-
1
-
-
84906530736
-
Preventing type 2 diabetes mellitus: A call for personalized intervention
-
Glauber H, Karnieli E. Preventing type 2 diabetes mellitus: a call for personalized intervention. Perm J. 2013;17(3):74-9.
-
(2013)
Perm J
, vol.17
, Issue.3
, pp. 74-79
-
-
Glauber, H.1
Karnieli, E.2
-
2
-
-
84895824183
-
Global estimates of undiagnosed diabetes in adults
-
Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. 2014;103(2):150-60.
-
(2014)
Diabetes Res Clin Pract
, vol.103
, Issue.2
, pp. 150-160
-
-
Beagley, J.1
Guariguata, L.2
Weil, C.3
Motala, A.A.4
-
3
-
-
84895832615
-
Global estimates of diabetes prevalence for 2013 and projections for 2035
-
Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137-49.
-
(2014)
Diabetes Res Clin Pract
, vol.103
, Issue.2
, pp. 137-149
-
-
Guariguata, L.1
Whiting, D.R.2
Hambleton, I.3
-
4
-
-
84978359538
-
-
th ed. Brussels: International Diabetes Federation
-
th ed. Brussels: International Diabetes Federation; 2015. Available from: http://www.diabetesatlas.org. Accessed in 2017 (Feb 20).
-
(2015)
IDF Diabetes Atlas
-
-
-
5
-
-
79960505344
-
Risk assessment tools for identifying individuals at risk of developing type 2 diabetes
-
Buijsse B, Simmons RK, Griffin SJ, Schulze MB. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev. 2011;33:46-62.
-
(2011)
Epidemiol Rev
, vol.33
, pp. 46-62
-
-
Buijsse, B.1
Simmons, R.K.2
Griffin, S.J.3
Schulze, M.B.4
-
6
-
-
84865716372
-
Survey of diabetes risk assessment tools: Concepts, structure and performance
-
Thoopputra T, Newby D, Schneider J, Li SC. Survey of diabetes risk assessment tools: concepts, structure and performance. Diabetes Metab Res Rev. 2012;28(6):485-98.
-
(2012)
Diabetes Metab Res Rev
, vol.28
, Issue.6
, pp. 485-498
-
-
Thoopputra, T.1
Newby, D.2
Schneider, J.3
Li, S.C.4
-
7
-
-
84866607803
-
Prediction models for risk of developing type 2 diabetes: Systematic literature search and independent external validation study
-
Abbasi A, Peelen LM, Corpeleijn E, et al. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ. 2012;345:e5900.
-
(2012)
BMJ
, vol.345
-
-
Abbasi, A.1
Peelen, L.M.2
Corpeleijn, E.3
-
8
-
-
80052567230
-
Developing risk prediction models for type 2 diabetes: A systematic review of methodology and reporting
-
Collins GS, Mallett S, Omar O, Yu LM. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9(1):103.
-
(2011)
BMC Med
, vol.9
, Issue.1
, pp. 103
-
-
Collins, G.S.1
Mallett, S.2
Omar, O.3
Lm, Y.4
-
9
-
-
83755173339
-
Risk models and scores for type 2 diabetes: Systematic review
-
Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ. 2011;343:d7163.
-
(2011)
BMJ
, vol.343
-
-
Noble, D.1
Mathur, R.2
Dent, T.3
Meads, C.4
Greenhalgh, T.5
-
10
-
-
84924584842
-
Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil)
-
Schmidt MI, Duncan BB, Mill JG, et al. Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil). Int J Epidemiol. 2015;44(1):68-75.
-
(2015)
Int J Epidemiol
, vol.44
, Issue.1
, pp. 68-75
-
-
Schmidt, M.I.1
Duncan, B.B.2
Mill, J.G.3
-
11
-
-
84856727839
-
Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): Objectives and design
-
Aquino EM, Barreto SM, Bensenor IM, et al. Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): objectives and design. Am J Epidemiol. 2012;175(4):315-24.
-
(2012)
Am J Epidemiol
, vol.175
, Issue.4
, pp. 315-324
-
-
Aquino, E.M.1
Barreto, S.M.2
Bensenor, I.M.3
-
14
-
-
0031276011
-
Bayesian Network Classifiers
-
Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers. Machine Learning. 1997;29(2-3):131-63. Available from: http://www.cs.technion.ac.il/~dang/journal_papers/friedman1997Bayesian.pdf. Accessed in 2017 (Feb 20).
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
15
-
-
84926662675
-
Nearest neighbor pattern classification
-
Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 1967;13(1):21-7. Available from: http://ieeexplore.ieee.org/document/1053964/. Accessed in 2017 (Feb 20).
-
(1967)
IEEE Transactions on Information Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.1
Hart, P.2
-
16
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning. 2001;45(1):5-32. Available from: http://download.springer.com/static/pdf/639/art%253A10.1023%252FA%253A1010933404324.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1010933404324&token2=exp=1487599835~acl=%2Fstatic%2Fpdf%2F639%2Fart%25253A10.1023%25252FA%25253A1010933404324.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1023%252FA%253A1010933404324*~hmac=ba7626571c8b7a2e4710c893c3bc2 43eb963021f7bbf0e70ef0fe0a27344e28d. Accessed in 2017 (Feb 20).
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
17
-
-
38349031393
-
Machine learning: A review of classification and combining techniques
-
Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artif Intell Rev. 2006;26(3):159-90. Available from: http://www.cs.bham.ac.uk/~pxt/IDA/class_rev.pdf. Accessed in 2017 (Feb 20).
-
(2006)
Artif Intell Rev
, vol.26
, Issue.3
, pp. 159-190
-
-
Kotsiantis, S.B.1
Zaharakis, I.D.2
Pintelas, P.E.3
-
18
-
-
58349109053
-
Ameva: An autonomous discretization algorithm
-
Gonzalez-Abril L, Cuberos FJ, Velasco F, Ortega JA. Ameva: An autonomous discretization algorithm. Expert Systems with Applications. 2009;36(3):5327-32. Available from: http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2009-Gonzalez-Abril-ESWA.pdf. Accessed in 2017 (Feb 20).
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.3
, pp. 5327-5332
-
-
Gonzalez-Abril, L.1
Cuberos, F.J.2
Velasco, F.3
Ortega, J.A.4
-
19
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research. 2003;3:1157-82. Available from: http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf. Accessed in 2017 (Feb 20).
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
20
-
-
84870665909
-
Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: A systematic review
-
Brown N, Critchley J, Bogowicz P, Mayige M, Unwin N. Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: a systematic review. Diabetes Res Clin Pract. 2012;98(3):369-85.
-
(2012)
Diabetes Res Clin Pract
, vol.98
, Issue.3
, pp. 369-385
-
-
Brown, N.1
Critchley, J.2
Bogowicz, P.3
Mayige, M.4
Unwin, N.5
-
21
-
-
37249089420
-
Predictive data mining in clinical medicine: Current issues and guidelines
-
Bellazi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008;77(2):81-97.
-
(2008)
Int J Med Inform
, vol.77
, Issue.2
, pp. 81-97
-
-
Bellazi, R.1
Zupan, B.2
-
22
-
-
37848999073
-
Introduction to data mining for medical informatics
-
Brown DE. Introduction to data mining for medical informatics. Clin Lab Med. 2008;28(1):9-35, v.
-
(2008)
Clin Lab Med
, vol.28
, Issue.1
, pp. 9-35
-
-
Brown, D.E.1
-
23
-
-
37849046438
-
Introduction to the mining of clinical data
-
Harrison JH Jr. Introduction to the mining of clinical data. Clin Lab Med. 2008;28(1):1-7, v.
-
(2008)
Clin Lab Med
, vol.28
, Issue.1
, pp. 1-7
-
-
Harrison, J.H.1
-
24
-
-
19844377332
-
Data mining applications in healthcare
-
Koh HC, Tan G. Data mining applications in healthcare. J Healthc Inf Manag. 2005;19(2):64-72.
-
(2005)
J Healthc Inf Manag
, vol.19
, Issue.2
, pp. 64-72
-
-
Koh, H.C.1
Tan, G.2
-
25
-
-
0032895111
-
Selected techniques for data mining in medicine
-
Lavrac N. Selected techniques for data mining in medicine. Artif Intell Med. 1999;16(1):3-23.
-
(1999)
Artif Intell Med
, vol.16
, Issue.1
, pp. 3-23
-
-
Lavrac, N.1
-
26
-
-
4143096884
-
Application of data mining techniques to healthcare data
-
Obenshain MK. Application of data mining techniques to healthcare data. Infect Control Hosp Epidemiol. 2004;25(8):690-5.
-
(2004)
Infect Control Hosp Epidemiol
, vol.25
, Issue.8
, pp. 690-695
-
-
Obenshain, M.K.1
-
27
-
-
84873046605
-
Data mining in healthcare and biomedicine: A survey of the literature
-
Yoo I, Alafaireet P, Marinov M, et al. Data mining in healthcare and biomedicine: a survey of the literature. J Med Syst. 2012;36(4):2431-48.
-
(2012)
J Med Syst
, vol.36
, Issue.4
, pp. 2431-2448
-
-
Yoo, I.1
Alafaireet, P.2
Marinov, M.3
-
28
-
-
84902551327
-
Risk assessment tools for detecting those with pre-diabetes: A systematic review
-
Barber SR, Davies MJ, Khunti K, Gray LJ. Risk assessment tools for detecting those with pre-diabetes: a systematic review. Diabetes Res Clin Pract. 2014;105(1):1-13.
-
(2014)
Diabetes Res Clin Pract
, vol.105
, Issue.1
, pp. 1-13
-
-
Barber, S.R.1
Davies, M.J.2
Khunti, K.3
Gray, L.J.4
-
29
-
-
80055088256
-
Computational intelligence in early diabetes diagnosis: A review
-
Shankaracharya, Odedra D, Samanta S, Vidyarthi AS. Computational intelligence in early diabetes diagnosis: a review. Rev Diabet Stud. 2010;7(4):252-62.
-
(2010)
Rev Diabet Stud
, vol.7
, Issue.4
, pp. 252-262
-
-
Shankaracharya, O.D.1
Samanta, S.2
Vidyarthi, A.S.3
-
30
-
-
84924355452
-
Screening for prediabetes using machine learning models
-
Choi SB, Kim WJ, Yoo TK, et al. Screening for prediabetes using machine learning models. Comput Math Methods Med. 2014;2014:618976.
-
(2014)
Comput Math Methods Med
, vol.2014
, Issue.6
, pp. 18976
-
-
Choi, S.B.1
Kim, W.J.2
Yoo, T.K.3
-
31
-
-
84864385461
-
A simple screening score for diabetes for the Korean population: Development, validation, and comparison with other scores
-
Lee YH, Bang H, Kim HC, et al. A simple screening score for diabetes for the Korean population: development, validation, and comparison with other scores. Diabetes Care. 2012;35(8):1723-30.
-
(2012)
Diabetes Care
, vol.35
, Issue.8
, pp. 1723-1730
-
-
Lee, Y.H.1
Bang, H.2
Kim, H.C.3
-
32
-
-
84876720315
-
Evaluating the risk of type 2 diabetes mellitus using artificial neural network: An effective classification approach
-
Wang C, Li L, Wang L, et al. Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res Clin Pract. 2013;100(1):111-8.
-
(2013)
Diabetes Res Clin Pract
, vol.100
, Issue.1
, pp. 111-118
-
-
Wang, C.1
Li, L.2
Wang, L.3
-
33
-
-
84881299145
-
Comparison of artificial neural network, logistic regression and discriminant analysis efficiency in determining risk factors of type 2 diabetes
-
Mansour R, Eghbal Z, Amirhossein H. Comparison of artificial neural network, logistic regression and discriminant analysis efficiency in determining risk factors of type 2 diabetes. World Applied Sciences Journal. 2013;23(11):1522-9. Available from: https://www.idosi.org/wasj/wasj23(11)13/14.pdf. Accessed in 2017 (Feb 20).
-
(2013)
World Applied Sciences Journal
, vol.23
, Issue.11
, pp. 1522-1529
-
-
Mansour, R.1
Eghbal, Z.2
Amirhossein, H.3
-
34
-
-
84896485679
-
Prediction of fasting plasma glucose status using anthropometric measures for diagnosing type 2 diabetes
-
Lee BJ, Ku B, Nam J, Pham DD, Kim JY. Prediction of fasting plasma glucose status using anthropometric measures for diagnosing type 2 diabetes. IEEE J Biomed Heal Inform. 2014;18(2):555-61.
-
(2014)
IEEE J Biomed Heal Inform
, vol.18
, Issue.2
, pp. 555-561
-
-
Lee, B.J.1
Ku, B.2
Nam, J.3
Pham, D.D.4
Kim, J.Y.5
-
35
-
-
84921671055
-
Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study
-
Ramezankhani A, Pournik O, Shahrabi J, et al. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study. Diabetes Res Clin Pract. 2014;105(3):391-8.
-
(2014)
Diabetes Res Clin Pract
, vol.105
, Issue.3
, pp. 391-398
-
-
Ramezankhani, A.1
Pournik, O.2
Shahrabi, J.3
-
36
-
-
84893877824
-
Predicting increased blood pressure using machine learning
-
Golino HF, Amaral LS, Duarte SF, et al. Predicting increased blood pressure using machine learning. J Obes. 2014;2014:637635.
-
(2014)
J Obes
, vol.2014
-
-
Golino, H.F.1
Amaral, L.S.2
Duarte, S.F.3
|