메뉴 건너뛰기




Volumn 12, Issue 7, 2017, Pages

Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYESIAN LEARNING; CARDIORESPIRATORY FITNESS; CLASSIFIER; CONTROLLED STUDY; DECISION TREE; DEMOGRAPHY; DIABETES MELLITUS; ENSEMBLE; HUMAN; LOGISTIC MODEL TREE; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; MAJOR CLINICAL STUDY; MEASUREMENT ACCURACY; MEASUREMENT PRECISION; MEDICAL HISTORY; MULTIPLE LINEAR REGRESSION ANALYSIS; PREDICTION; RANDOM FOREST; RECEIVER OPERATING CHARACTERISTIC; SMOTE; TREADMILL EXERCISE; VITAL SIGN; BAYES THEOREM; COMPLICATION; CORONARY ARTERY DISEASE; EXERCISE TEST; FEMALE; FITNESS; HEART FAILURE; MALE; PATHOPHYSIOLOGY; PHYSIOLOGY; PROCEDURES; RISK FACTOR; STATISTICAL MODEL;

EID: 85025430136     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0179805     Document Type: Article
Times cited : (228)

References (54)
  • 1
    • 85025469370 scopus 로고    scopus 로고
    • International Diabetes Federation
    • International Diabetes Federation, http://www.diabetesatlas.org.;.
  • 3
    • 84942048543 scopus 로고    scopus 로고
    • Cardiorespiratory fitness and incident diabetes: The fit (henry ford exercise testing) project
    • PMID: 25765356
    • Juraschek SP, Blaha MJ, Blumenthal RS, Brawner C, Qureshi W, Keteyian SJ, et al. Cardiorespiratory fitness and incident diabetes: the FIT (Henry Ford ExercIse Testing) project. Diabetes Care. 2015; 38(6):1075–1081. https://doi.org/10.2337/dc14-2714 PMID: 25765356
    • (2015) Diabetes Care , vol.38 , Issue.6 , pp. 1075-1081
    • Juraschek, S.P.1    Blaha, M.J.2    Blumenthal, R.S.3    Brawner, C.4    Qureshi, W.5    Keteyian, S.J.6
  • 4
    • 84946226894 scopus 로고    scopus 로고
    • Type 2 diabetes mellitus screening and risk factors using decision tree: Results of data mining
    • PMID: 26156928
    • Habibi S, Ahmadi M, Alizadeh S. Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining. Global journal of health science. 2015; 7(5):304. https://doi.org/10.5539/gjhs.v7n5p304 PMID: 26156928
    • (2015) Global Journal of Health Science , vol.7 , Issue.5 , pp. 304
    • Habibi, S.1    Ahmadi, M.2    Alizadeh, S.3
  • 5
    • 84940772400 scopus 로고    scopus 로고
    • Mortality rates and the causes of death related to diabetes mellitus in shanghai songjiang district: An 11-year retrospective analysis of death certificates
    • PMID: 26341126
    • Zhu M, Li J, Li Z, Luo W, Dai D, Weaver SR, et al. Mortality rates and the causes of death related to diabetes mellitus in Shanghai Songjiang District: an 11-year retrospective analysis of death certificates. BMC endocrine disorders. 2015; 15(1):45. https://doi.org/10.1186/s12902-015-0042-1 PMID: 26341126
    • (2015) BMC Endocrine Disorders , vol.15 , Issue.1 , pp. 45
    • Zhu, M.1    Li, J.2    Li, Z.3    Luo, W.4    Dai, D.5    Weaver, S.R.6
  • 6
    • 84955202811 scopus 로고    scopus 로고
    • Prevalence and correlates of diagnosed and undiagnosed type 2 diabetes mellitus and pre-diabetes in older adults: Findings from the irish longitudinal study on ageing (tilda)
    • PMID: 26520567
    • Leahy S, O’Halloran A, O’Leary N, Healy M, McCormack M, Kenny R, et al. Prevalence and correlates of diagnosed and undiagnosed type 2 diabetes mellitus and pre-diabetes in older adults: Findings from the Irish Longitudinal Study on Ageing (TILDA). Diabetes research and clinical practice. 2015; 110(3): 241–249. https://doi.org/10.1016/j.diabres.2015.10.015 PMID: 26520567
    • (2015) Diabetes Research and Clinical Practice , vol.110 , Issue.3 , pp. 241-249
    • Leahy, S.1    O’Halloran, A.2    O’Leary, N.3    Healy, M.4    McCormack, M.5    Kenny, R.6
  • 7
    • 84864704902 scopus 로고    scopus 로고
    • Prevalence of type 2 diabetes in the states of the co-operation council for the arab states of the gulf: A systematic review
    • PMID: 22905094
    • Alhyas L, McKay A, Majeed A. Prevalence of type 2 diabetes in the States of the co-operation council for the Arab States of the Gulf: a systematic review. PloS one. 2012; 7(8):e40948. https://doi.org/10.1371/journal.pone.0040948 PMID: 22905094
    • (2012) Plos One , vol.7 , Issue.8
    • Alhyas, L.1    McKay, A.2    Majeed, A.3
  • 8
    • 50649096305 scopus 로고    scopus 로고
    • Vigorous exercise, fitness and incident hypertension, high cholesterol, and diabetes
    • PMID: 18461008
    • Williams PT. Vigorous exercise, fitness and incident hypertension, high cholesterol, and diabetes. Medicine and science in sports and exercise. 2008; 40(6):998. https://doi.org/10.1249/MSS.0b013e31816722a9 PMID: 18461008
    • (2008) Medicine and Science in Sports and Exercise , vol.40 , Issue.6 , pp. 998
    • Williams, P.T.1
  • 9
    • 2342466734 scopus 로고    scopus 로고
    • Global prevalence of diabetes estimates for the year 2000 and projections for 2030
    • PMID: 15111519
    • Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes care. 2004; 27(5):1047–1053. https://doi.org/10.2337/diacare.27.5.1047 PMID: 15111519
    • (2004) Diabetes Care , vol.27 , Issue.5 , pp. 1047-1053
    • Wild, S.1    Roglic, G.2    Green, A.3    Sicree, R.4    King, H.5
  • 10
    • 0342276263 scopus 로고    scopus 로고
    • Statistics D. Bethesda Md: National Institute of Diabetes and Digestive and Kidney Diseases, NIH publication
    • Statistics D. National diabetes information clearinghouse. Bethesda Md: National Institute of Diabetes and Digestive and Kidney Diseases, NIH publication. 1999; p. 99–3926.
    • (1999) National Diabetes Information Clearinghouse , pp. 99-3926
  • 11
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • PMID: 11470218
    • Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in medicine. 2001; 23(1):89–109. https://doi.org/10.1016/S0933-3657(01)00077-X PMID: 11470218
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 13
    • 84906311582 scopus 로고    scopus 로고
    • Rationale and design of the henry ford exercise testing project (the fit project)
    • PMID: 25138770
    • Al-Mallah MH, Keteyian SJ, Brawner CA, Whelton S, Blaha MJ. Rationale and design of the Henry Ford Exercise Testing Project (the FIT project). Clinical cardiology. 2014; 37(8):456–461. https://doi.org/10.1002/clc.22302 PMID: 25138770
    • (2014) Clinical Cardiology , vol.37 , Issue.8 , pp. 456-461
    • Al-Mallah, M.H.1    Keteyian, S.J.2    Brawner, C.A.3    Whelton, S.4    Blaha, M.J.5
  • 14
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artificial intelligence. 1997; 97(1):245–271. https://doi.org/10.1016/S0004-3702(97)00063-5
    • (1997) Artificial Intelligence , vol.97 , Issue.1 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of machine learning research. 2003; 3(Mar):1157–1182.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.MAR , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 16
    • 0001600762 scopus 로고
    • Information gain and a general measure of correlation
    • Kent JT. Information gain and a general measure of correlation. Biometrika. 1983; 70(1):163–173. https://doi.org/10.1093/biomet/70.1.163
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 163-173
    • Kent, J.T.1
  • 18
    • 84872837690 scopus 로고    scopus 로고
    • Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
    • PMID: 23347811
    • Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. The Kaohsiung journal of medical sciences. 2013; 29(2):93–99. https://doi.org/10.1016/j.kjms.2012.08.016 PMID: 23347811
    • (2013) The Kaohsiung Journal of Medical Sciences , vol.29 , Issue.2 , pp. 93-99
    • Meng, X.H.1    Huang, Y.X.2    Rao, D.P.3    Zhang, Q.4    Liu, Q.5
  • 19
    • 12744262843 scopus 로고    scopus 로고
    • Identification of individuals with insulin resistance using routine clinical measurements
    • PMID: 15677489
    • Stern SE, Williams K, Ferrannini E, DeFronzo RA, Bogardus C, Stern MP. Identification of individuals with insulin resistance using routine clinical measurements. Diabetes. 2005; 54(2):333–339. https://doi.org/10.2337/diabetes.54.2.333 PMID: 15677489
    • (2005) Diabetes , vol.54 , Issue.2 , pp. 333-339
    • Stern, S.E.1    Williams, K.2    Ferrannini, E.3    Defronzo, R.A.4    Bogardus, C.5    Stern, M.P.6
  • 20
    • 0036753856 scopus 로고    scopus 로고
    • Data mining a diabetic data warehouse
    • PMID: 12234716
    • Breault JL, Goodall CR, Fos PJ. Data mining a diabetic data warehouse. Artificial intelligence in medicine. 2002; 26(1):37–54. https://doi.org/10.1016/S0933-3657(02)00051-9 PMID: 12234716
    • (2002) Artificial Intelligence in Medicine , vol.26 , Issue.1 , pp. 37-54
    • Breault, J.L.1    Goodall, C.R.2    Fos, P.J.3
  • 22
    • 85156137079 scopus 로고    scopus 로고
    • Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid
    • Kohavi R. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: KDD. vol. 96; 1996. p. 202–207.
    • (1996) KDD , vol.96 , pp. 202-207
    • Kohavi, R.1
  • 23
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. Applied statistics. 1992; p. 191–201. https://doi.org/10.2307/2347628
    • (1992) Applied Statistics , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.C.2
  • 25
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • Landwehr N, Hall M, Frank E. Logistic model trees. Machine Learning. 2005; 59(1–2):161–205. https://doi.org/10.1007/s10994-005-0466-3
    • (2005) Machine Learning , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 27
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002; 2(3):18–22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine learning. 2001; 45(1):5–32. https://doi.org/10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 29
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter. 2004; 6(1):20–29. https://doi.org/10.1145/1007730.1007735
    • (2004) ACM Sigkdd Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.1    Prati, R.C.2    Monard, M.C.3
  • 30
    • 84891860723 scopus 로고    scopus 로고
    • Training and assessing classification rules with imbalanced data
    • Menardi G, Torelli N. Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery. 2014; 28(1):92–122. https://doi.org/10.1007/s10618-012-0295-5
    • (2014) Data Mining and Knowledge Discovery , vol.28 , Issue.1 , pp. 92-122
    • Menardi, G.1    Torelli, N.2
  • 37
    • 84946407304 scopus 로고    scopus 로고
    • Joint use of over-and under-sampling techniques and cross-validation for the development and assessment of prediction models
    • Lusa L, et al. Joint use of over-and under-sampling techniques and cross-validation for the development and assessment of prediction models. BMC bioinformatics. 2015; 16(1):1.
    • (2015) BMC Bioinformatics , vol.16 , Issue.1 , pp. 1
    • Lusa, L.1
  • 38
    • 37949004300 scopus 로고    scopus 로고
    • Data mining for imbalanced datasets: An overview
    • Springer
    • Chawla NV. Data mining for imbalanced datasets: An overview. In: Data mining and knowledge discovery handbook. Springer; 2005. p. 853–867.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 853-867
    • Chawla, N.V.1
  • 40
    • 65749119811 scopus 로고    scopus 로고
    • Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap
    • Kim JH. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis. 2009; 53(11):3735–3745. https://doi.org/10.1016/j.csda.2009.04.009
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.11 , pp. 3735-3745
    • Kim, J.H.1
  • 41
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi R, et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI. vol. 14; 1995. p. 1137–1145.
    • (1995) IJCAI , vol.14 , pp. 1137-1145
    • Kohavi, R.1
  • 42
    • 84925604888 scopus 로고    scopus 로고
    • No unbiased estimator of the variance of k-fold cross-validation
    • Bengio Y, Grandvalet Y. No unbiased estimator of the variance of k-fold cross-validation. Journal of Machine Learning Research. 2004; 5(Sep):1089–1105.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.SEP , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 43
    • 84926631457 scopus 로고    scopus 로고
    • Identification of real microrna precursors with a pseudo structure status composition approach
    • PMID: 25821974
    • Liu B, Fang L, Liu F, Wang X, Chen J, Chou KC. Identification of real microRNA precursors with a pseudo structure status composition approach. PloS one. 2015; 10(3):e0121501. https://doi.org/10.1371/journal.pone.0121501 PMID: 25821974
    • (2015) Plos One , vol.10 , Issue.3
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4    Chen, J.5    Chou, K.C.6
  • 44
    • 84954388556 scopus 로고    scopus 로고
    • Imirna-psedpc: Microrna precursor identification with a pseudo distance-pair composition approach
    • PMID: 25645238
    • Liu B, Fang L, Liu F, Wang X, Chou KC. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. Journal of Biomolecular Structure and Dynamics. 2016; 34(1):223–235. https://doi.org/10.1080/07391102.2015.1014422 PMID: 25645238
    • (2016) Journal of Biomolecular Structure and Dynamics , vol.34 , Issue.1 , pp. 223-235
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4    Chou, K.C.5
  • 45
    • 84902168985 scopus 로고    scopus 로고
    • A weighted voting classifier based on differential evolution
    • Hindawi Publishing Corporation
    • Zhang Y, Zhang H, Cai J, Yang B. A weighted voting classifier based on differential evolution. In: Abstract and Applied Analysis. vol. 2014. Hindawi Publishing Corporation; 2014.
    • (2014) Abstract and Applied Analysis , vol.2014
    • Zhang, Y.1    Zhang, H.2    Cai, J.3    Yang, B.4
  • 46
    • 84982242267 scopus 로고    scopus 로고
    • Identification of dna-binding proteins by combining auto-cross covariance transformation and ensemble learning
    • Liu B, Wang S, Dong Q, Li S, Liu X. Identification of DNA-binding proteins by combining auto-cross covariance transformation and ensemble learning. IEEE transactions on nanobioscience. 2016; 15(4):328–334. https://doi.org/10.1109/TNB.2016.2555951
    • (2016) IEEE Transactions on Nanobioscience , vol.15 , Issue.4 , pp. 328-334
    • Liu, B.1    Wang, S.2    Dong, Q.3    Li, S.4    Liu, X.5
  • 47
    • 84983353017 scopus 로고    scopus 로고
    • Idhs-el: Identifying dnase i hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework
    • PMID: 27153623
    • Liu B, Long R, Chou KC. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics. 2016; 32(16):2411–2418. https://doi.org/10.1093/bioinformatics/btw186 PMID: 27153623
    • (2016) Bioinformatics , vol.32 , Issue.16 , pp. 2411-2418
    • Liu, B.1    Long, R.2    Chou, K.C.3
  • 48
    • 85014869605 scopus 로고    scopus 로고
    • Irspot-el: Identify recombination spots with an ensemble learning approach
    • PMID: 27531102
    • Liu B, Wang S, Long R, Chou KC. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics. 2017; 33(1):35–41. https://doi.org/10.1093/bioinformatics/btw539 PMID: 27531102
    • (2017) Bioinformatics , vol.33 , Issue.1 , pp. 35-41
    • Liu, B.1    Wang, S.2    Long, R.3    Chou, K.C.4
  • 49
    • 84907013321 scopus 로고    scopus 로고
    • Ndna-prot: Identification of dna-binding proteins based on unbalanced classification
    • PMID: 25196432
    • Song L, Li D, Zeng X, Wu Y, Guo L, Zou Q. nDNA-prot: identification of DNA-binding proteins based on unbalanced classification. BMC bioinformatics. 2014; 15(1):298. https://doi.org/10.1186/1471-2105-15-298 PMID: 25196432
    • (2014) BMC Bioinformatics , vol.15 , Issue.1 , pp. 298
    • Song, L.1    Li, D.2    Zeng, X.3    Wu, Y.4    Guo, L.5    Zou, Q.6
  • 50
    • 84921263022 scopus 로고    scopus 로고
    • Imdc: An ensemble learning method for imbalanced classification with mirna data
    • PMID: 25729943
    • Wang C, Hu L, Guo M, Liu X, Zou Q. imDC: an ensemble learning method for imbalanced classification with miRNA data. Genetics and Molecular Research. 2015; 14(1):123–133. https://doi.org/10.4238/2015.January.15.15 PMID: 25729943
    • (2015) Genetics and Molecular Research , vol.14 , Issue.1 , pp. 123-133
    • Wang, C.1    Hu, L.2    Guo, M.3    Liu, X.4    Zou, Q.5
  • 51
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan JR. Induction of decision trees. Machine learning. 1986; 1(1):81–106. https://doi.org/10.1007/BF00116251
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 52
    • 78049442821 scopus 로고    scopus 로고
    • Ensemble methods in data mining: Improving accuracy through combining predictions
    • Seni G, Elder JF. Ensemble methods in data mining: improving accuracy through combining predictions. Synthesis Lectures on Data Mining and Knowledge Discovery. 2010; 2(1):1–126. https://doi.org/10.2200/S00240ED1V01Y200912DMK002
    • (2010) Synthesis Lectures on Data Mining and Knowledge Discovery , vol.2 , Issue.1 , pp. 1-126
    • Seni, G.1    Elder, J.F.2
  • 53
    • 84878459786 scopus 로고    scopus 로고
    • Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from kuwait—a cohort study
    • PMID: 23676796
    • Farran B, Channanath AM, Behbehani K, Thanaraj TA. Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ open. 2013; 3(5):e002457. https://doi.org/10.1136/bmjopen-2012-002457 PMID: 23676796
    • (2013) BMJ Open , vol.3 , Issue.5 , pp. e002457
    • Farran, B.1    Channanath, A.M.2    Behbehani, K.3    Thanaraj, T.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.