메뉴 건너뛰기




Volumn 225, Issue , 2016, Pages 143-147

Analyzing 30-day readmission rate for heart failure using different predictive models

Author keywords

Electronic health records; Heart Failure; Logistic regression; Predictive models; Random forest; Readmission

Indexed keywords

CARDIOLOGY; DECISION TREES; DIAGNOSIS; HEALTH INSURANCE; HEALTH RISKS; HOSPITALS; NURSING; PATIENT TREATMENT; RECORDS MANAGEMENT;

EID: 84978639760     PISSN: 09269630     EISSN: 18798365     Source Type: Book Series    
DOI: 10.3233/978-1-61499-658-3-143     Document Type: Conference Paper
Times cited : (16)

References (11)
  • 1
    • 3042795447 scopus 로고    scopus 로고
    • Quality improvement in heart failure: A simple solution to the beta-blocker problem
    • M. W. Rich, Quality improvement in heart failure: A simple solution to the beta-blocker problem, Journal of Cardiac Failure 10(3) (2004), 225-227.
    • (2004) Journal of Cardiac Failure , vol.10 , Issue.3 , pp. 225-227
    • Rich, M.W.1
  • 2
    • 84872203204 scopus 로고    scopus 로고
    • Trends in heart failure hospitalizations
    • N. Fida & I. L. Pina, Trends in heart failure hospitalizations, Curr Heart Fail Rep 9(4) (2012), 346-353.
    • (2012) Curr Heart Fail Rep , vol.9 , Issue.4 , pp. 346-353
    • Fida, N.1    Pina, I.L.2
  • 4
    • 84884358562 scopus 로고    scopus 로고
    • Postdischarge environment following heart failure hospitalization: Expanding the view of hospital readmission
    • A. M. Hersh, F. A. Masoudi, & L. A. Allen, Postdischarge environment following heart failure hospitalization: expanding the view of hospital readmission, J Am Heart Assoc 2(2) (2013), e000116.
    • (2013) J Am Heart Assoc , vol.2 , Issue.2 , pp. e000116
    • Hersh, A.M.1    Masoudi, F.A.2    Allen, L.A.3
  • 5
    • 84924049094 scopus 로고    scopus 로고
    • A framework for feature extraction from hospital medical data with applications in risk prediction
    • T. Tran, W. Luo, D. Phung, S. Gupta, S. Rana, R. L. Kennedy, A. Larkins, S. Venkatesh, A framework for feature extraction from hospital medical data with applications in risk prediction, BMC Bioinformatics 15(425) (2014), 1-9.
    • (2014) BMC Bioinformatics , vol.15 , Issue.425 , pp. 1-9
    • Tran, T.1    Luo, W.2    Phung, D.3    Gupta, S.4    Rana, S.5    Kennedy, R.L.6    Larkins, A.7    Venkatesh, S.8
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24(1996), 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, Random forests, Machine Learning 45(2001), 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • A. Liaw & M. Wiener, Classification and Regression by randomForest, R News 2(3) (2002), 18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.