메뉴 건너뛰기




Volumn 14, Issue 1, 2014, Pages

Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints

Author keywords

[No Author keywords available]

Indexed keywords

BIOASSAY; BRAIN INJURIES; FACTUAL DATABASE; HEAD AND NECK NEOPLASMS; HEAD INJURIES, CLOSED; HUMAN; RECEIVER OPERATING CHARACTERISTIC; STATISTICAL ANALYSIS; STATISTICAL MODEL; SUPPORT VECTOR MACHINE; TREATMENT OUTCOME;

EID: 84923873960     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/1471-2288-14-137     Document Type: Article
Times cited : (451)

References (26)
  • 2
    • 27644463448 scopus 로고    scopus 로고
    • Artificial neural network models for prediction of acute coronary syndromes using clinical data from the time of presentation
    • Harrison RF, Kennedy RL: Artificial neural network models for prediction of acute coronary syndromes using clinical data from the time of presentation. Ann Emerg Med 2005, 46:431-439.
    • (2005) Ann Emerg Med , vol.46 , pp. 431-439
    • Harrison, R.F.1    Kennedy, R.L.2
  • 4
    • 0032533761 scopus 로고    scopus 로고
    • A comparison of statistical learning methods on the Gusto database
    • Ennis M, Hinton G, Naylor D, Revow M, Tibshirani R: A comparison of statistical learning methods on the Gusto database. Stat Med 1998, 17:2501-2508.
    • (1998) Stat Med , vol.17 , pp. 2501-2508
    • Ennis, M.1    Hinton, G.2    Naylor, D.3    Revow, M.4    Tibshirani, R.5
  • 5
    • 84903390250 scopus 로고    scopus 로고
    • Prediction of Survival with Alternative Modeling Techniques Using Pseudo Values
    • Van der Ploeg T, Datema F, de Jong RB, Steyerberg EW: Prediction of Survival with Alternative Modeling Techniques Using Pseudo Values. PLoS One 2014, 9:e100234.
    • (2014) PLoS One , vol.9 , pp. e100234
    • Van Der Ploeg, T.1    Datema, F.2    De Jong, R.B.3    Steyerberg, E.W.4
  • 8
    • 85049139321 scopus 로고    scopus 로고
    • Static Versus Dynamic Sampling for Data Mining
    • John G, Langley P, John H: Static Versus Dynamic Sampling for Data Mining. KDD 1996, :367-370.
    • (1996) KDD , pp. 367-370
    • John, G.1    Langley, P.2    John, H.3
  • 10
    • 68049109494 scopus 로고    scopus 로고
    • Sample size and modeling accuracy of decision tree based data mining tools
    • Morgan J, Daugherty R, Hilchie A, Carey B: Sample size and modeling accuracy of decision tree based data mining tools. Acad Inf Manag Sci J 2003, 6:71-99.
    • (2003) Acad Inf Manag Sci J , vol.6 , pp. 71-99
    • Morgan, J.1    Daugherty, R.2    Hilchie, A.3    Carey, B.4
  • 11
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR: A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 1996, 49:1373-1379.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.R.4    Feinstein, A.R.5
  • 14
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic modelling with logistic regression analysis: A comparison of selection and estimation methods in small data sets
    • Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF: Prognostic modelling with logistic regression analysis: A comparison of selection and estimation methods in small data sets. Stat Med 2000, 19:1059-1079.
    • (2000) Stat Med , vol.19 , pp. 1059-1079
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Harrell, F.E.3    Habbema, J.D.F.4
  • 15
    • 67651009834 scopus 로고    scopus 로고
    • Clinical Prediction Models: A Practical Approach to Development
    • Steyerberg EW: Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. 2009, 19:500.
    • (2009) Validation, and Updating , vol.19 , pp. 500
    • Steyerberg, E.W.1
  • 16
    • 72249113124 scopus 로고    scopus 로고
    • Assessment of claims of improved prediction beyond the Framingham risk score
    • Tzoulaki I, Liberopoulos G, Ioannidis JPA: Assessment of claims of improved prediction beyond the Framingham risk score. JAMA 2009, 302:2345-2352.
    • (2009) JAMA , vol.302 , pp. 2345-2352
    • Tzoulaki, I.1    Liberopoulos, G.2    Ioannidis, J.P.A.3
  • 18
    • 77952787905 scopus 로고    scopus 로고
    • Impact of comorbidity on short-term mortality and overall survival of head and neck cancer patients
    • Datema FR, Ferrier MB, van der Schroeff MP, de Jong RJ B: Impact of comorbidity on short-term mortality and overall survival of head and neck cancer patients. Head Neck 2010, 32:728-736.
    • (2010) Head Neck , vol.32 , pp. 728-736
    • Datema, F.R.1    Ferrier, M.B.2    Van Der Schroeff, M.P.3    De Jong, R.J.B.4
  • 24
    • 84865535937 scopus 로고    scopus 로고
    • Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?
    • Austin PC, Lee DS, Steyerberg EW, Tu JV: Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods? Biometrical J 2012, 54:657-673.
    • (2012) Biometrical J , vol.54 , pp. 657-673
    • Austin, P.C.1    Lee, D.S.2    Steyerberg, E.W.3    Tu, J.V.4
  • 25
    • 50949117355 scopus 로고    scopus 로고
    • Developing a Prognostic Model for Traumatic Brain Injury - A Missed Opportunity?
    • Young NH, Andrews PJD: Developing a Prognostic Model for Traumatic Brain Injury - A Missed Opportunity? PLoS Med 2008, 5:3.
    • (2008) PLoS Med , vol.5 , pp. 3
    • Young, N.H.1    Andrews, P.J.D.2
  • 26
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE, Lee KL, Mark DB: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996, 15: 361-387.
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.