메뉴 건너뛰기




Volumn 30, Issue 4, 2017, Pages 471-478

Using data mining to predict success in a weight loss trial

Author keywords

clinical trial; data mining; dietary intervention; weight loss

Indexed keywords

ANIMAL MODEL; AREA UNDER THE CURVE; BODY MASS; CONFIDENCE INTERVAL; DATA MINING; DECISION TREE; DIET; DISEASE MODEL; ENERGY BALANCE; HUMAN; HUMAN EXPERIMENT; LOGISTIC REGRESSION ANALYSIS; POPULATION MODEL; RANDOMIZATION; STATISTICAL MODEL; STUDY DESIGN; WEIGHT REDUCTION; AGED; BODY WEIGHT LOSS; ENERGY METABOLISM; FEMALE; HEALTH BEHAVIOR; MALE; MIDDLE AGED; WEIGHT LOSS PROGRAM;

EID: 85012294483     PISSN: 09523871     EISSN: 1365277X     Source Type: Journal    
DOI: 10.1111/jhn.12448     Document Type: Article
Times cited : (13)

References (42)
  • 1
    • 67650177052 scopus 로고    scopus 로고
    • Predictors of attrition and weight loss success: results from a randomized controlled trial
    • Fabricatore AN, Wadden TA, Moore RH et al. (2009) Predictors of attrition and weight loss success: results from a randomized controlled trial. Behav Res Ther 47, 685–691.
    • (2009) Behav Res Ther , vol.47 , pp. 685-691
    • Fabricatore, A.N.1    Wadden, T.A.2    Moore, R.H.3
  • 2
    • 77953358406 scopus 로고    scopus 로고
    • Initial weight loss is the best predictor for success in obesity treatment and sociodemographic liabilities increase risk for drop-out
    • Elfhag K & Rossner S (2010) Initial weight loss is the best predictor for success in obesity treatment and sociodemographic liabilities increase risk for drop-out. Patient Educ Couns 79, 361–366.
    • (2010) Patient Educ Couns , vol.79 , pp. 361-366
    • Elfhag, K.1    Rossner, S.2
  • 3
    • 84921033515 scopus 로고    scopus 로고
    • Factors predictive of drop-out and weight loss success in weight management of obese patients
    • Ortner Hadziabdic M, Mucalo I, Hrabac P et al. (2015) Factors predictive of drop-out and weight loss success in weight management of obese patients. J Hum Nutr Diet 28(Suppl 2), 24–32.
    • (2015) J Hum Nutr Diet , vol.28 , pp. 24-32
    • Ortner Hadziabdic, M.1    Mucalo, I.2    Hrabac, P.3
  • 4
    • 21444442358 scopus 로고    scopus 로고
    • Predictors of programme adherence and weight loss in women in an obesity programme using meal replacements
    • Packianathan I, Sheikh M, Boniface D et al. (2005) Predictors of programme adherence and weight loss in women in an obesity programme using meal replacements. Diabetes Obes Metab 7, 439–447.
    • (2005) Diabetes Obes Metab , vol.7 , pp. 439-447
    • Packianathan, I.1    Sheikh, M.2    Boniface, D.3
  • 5
    • 84455208765 scopus 로고    scopus 로고
    • A simple model predicting individual weight change in humans
    • Thomas DM, Martin CK, Heymsfield S et al. (2011) A simple model predicting individual weight change in humans. J Biol Dyn 5, 579–599.
    • (2011) J Biol Dyn , vol.5 , pp. 579-599
    • Thomas, D.M.1    Martin, C.K.2    Heymsfield, S.3
  • 6
    • 84928923102 scopus 로고    scopus 로고
    • Predicting successful long-term weight loss from short-term weight-loss outcomes: new insights from a dynamic energy balance model (The POUNDS Lost study)
    • Thomas DM, Ivanescu AE, Martin CK et al. (2015) Predicting successful long-term weight loss from short-term weight-loss outcomes: new insights from a dynamic energy balance model (The POUNDS Lost study). Am J Clin Nutr 101, 449–54.
    • (2015) Am J Clin Nutr , vol.101 , pp. 449-454
    • Thomas, D.M.1    Ivanescu, A.E.2    Martin, C.K.3
  • 7
    • 84928910824 scopus 로고    scopus 로고
    • Predicting therapeutic weight loss
    • Finer N (2015) Predicting therapeutic weight loss. Am J Clin Nutr 101, 419–420.
    • (2015) Am J Clin Nutr , vol.101 , pp. 419-420
    • Finer, N.1
  • 8
    • 84903535445 scopus 로고    scopus 로고
    • Evaluation of early weight loss thresholds for identifying nonresponders to an intensive lifestyle intervention
    • Unick, JL, Hogan, PE, Neiberg, RH et al. (2014) Evaluation of early weight loss thresholds for identifying nonresponders to an intensive lifestyle intervention. Obesity (Silver Spring) 22, 1608–1616.
    • (2014) Obesity (Silver Spring) , vol.22 , pp. 1608-1616
    • Unick, J.L.1    Hogan, P.E.2    Neiberg, R.H.3
  • 10
    • 84930147390 scopus 로고    scopus 로고
    • Predicting dropout in dietary weight loss trials using demographic and early weight change characteristics: implications for trial design
    • Batterham M, Tapsell LC & Charlton KE (2016) Predicting dropout in dietary weight loss trials using demographic and early weight change characteristics: implications for trial design. Obes Res Clin Pract 10, 189–196.
    • (2016) Obes Res Clin Pract , vol.10 , pp. 189-196
    • Batterham, M.1    Tapsell, L.C.2    Charlton, K.E.3
  • 11
    • 84928582268 scopus 로고    scopus 로고
    • Predicting long-term weight loss maintenance in previously overweight women: a signal detection approach
    • Santos I, Mata J & Silva MN, et al. (2015) Predicting long-term weight loss maintenance in previously overweight women: a signal detection approach. Obesity (Silver Spring) 23, 957–964.
    • (2015) Obesity (Silver Spring) , vol.23 , pp. 957-964
    • Santos, I.1    Silva, M.N.2
  • 12
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests
    • Strobl C, Malley J & Tutz G (2009) An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol Methods 14, 323–348.
    • (2009) Psychol Methods , vol.14 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 15
    • 84890116365 scopus 로고    scopus 로고
    • Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis
    • Navarro Silvera SA, Mayne ST, Gammon MD et al. (2014) Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis. Ann Epidemiol 24, 50–57.
    • (2014) Ann Epidemiol , vol.24 , pp. 50-57
    • Navarro Silvera, S.A.1    Mayne, S.T.2    Gammon, M.D.3
  • 16
    • 84867402004 scopus 로고    scopus 로고
    • Dietary patterns analysis using data mining method. An application to data from the CYKIDS study
    • Lazarou C, Karaolis M, Matalas AL et al. (2012) Dietary patterns analysis using data mining method. An application to data from the CYKIDS study. Comput Methods Programs Biomed 108, 706–714.
    • (2012) Comput Methods Programs Biomed , vol.108 , pp. 706-714
    • Lazarou, C.1    Karaolis, M.2    Matalas, A.L.3
  • 17
    • 84955177742 scopus 로고    scopus 로고
    • Is 5% weight loss a satisfactory criterion to define clinically significant weight loss?
    • Williamson, DA, Bray, GA & Ryan, DH (2015) Is 5% weight loss a satisfactory criterion to define clinically significant weight loss? Obesity (Silver Spring) 23, 2319–2320.
    • (2015) Obesity (Silver Spring) , vol.23 , pp. 2319-2320
    • Williamson, D.A.1    Bray, G.A.2    Ryan, D.H.3
  • 18
    • 84903767263 scopus 로고    scopus 로고
    • Weight loss effects from vegetable intake: a 12-month randomised controlled trial
    • Tapsell LC, Batterham MJ, Thorne RL et al. (2014) Weight loss effects from vegetable intake: a 12-month randomised controlled trial. Eur J Clin Nutr 68, 778–785.
    • (2014) Eur J Clin Nutr , vol.68 , pp. 778-785
    • Tapsell, L.C.1    Batterham, M.J.2    Thorne, R.L.3
  • 25
    • 84946106320 scopus 로고    scopus 로고
    • The importance of prediction model validation and assessment in obesity and nutrition research
    • Ivanescu AE, Li P, George B et al. (2016) The importance of prediction model validation and assessment in obesity and nutrition research. Int J Obes 40, 887–894.
    • (2016) Int J Obes , vol.40 , pp. 887-894
    • Ivanescu, A.E.1    Li, P.2    George, B.3
  • 28
    • 85022181412 scopus 로고    scopus 로고
    • Milano-Bicocca, 9–11 June XLI meeting of the Italian Statistical Association
    • Morlini, I (2002) Facing multicollinearity in data mining. Milano-Bicocca, 9–11 June: XLI meeting of the Italian Statistical Association. Available at: http://old.sis-statistica.org/files/pdf/atti/RSMi0602p55-58.pdf.
    • (2002) Facing multicollinearity in data mining
    • Morlini, I.1
  • 30
    • 84874725861 scopus 로고    scopus 로고
    • Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
    • Dormann CF, Elith J, Bacher S et al. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46.
    • (2013) Ecography , vol.36 , pp. 27-46
    • Dormann, C.F.1    Elith, J.2    Bacher, S.3
  • 31
    • 77955282973 scopus 로고    scopus 로고
    • Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water
    • Butte NF, Wong WW, Adolph AL et al. (2010) Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water. J Nutr 140, 1516–1523.
    • (2010) J Nutr , vol.140 , pp. 1516-1523
    • Butte, N.F.1    Wong, W.W.2    Adolph, A.L.3
  • 32
    • 73949137625 scopus 로고    scopus 로고
    • Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents
    • Zakeri IF, Adolph AL, Puyau MR et al. (2010) Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. J Appl Physiol 108, 128–136.
    • (2010) J Appl Physiol , vol.108 , pp. 128-136
    • Zakeri, I.F.1    Adolph, A.L.2    Puyau, M.R.3
  • 33
    • 84901346822 scopus 로고    scopus 로고
    • Prediction of energy expenditure and physical activity in preschoolers
    • Butte NF, Wong WW, Lee JS et al. (2014) Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc 46, 1216–1226.
    • (2014) Med Sci Sports Exerc , vol.46 , pp. 1216-1226
    • Butte, N.F.1    Wong, W.W.2    Lee, J.S.3
  • 34
    • 84872189980 scopus 로고    scopus 로고
    • Cross-sectional time series and multivariate adaptive regression splines models using accelerometry and heart rate predict energy expenditure of preschoolers
    • Zakeri IF, Adolph AL, Puyau MR et al. (2013) Cross-sectional time series and multivariate adaptive regression splines models using accelerometry and heart rate predict energy expenditure of preschoolers. J Nutr 143, 114–122.
    • (2013) J Nutr , vol.143 , pp. 114-122
    • Zakeri, I.F.1    Adolph, A.L.2    Puyau, M.R.3
  • 35
    • 84875053509 scopus 로고    scopus 로고
    • Duration of breastfeeding and childhood obesity: a generalized propensity score approach
    • Jiang M & Foster EM (2013) Duration of breastfeeding and childhood obesity: a generalized propensity score approach. Health Serv Res 48, 628–651.
    • (2013) Health Serv Res , vol.48 , pp. 628-651
    • Jiang, M.1    Foster, E.M.2
  • 36
    • 54549103184 scopus 로고    scopus 로고
    • Inequality in obesigenic environments: fast food density in New York City
    • Kwate NO, Yau CY, Loh JM et al. (2009) Inequality in obesigenic environments: fast food density in New York City. Health Place 15, 364–373.
    • (2009) Health Place , vol.15 , pp. 364-373
    • Kwate, N.O.1    Yau, C.Y.2    Loh, J.M.3
  • 37
    • 84907689172 scopus 로고    scopus 로고
    • Introduction to SMART designs for the development of adaptive interventions: with application to weight loss research
    • Almirall D, Nahum-Shani I, Sherwood NE et al. (2014) Introduction to SMART designs for the development of adaptive interventions: with application to weight loss research. Transl Behav Med 4, 260–274.
    • (2014) Transl Behav Med , vol.4 , pp. 260-274
    • Almirall, D.1    Nahum-Shani, I.2    Sherwood, N.E.3
  • 38
    • 44949171503 scopus 로고    scopus 로고
    • Adaptive design methods in clinical trials - a review
    • Chow SC & Chang M (2008) Adaptive design methods in clinical trials - a review. Orphanet J Rare Dis 3, 11.
    • (2008) Orphanet J Rare Dis , vol.3 , pp. 11
    • Chow, S.C.1    Chang, M.2
  • 39
    • 80052203917 scopus 로고    scopus 로고
    • Quantification of the effect of energy imbalance on bodyweight
    • Hall KD, Sacks G, Chandramohan D et al. (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378, 826–837.
    • (2011) Lancet , vol.378 , pp. 826-837
    • Hall, K.D.1    Sacks, G.2    Chandramohan, D.3
  • 40
    • 80054832899 scopus 로고    scopus 로고
    • Predictors of dropout in weight loss interventions: a systematic review of the literature
    • Moroshko I, Brennan L & O'Brien P (2011) Predictors of dropout in weight loss interventions: a systematic review of the literature. Obes Rev 12, 912–934.
    • (2011) Obes Rev , vol.12 , pp. 912-934
    • Moroshko, I.1    Brennan, L.2    O'Brien, P.3
  • 41
    • 84878986011 scopus 로고    scopus 로고
    • Analyzing weight loss intervention studies with missing data: which methods should be used?
    • Batterham MJ, Tapsell LC & Charlton KE (2013) Analyzing weight loss intervention studies with missing data: which methods should be used? Nutrition 29, 1024–1029.
    • (2013) Nutrition , vol.29 , pp. 1024-1029
    • Batterham, M.J.1    Tapsell, L.C.2    Charlton, K.E.3
  • 42
    • 68949163883 scopus 로고    scopus 로고
    • Missing data in randomized clinical trials for weight loss: scope of the problem, state of the field, and performance of statistical methods
    • Elobeid MA, Padilla MA, McVie T et al. (2009) Missing data in randomized clinical trials for weight loss: scope of the problem, state of the field, and performance of statistical methods. PLoS ONE 4, e6624.
    • (2009) PLoS ONE , vol.4
    • Elobeid, M.A.1    Padilla, M.A.2    McVie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.