메뉴 건너뛰기




Volumn 19, Issue 3, 2016, Pages 291-299

Assessing risk of hospital readmissions for improving medical practice

Author keywords

Decision trees; Healthcare analytics; Neural networks; Readmissions; Regression

Indexed keywords

AGE; AGED; ARTIFICIAL NEURAL NETWORK; DECISION TREE; ENVIRONMENT; HEALTH INSURANCE; HOSPITAL BED CAPACITY; HOSPITAL DISCHARGE; HOSPITAL READMISSION; HUMAN; LENGTH OF STAY; MEDICINE; MIDDLE AGED; RISK ASSESSMENT; RISK FACTOR; SEVERITY OF ILLNESS INDEX; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA;

EID: 84927945803     PISSN: 13869620     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10729-015-9323-5     Document Type: Article
Times cited : (16)

References (16)
  • 1
    • 63849134505 scopus 로고    scopus 로고
    • Rehospitalizations among patients in the medicare fee-for-service program
    • Jencks SF, Williams MV, Coleman EA (2009) Rehospitalizations among patients in the medicare fee-for-service program. N Engl J Med 360(14):1418–1428
    • (2009) N Engl J Med , vol.360 , Issue.14 , pp. 1418-1428
    • Jencks, S.F.1    Williams, M.V.2    Coleman, E.A.3
  • 2
    • 84980586751 scopus 로고    scopus 로고
    • Medicare’s Hospital Readmission Reduction Program FAQ (2013). Retrieved, April 4, 2014, from
    • Medicare’s Hospital Readmission Reduction Program FAQ (2013) www.acep.org. Retrieved, April 4, 2014, from https://www.acep.org/Legislation-and-Advocacy/Practice-Management-Issues/Physician-Payment-Reform/Medicare-s-Hospital-Readmission-Reduction-Program-FAQ/
  • 3
    • 84867409450 scopus 로고    scopus 로고
    • Selecting the best prediction model for readmission
    • Lee EW (2012) Selecting the best prediction model for readmission. J Prev Med Public Health 45(4):259–266
    • (2012) J Prev Med Public Health , vol.45 , Issue.4 , pp. 259-266
    • Lee, E.W.1
  • 4
    • 0034709014 scopus 로고    scopus 로고
    • Hospital readmissions as a measure of quality of health care: advantages and limitations
    • Benbassat J, Taragin M (2000) Hospital readmissions as a measure of quality of health care: advantages and limitations. Arch Intern Med 160(8):1074–1081
    • (2000) Arch Intern Med , vol.160 , Issue.8 , pp. 1074-1081
    • Benbassat, J.1    Taragin, M.2
  • 6
    • 77951240308 scopus 로고    scopus 로고
    • Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
    • van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, Forster AJ (2010) Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Can Med Assoc J 182(6):551–557
    • (2010) Can Med Assoc J , vol.182 , Issue.6 , pp. 551-557
    • van Walraven, C.1    Dhalla, I.A.2    Bell, C.3    Etchells, E.4    Stiell, I.G.5    Zarnke, K.6    Forster, A.J.7
  • 7
    • 77949528026 scopus 로고    scopus 로고
    • Statistical models and patient predictors of readmission for acute myocardial infarction a systematic review
    • Desai MM, Stauffer BD, Feringa HH, Schreiner GC (2009) Statistical models and patient predictors of readmission for acute myocardial infarction a systematic review. Cir Cardiovasc Qual Outcome 2(5):500–507
    • (2009) Cir Cardiovasc Qual Outcome , vol.2 , Issue.5 , pp. 500-507
    • Desai, M.M.1    Stauffer, B.D.2    Feringa, H.H.3    Schreiner, G.C.4
  • 8
    • 33748653578 scopus 로고    scopus 로고
    • Identifying patients at high risk of emergency hospital admissions: a logistic regression analysis
    • Bottle A, Aylin P, Majeed A (2006) Identifying patients at high risk of emergency hospital admissions: a logistic regression analysis. J R Soc Med 99(8):406–414
    • (2006) J R Soc Med , vol.99 , Issue.8 , pp. 406-414
    • Bottle, A.1    Aylin, P.2    Majeed, A.3
  • 12
    • 4544258100 scopus 로고    scopus 로고
    • Comparison of logistic regression and neural network analysis applied to predicting living setting after hip fracture
    • Ottenbacher KJ, Linn RT, Smith PM, Illig SB, Mancuso M, Granger CV (2004) Comparison of logistic regression and neural network analysis applied to predicting living setting after hip fracture. Ann Epidemiol 14(8):551–559
    • (2004) Ann Epidemiol , vol.14 , Issue.8 , pp. 551-559
    • Ottenbacher, K.J.1    Linn, R.T.2    Smith, P.M.3    Illig, S.B.4    Mancuso, M.5    Granger, C.V.6
  • 13
    • 15244347342 scopus 로고    scopus 로고
    • Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data
    • Eftekhar B, Mohammad K, Ardebili HE, Ghodsi M, Ketabchi E (2005) Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Inform Decis Mak 5(1):3
    • (2005) BMC Med Inform Decis Mak , vol.5 , Issue.1 , pp. 3
    • Eftekhar, B.1    Mohammad, K.2    Ardebili, H.E.3    Ghodsi, M.4    Ketabchi, E.5
  • 15
    • 84876785353 scopus 로고    scopus 로고
    • Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model
    • Donzé J, Aujesky D, Williams D, Schnipper JL (2013) Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Int Med 173(8):632–638
    • (2013) JAMA Int Med , vol.173 , Issue.8 , pp. 632-638
    • Donzé, J.1    Aujesky, D.2    Williams, D.3    Schnipper, J.L.4
  • 16
    • 0027940266 scopus 로고
    • Validation of a combined comorbidity index
    • Charlson M, Szatrowski TP, Peterson J, Gold J (1994) Validation of a combined comorbidity index. J Clin Epidemiol 47(11):1245–1251. doi:10.1001/jamainternmed.2013.3023
    • (1994) J Clin Epidemiol , vol.47 , Issue.11 , pp. 1245-1251
    • Charlson, M.1    Szatrowski, T.P.2    Peterson, J.3    Gold, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.