-
1
-
-
85025469370
-
-
International Diabetes Federation
-
International Diabetes Federation, http://www.diabetesatlas.org.;.
-
-
-
-
2
-
-
41449117921
-
Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: Full text
-
Rydén L, Standl E, Bartnik M, Van den Berghe G, Betteridge J, De Boer MJ, et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: full text. European Heart Journal Supplements. 2007; 9(suppl C):C3–C74. https://doi.org/10.1093/eurheartj/ehl261
-
(2007)
European Heart Journal Supplements
, vol.9
, pp. C3-C74
-
-
Rydén, L.1
Standl, E.2
Bartnik, M.3
Van Den Berghe, G.4
Betteridge, J.5
De Boer, M.J.6
-
3
-
-
84942048543
-
Cardiorespiratory fitness and incident diabetes: The fit (henry ford exercise testing) project
-
PMID: 25765356
-
Juraschek SP, Blaha MJ, Blumenthal RS, Brawner C, Qureshi W, Keteyian SJ, et al. Cardiorespiratory fitness and incident diabetes: the FIT (Henry Ford ExercIse Testing) project. Diabetes Care. 2015; 38(6):1075–1081. https://doi.org/10.2337/dc14-2714 PMID: 25765356
-
(2015)
Diabetes Care
, vol.38
, Issue.6
, pp. 1075-1081
-
-
Juraschek, S.P.1
Blaha, M.J.2
Blumenthal, R.S.3
Brawner, C.4
Qureshi, W.5
Keteyian, S.J.6
-
4
-
-
84946226894
-
Type 2 diabetes mellitus screening and risk factors using decision tree: Results of data mining
-
PMID: 26156928
-
Habibi S, Ahmadi M, Alizadeh S. Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining. Global journal of health science. 2015; 7(5):304. https://doi.org/10.5539/gjhs.v7n5p304 PMID: 26156928
-
(2015)
Global Journal of Health Science
, vol.7
, Issue.5
, pp. 304
-
-
Habibi, S.1
Ahmadi, M.2
Alizadeh, S.3
-
5
-
-
84940772400
-
Mortality rates and the causes of death related to diabetes mellitus in shanghai songjiang district: An 11-year retrospective analysis of death certificates
-
PMID: 26341126
-
Zhu M, Li J, Li Z, Luo W, Dai D, Weaver SR, et al. Mortality rates and the causes of death related to diabetes mellitus in Shanghai Songjiang District: an 11-year retrospective analysis of death certificates. BMC endocrine disorders. 2015; 15(1):45. https://doi.org/10.1186/s12902-015-0042-1 PMID: 26341126
-
(2015)
BMC Endocrine Disorders
, vol.15
, Issue.1
, pp. 45
-
-
Zhu, M.1
Li, J.2
Li, Z.3
Luo, W.4
Dai, D.5
Weaver, S.R.6
-
6
-
-
84955202811
-
Prevalence and correlates of diagnosed and undiagnosed type 2 diabetes mellitus and pre-diabetes in older adults: Findings from the irish longitudinal study on ageing (tilda)
-
PMID: 26520567
-
Leahy S, O’Halloran A, O’Leary N, Healy M, McCormack M, Kenny R, et al. Prevalence and correlates of diagnosed and undiagnosed type 2 diabetes mellitus and pre-diabetes in older adults: Findings from the Irish Longitudinal Study on Ageing (TILDA). Diabetes research and clinical practice. 2015; 110(3): 241–249. https://doi.org/10.1016/j.diabres.2015.10.015 PMID: 26520567
-
(2015)
Diabetes Research and Clinical Practice
, vol.110
, Issue.3
, pp. 241-249
-
-
Leahy, S.1
O’Halloran, A.2
O’Leary, N.3
Healy, M.4
McCormack, M.5
Kenny, R.6
-
7
-
-
84864704902
-
Prevalence of type 2 diabetes in the states of the co-operation council for the arab states of the gulf: A systematic review
-
PMID: 22905094
-
Alhyas L, McKay A, Majeed A. Prevalence of type 2 diabetes in the States of the co-operation council for the Arab States of the Gulf: a systematic review. PloS one. 2012; 7(8):e40948. https://doi.org/10.1371/journal.pone.0040948 PMID: 22905094
-
(2012)
Plos One
, vol.7
, Issue.8
-
-
Alhyas, L.1
McKay, A.2
Majeed, A.3
-
8
-
-
50649096305
-
Vigorous exercise, fitness and incident hypertension, high cholesterol, and diabetes
-
PMID: 18461008
-
Williams PT. Vigorous exercise, fitness and incident hypertension, high cholesterol, and diabetes. Medicine and science in sports and exercise. 2008; 40(6):998. https://doi.org/10.1249/MSS.0b013e31816722a9 PMID: 18461008
-
(2008)
Medicine and Science in Sports and Exercise
, vol.40
, Issue.6
, pp. 998
-
-
Williams, P.T.1
-
9
-
-
2342466734
-
Global prevalence of diabetes estimates for the year 2000 and projections for 2030
-
PMID: 15111519
-
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes care. 2004; 27(5):1047–1053. https://doi.org/10.2337/diacare.27.5.1047 PMID: 15111519
-
(2004)
Diabetes Care
, vol.27
, Issue.5
, pp. 1047-1053
-
-
Wild, S.1
Roglic, G.2
Green, A.3
Sicree, R.4
King, H.5
-
10
-
-
0342276263
-
-
Statistics D. Bethesda Md: National Institute of Diabetes and Digestive and Kidney Diseases, NIH publication
-
Statistics D. National diabetes information clearinghouse. Bethesda Md: National Institute of Diabetes and Digestive and Kidney Diseases, NIH publication. 1999; p. 99–3926.
-
(1999)
National Diabetes Information Clearinghouse
, pp. 99-3926
-
-
-
11
-
-
0034922742
-
Machine learning for medical diagnosis: History, state of the art and perspective
-
PMID: 11470218
-
Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in medicine. 2001; 23(1):89–109. https://doi.org/10.1016/S0933-3657(01)00077-X PMID: 11470218
-
(2001)
Artificial Intelligence in Medicine
, vol.23
, Issue.1
, pp. 89-109
-
-
Kononenko, I.1
-
13
-
-
84906311582
-
Rationale and design of the henry ford exercise testing project (the fit project)
-
PMID: 25138770
-
Al-Mallah MH, Keteyian SJ, Brawner CA, Whelton S, Blaha MJ. Rationale and design of the Henry Ford Exercise Testing Project (the FIT project). Clinical cardiology. 2014; 37(8):456–461. https://doi.org/10.1002/clc.22302 PMID: 25138770
-
(2014)
Clinical Cardiology
, vol.37
, Issue.8
, pp. 456-461
-
-
Al-Mallah, M.H.1
Keteyian, S.J.2
Brawner, C.A.3
Whelton, S.4
Blaha, M.J.5
-
14
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artificial intelligence. 1997; 97(1):245–271. https://doi.org/10.1016/S0004-3702(97)00063-5
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
15
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of machine learning research. 2003; 3(Mar):1157–1182.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.MAR
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
16
-
-
0001600762
-
Information gain and a general measure of correlation
-
Kent JT. Information gain and a general measure of correlation. Biometrika. 1983; 70(1):163–173. https://doi.org/10.1093/biomet/70.1.163
-
(1983)
Biometrika
, vol.70
, Issue.1
, pp. 163-173
-
-
Kent, J.T.1
-
18
-
-
84872837690
-
Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
-
PMID: 23347811
-
Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. The Kaohsiung journal of medical sciences. 2013; 29(2):93–99. https://doi.org/10.1016/j.kjms.2012.08.016 PMID: 23347811
-
(2013)
The Kaohsiung Journal of Medical Sciences
, vol.29
, Issue.2
, pp. 93-99
-
-
Meng, X.H.1
Huang, Y.X.2
Rao, D.P.3
Zhang, Q.4
Liu, Q.5
-
19
-
-
12744262843
-
Identification of individuals with insulin resistance using routine clinical measurements
-
PMID: 15677489
-
Stern SE, Williams K, Ferrannini E, DeFronzo RA, Bogardus C, Stern MP. Identification of individuals with insulin resistance using routine clinical measurements. Diabetes. 2005; 54(2):333–339. https://doi.org/10.2337/diabetes.54.2.333 PMID: 15677489
-
(2005)
Diabetes
, vol.54
, Issue.2
, pp. 333-339
-
-
Stern, S.E.1
Williams, K.2
Ferrannini, E.3
Defronzo, R.A.4
Bogardus, C.5
Stern, M.P.6
-
20
-
-
0036753856
-
Data mining a diabetic data warehouse
-
PMID: 12234716
-
Breault JL, Goodall CR, Fos PJ. Data mining a diabetic data warehouse. Artificial intelligence in medicine. 2002; 26(1):37–54. https://doi.org/10.1016/S0933-3657(02)00051-9 PMID: 12234716
-
(2002)
Artificial Intelligence in Medicine
, vol.26
, Issue.1
, pp. 37-54
-
-
Breault, J.L.1
Goodall, C.R.2
Fos, P.J.3
-
22
-
-
85156137079
-
Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid
-
Kohavi R. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: KDD. vol. 96; 1996. p. 202–207.
-
(1996)
KDD
, vol.96
, pp. 202-207
-
-
Kohavi, R.1
-
23
-
-
0000521473
-
Ridge estimators in logistic regression
-
Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. Applied statistics. 1992; p. 191–201. https://doi.org/10.2307/2347628
-
(1992)
Applied Statistics
, pp. 191-201
-
-
Le Cessie, S.1
Van Houwelingen, J.C.2
-
25
-
-
21244500957
-
Logistic model trees
-
Landwehr N, Hall M, Frank E. Logistic model trees. Machine Learning. 2005; 59(1–2):161–205. https://doi.org/10.1007/s10994-005-0466-3
-
(2005)
Machine Learning
, vol.59
, Issue.1-2
, pp. 161-205
-
-
Landwehr, N.1
Hall, M.2
Frank, E.3
-
27
-
-
0345040873
-
Classification and regression by randomforest
-
Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002; 2(3):18–22.
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
28
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine learning. 2001; 45(1):5–32. https://doi.org/10.1023/A:1010933404324
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
29
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter. 2004; 6(1):20–29. https://doi.org/10.1145/1007730.1007735
-
(2004)
ACM Sigkdd Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
30
-
-
84891860723
-
Training and assessing classification rules with imbalanced data
-
Menardi G, Torelli N. Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery. 2014; 28(1):92–122. https://doi.org/10.1007/s10618-012-0295-5
-
(2014)
Data Mining and Knowledge Discovery
, vol.28
, Issue.1
, pp. 92-122
-
-
Menardi, G.1
Torelli, N.2
-
35
-
-
33750560871
-
Combined effects of class imbalance and class overlap on instance-based classification
-
Springer
-
García V, Alejo R, Sánchez JS, Sotoca JM, Mollineda RA. Combined effects of class imbalance and class overlap on instance-based classification. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer; 2006. p. 371–378.
-
(2006)
International Conference on Intelligent Data Engineering and Automated Learning
, pp. 371-378
-
-
García, V.1
Alejo, R.2
Sánchez, J.S.3
Sotoca, J.M.4
Mollineda, R.A.5
-
36
-
-
41949137974
-
The alzheimer’s disease neuroimaging initiative (adni): Mri methods
-
PMID: 18302232
-
Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging. 2008; 27(4): 685–691. https://doi.org/10.1002/jmri.21049 PMID: 18302232
-
(2008)
Journal of Magnetic Resonance Imaging
, vol.27
, Issue.4
, pp. 685-691
-
-
Jack, C.R.1
Bernstein, M.A.2
Fox, N.C.3
Thompson, P.4
Alexander, G.5
Harvey, D.6
-
37
-
-
84946407304
-
Joint use of over-and under-sampling techniques and cross-validation for the development and assessment of prediction models
-
Lusa L, et al. Joint use of over-and under-sampling techniques and cross-validation for the development and assessment of prediction models. BMC bioinformatics. 2015; 16(1):1.
-
(2015)
BMC Bioinformatics
, vol.16
, Issue.1
, pp. 1
-
-
Lusa, L.1
-
38
-
-
37949004300
-
Data mining for imbalanced datasets: An overview
-
Springer
-
Chawla NV. Data mining for imbalanced datasets: An overview. In: Data mining and knowledge discovery handbook. Springer; 2005. p. 853–867.
-
(2005)
Data Mining and Knowledge Discovery Handbook
, pp. 853-867
-
-
Chawla, N.V.1
-
40
-
-
65749119811
-
Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap
-
Kim JH. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis. 2009; 53(11):3735–3745. https://doi.org/10.1016/j.csda.2009.04.009
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, Issue.11
, pp. 3735-3745
-
-
Kim, J.H.1
-
41
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Kohavi R, et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI. vol. 14; 1995. p. 1137–1145.
-
(1995)
IJCAI
, vol.14
, pp. 1137-1145
-
-
Kohavi, R.1
-
42
-
-
84925604888
-
No unbiased estimator of the variance of k-fold cross-validation
-
Bengio Y, Grandvalet Y. No unbiased estimator of the variance of k-fold cross-validation. Journal of Machine Learning Research. 2004; 5(Sep):1089–1105.
-
(2004)
Journal of Machine Learning Research
, vol.5
, Issue.SEP
, pp. 1089-1105
-
-
Bengio, Y.1
Grandvalet, Y.2
-
43
-
-
84926631457
-
Identification of real microrna precursors with a pseudo structure status composition approach
-
PMID: 25821974
-
Liu B, Fang L, Liu F, Wang X, Chen J, Chou KC. Identification of real microRNA precursors with a pseudo structure status composition approach. PloS one. 2015; 10(3):e0121501. https://doi.org/10.1371/journal.pone.0121501 PMID: 25821974
-
(2015)
Plos One
, vol.10
, Issue.3
-
-
Liu, B.1
Fang, L.2
Liu, F.3
Wang, X.4
Chen, J.5
Chou, K.C.6
-
44
-
-
84954388556
-
Imirna-psedpc: Microrna precursor identification with a pseudo distance-pair composition approach
-
PMID: 25645238
-
Liu B, Fang L, Liu F, Wang X, Chou KC. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. Journal of Biomolecular Structure and Dynamics. 2016; 34(1):223–235. https://doi.org/10.1080/07391102.2015.1014422 PMID: 25645238
-
(2016)
Journal of Biomolecular Structure and Dynamics
, vol.34
, Issue.1
, pp. 223-235
-
-
Liu, B.1
Fang, L.2
Liu, F.3
Wang, X.4
Chou, K.C.5
-
45
-
-
84902168985
-
A weighted voting classifier based on differential evolution
-
Hindawi Publishing Corporation
-
Zhang Y, Zhang H, Cai J, Yang B. A weighted voting classifier based on differential evolution. In: Abstract and Applied Analysis. vol. 2014. Hindawi Publishing Corporation; 2014.
-
(2014)
Abstract and Applied Analysis
, vol.2014
-
-
Zhang, Y.1
Zhang, H.2
Cai, J.3
Yang, B.4
-
46
-
-
84982242267
-
Identification of dna-binding proteins by combining auto-cross covariance transformation and ensemble learning
-
Liu B, Wang S, Dong Q, Li S, Liu X. Identification of DNA-binding proteins by combining auto-cross covariance transformation and ensemble learning. IEEE transactions on nanobioscience. 2016; 15(4):328–334. https://doi.org/10.1109/TNB.2016.2555951
-
(2016)
IEEE Transactions on Nanobioscience
, vol.15
, Issue.4
, pp. 328-334
-
-
Liu, B.1
Wang, S.2
Dong, Q.3
Li, S.4
Liu, X.5
-
47
-
-
84983353017
-
Idhs-el: Identifying dnase i hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework
-
PMID: 27153623
-
Liu B, Long R, Chou KC. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics. 2016; 32(16):2411–2418. https://doi.org/10.1093/bioinformatics/btw186 PMID: 27153623
-
(2016)
Bioinformatics
, vol.32
, Issue.16
, pp. 2411-2418
-
-
Liu, B.1
Long, R.2
Chou, K.C.3
-
48
-
-
85014869605
-
Irspot-el: Identify recombination spots with an ensemble learning approach
-
PMID: 27531102
-
Liu B, Wang S, Long R, Chou KC. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics. 2017; 33(1):35–41. https://doi.org/10.1093/bioinformatics/btw539 PMID: 27531102
-
(2017)
Bioinformatics
, vol.33
, Issue.1
, pp. 35-41
-
-
Liu, B.1
Wang, S.2
Long, R.3
Chou, K.C.4
-
49
-
-
84907013321
-
Ndna-prot: Identification of dna-binding proteins based on unbalanced classification
-
PMID: 25196432
-
Song L, Li D, Zeng X, Wu Y, Guo L, Zou Q. nDNA-prot: identification of DNA-binding proteins based on unbalanced classification. BMC bioinformatics. 2014; 15(1):298. https://doi.org/10.1186/1471-2105-15-298 PMID: 25196432
-
(2014)
BMC Bioinformatics
, vol.15
, Issue.1
, pp. 298
-
-
Song, L.1
Li, D.2
Zeng, X.3
Wu, Y.4
Guo, L.5
Zou, Q.6
-
50
-
-
84921263022
-
Imdc: An ensemble learning method for imbalanced classification with mirna data
-
PMID: 25729943
-
Wang C, Hu L, Guo M, Liu X, Zou Q. imDC: an ensemble learning method for imbalanced classification with miRNA data. Genetics and Molecular Research. 2015; 14(1):123–133. https://doi.org/10.4238/2015.January.15.15 PMID: 25729943
-
(2015)
Genetics and Molecular Research
, vol.14
, Issue.1
, pp. 123-133
-
-
Wang, C.1
Hu, L.2
Guo, M.3
Liu, X.4
Zou, Q.5
-
51
-
-
33744584654
-
Induction of decision trees
-
Quinlan JR. Induction of decision trees. Machine learning. 1986; 1(1):81–106. https://doi.org/10.1007/BF00116251
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
52
-
-
78049442821
-
Ensemble methods in data mining: Improving accuracy through combining predictions
-
Seni G, Elder JF. Ensemble methods in data mining: improving accuracy through combining predictions. Synthesis Lectures on Data Mining and Knowledge Discovery. 2010; 2(1):1–126. https://doi.org/10.2200/S00240ED1V01Y200912DMK002
-
(2010)
Synthesis Lectures on Data Mining and Knowledge Discovery
, vol.2
, Issue.1
, pp. 1-126
-
-
Seni, G.1
Elder, J.F.2
-
53
-
-
84878459786
-
Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from kuwait—a cohort study
-
PMID: 23676796
-
Farran B, Channanath AM, Behbehani K, Thanaraj TA. Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ open. 2013; 3(5):e002457. https://doi.org/10.1136/bmjopen-2012-002457 PMID: 23676796
-
(2013)
BMJ Open
, vol.3
, Issue.5
, pp. e002457
-
-
Farran, B.1
Channanath, A.M.2
Behbehani, K.3
Thanaraj, T.A.4
|