmon M, Clec'h C, Adrie C, et al. Acute respiratory distress syndrome and risk of AKI among critically ill patients. Clin J Am Soc Nephrol. 2014;9(8): 1347-53.
    • (2014) Clin J Am Soc Nephrol. , vol.9 , Issue.8 , pp. 1347-1353
    • Darmon, M.1    Clec'H, C.2    Adrie, C.3
  • 26
    • 84857273808 scopus 로고    scopus 로고
    • Risk of acute renal failure in patients with type 2 diabetes mellitus
    • Girman C, Kou T, Brodovicz K, et al. Risk of acute renal failure in patients with type 2 diabetes mellitus. Diabet Med. 2012;29(5):614-21.
    • (2012) Diabet Med. , vol.29 , Issue.5 , pp. 614-621
    • Girman, C.1    Kou, T.2    Brodovicz, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.