메뉴 건너뛰기




Volumn 135, Issue 3, 2017, Pages 234-246

Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes – ELSA-Brasil: Accuracy study;Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada – ELSA-Brasil: Estudo de acurácia

Author keywords

Data mining; Decision support techniques; Diabetes mellitus, type 2; Models, statistical; Supervised machine learning

Indexed keywords

GLUCOSE; HEMOGLOBIN A1C;

EID: 85026398611     PISSN: 15163180     EISSN: None     Source Type: Journal    
DOI: 10.1590/1516-3180.2016.0309010217     Document Type: Article
Times cited : (57)

References (36)
  • 1
    • 84906530736 scopus 로고    scopus 로고
    • Preventing type 2 diabetes mellitus: A call for personalized intervention
    • Glauber H, Karnieli E. Preventing type 2 diabetes mellitus: a call for personalized intervention. Perm J. 2013;17(3):74-9.
    • (2013) Perm J , vol.17 , Issue.3 , pp. 74-79
    • Glauber, H.1    Karnieli, E.2
  • 3
    • 84895832615 scopus 로고    scopus 로고
    • Global estimates of diabetes prevalence for 2013 and projections for 2035
    • Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137-49.
    • (2014) Diabetes Res Clin Pract , vol.103 , Issue.2 , pp. 137-149
    • Guariguata, L.1    Whiting, D.R.2    Hambleton, I.3
  • 4
    • 84978359538 scopus 로고    scopus 로고
    • th ed. Brussels: International Diabetes Federation
    • th ed. Brussels: International Diabetes Federation; 2015. Available from: http://www.diabetesatlas.org. Accessed in 2017 (Feb 20).
    • (2015) IDF Diabetes Atlas
  • 5
    • 79960505344 scopus 로고    scopus 로고
    • Risk assessment tools for identifying individuals at risk of developing type 2 diabetes
    • Buijsse B, Simmons RK, Griffin SJ, Schulze MB. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev. 2011;33:46-62.
    • (2011) Epidemiol Rev , vol.33 , pp. 46-62
    • Buijsse, B.1    Simmons, R.K.2    Griffin, S.J.3    Schulze, M.B.4
  • 6
    • 84865716372 scopus 로고    scopus 로고
    • Survey of diabetes risk assessment tools: Concepts, structure and performance
    • Thoopputra T, Newby D, Schneider J, Li SC. Survey of diabetes risk assessment tools: concepts, structure and performance. Diabetes Metab Res Rev. 2012;28(6):485-98.
    • (2012) Diabetes Metab Res Rev , vol.28 , Issue.6 , pp. 485-498
    • Thoopputra, T.1    Newby, D.2    Schneider, J.3    Li, S.C.4
  • 7
    • 84866607803 scopus 로고    scopus 로고
    • Prediction models for risk of developing type 2 diabetes: Systematic literature search and independent external validation study
    • Abbasi A, Peelen LM, Corpeleijn E, et al. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ. 2012;345:e5900.
    • (2012) BMJ , vol.345
    • Abbasi, A.1    Peelen, L.M.2    Corpeleijn, E.3
  • 8
    • 80052567230 scopus 로고    scopus 로고
    • Developing risk prediction models for type 2 diabetes: A systematic review of methodology and reporting
    • Collins GS, Mallett S, Omar O, Yu LM. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9(1):103.
    • (2011) BMC Med , vol.9 , Issue.1 , pp. 103
    • Collins, G.S.1    Mallett, S.2    Omar, O.3    Lm, Y.4
  • 9
    • 83755173339 scopus 로고    scopus 로고
    • Risk models and scores for type 2 diabetes: Systematic review
    • Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ. 2011;343:d7163.
    • (2011) BMJ , vol.343
    • Noble, D.1    Mathur, R.2    Dent, T.3    Meads, C.4    Greenhalgh, T.5
  • 10
    • 84924584842 scopus 로고    scopus 로고
    • Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil)
    • Schmidt MI, Duncan BB, Mill JG, et al. Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil). Int J Epidemiol. 2015;44(1):68-75.
    • (2015) Int J Epidemiol , vol.44 , Issue.1 , pp. 68-75
    • Schmidt, M.I.1    Duncan, B.B.2    Mill, J.G.3
  • 11
    • 84856727839 scopus 로고    scopus 로고
    • Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): Objectives and design
    • Aquino EM, Barreto SM, Bensenor IM, et al. Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): objectives and design. Am J Epidemiol. 2012;175(4):315-24.
    • (2012) Am J Epidemiol , vol.175 , Issue.4 , pp. 315-324
    • Aquino, E.M.1    Barreto, S.M.2    Bensenor, I.M.3
  • 14
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian Network Classifiers
    • Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers. Machine Learning. 1997;29(2-3):131-63. Available from: http://www.cs.technion.ac.il/~dang/journal_papers/friedman1997Bayesian.pdf. Accessed in 2017 (Feb 20).
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 15
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 1967;13(1):21-7. Available from: http://ieeexplore.ieee.org/document/1053964/. Accessed in 2017 (Feb 20).
    • (1967) IEEE Transactions on Information Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 16
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning. 2001;45(1):5-32. Available from: http://download.springer.com/static/pdf/639/art%253A10.1023%252FA%253A1010933404324.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1010933404324&token2=exp=1487599835~acl=%2Fstatic%2Fpdf%2F639%2Fart%25253A10.1023%25252FA%25253A1010933404324.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1023%252FA%253A1010933404324*~hmac=ba7626571c8b7a2e4710c893c3bc2 43eb963021f7bbf0e70ef0fe0a27344e28d. Accessed in 2017 (Feb 20).
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 17
    • 38349031393 scopus 로고    scopus 로고
    • Machine learning: A review of classification and combining techniques
    • Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artif Intell Rev. 2006;26(3):159-90. Available from: http://www.cs.bham.ac.uk/~pxt/IDA/class_rev.pdf. Accessed in 2017 (Feb 20).
    • (2006) Artif Intell Rev , vol.26 , Issue.3 , pp. 159-190
    • Kotsiantis, S.B.1    Zaharakis, I.D.2    Pintelas, P.E.3
  • 18
    • 58349109053 scopus 로고    scopus 로고
    • Ameva: An autonomous discretization algorithm
    • Gonzalez-Abril L, Cuberos FJ, Velasco F, Ortega JA. Ameva: An autonomous discretization algorithm. Expert Systems with Applications. 2009;36(3):5327-32. Available from: http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2009-Gonzalez-Abril-ESWA.pdf. Accessed in 2017 (Feb 20).
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5327-5332
    • Gonzalez-Abril, L.1    Cuberos, F.J.2    Velasco, F.3    Ortega, J.A.4
  • 19
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research. 2003;3:1157-82. Available from: http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf. Accessed in 2017 (Feb 20).
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 20
    • 84870665909 scopus 로고    scopus 로고
    • Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: A systematic review
    • Brown N, Critchley J, Bogowicz P, Mayige M, Unwin N. Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: a systematic review. Diabetes Res Clin Pract. 2012;98(3):369-85.
    • (2012) Diabetes Res Clin Pract , vol.98 , Issue.3 , pp. 369-385
    • Brown, N.1    Critchley, J.2    Bogowicz, P.3    Mayige, M.4    Unwin, N.5
  • 21
    • 37249089420 scopus 로고    scopus 로고
    • Predictive data mining in clinical medicine: Current issues and guidelines
    • Bellazi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008;77(2):81-97.
    • (2008) Int J Med Inform , vol.77 , Issue.2 , pp. 81-97
    • Bellazi, R.1    Zupan, B.2
  • 22
    • 37848999073 scopus 로고    scopus 로고
    • Introduction to data mining for medical informatics
    • Brown DE. Introduction to data mining for medical informatics. Clin Lab Med. 2008;28(1):9-35, v.
    • (2008) Clin Lab Med , vol.28 , Issue.1 , pp. 9-35
    • Brown, D.E.1
  • 23
    • 37849046438 scopus 로고    scopus 로고
    • Introduction to the mining of clinical data
    • Harrison JH Jr. Introduction to the mining of clinical data. Clin Lab Med. 2008;28(1):1-7, v.
    • (2008) Clin Lab Med , vol.28 , Issue.1 , pp. 1-7
    • Harrison, J.H.1
  • 24
    • 19844377332 scopus 로고    scopus 로고
    • Data mining applications in healthcare
    • Koh HC, Tan G. Data mining applications in healthcare. J Healthc Inf Manag. 2005;19(2):64-72.
    • (2005) J Healthc Inf Manag , vol.19 , Issue.2 , pp. 64-72
    • Koh, H.C.1    Tan, G.2
  • 25
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • Lavrac N. Selected techniques for data mining in medicine. Artif Intell Med. 1999;16(1):3-23.
    • (1999) Artif Intell Med , vol.16 , Issue.1 , pp. 3-23
    • Lavrac, N.1
  • 26
    • 4143096884 scopus 로고    scopus 로고
    • Application of data mining techniques to healthcare data
    • Obenshain MK. Application of data mining techniques to healthcare data. Infect Control Hosp Epidemiol. 2004;25(8):690-5.
    • (2004) Infect Control Hosp Epidemiol , vol.25 , Issue.8 , pp. 690-695
    • Obenshain, M.K.1
  • 27
    • 84873046605 scopus 로고    scopus 로고
    • Data mining in healthcare and biomedicine: A survey of the literature
    • Yoo I, Alafaireet P, Marinov M, et al. Data mining in healthcare and biomedicine: a survey of the literature. J Med Syst. 2012;36(4):2431-48.
    • (2012) J Med Syst , vol.36 , Issue.4 , pp. 2431-2448
    • Yoo, I.1    Alafaireet, P.2    Marinov, M.3
  • 28
    • 84902551327 scopus 로고    scopus 로고
    • Risk assessment tools for detecting those with pre-diabetes: A systematic review
    • Barber SR, Davies MJ, Khunti K, Gray LJ. Risk assessment tools for detecting those with pre-diabetes: a systematic review. Diabetes Res Clin Pract. 2014;105(1):1-13.
    • (2014) Diabetes Res Clin Pract , vol.105 , Issue.1 , pp. 1-13
    • Barber, S.R.1    Davies, M.J.2    Khunti, K.3    Gray, L.J.4
  • 29
    • 80055088256 scopus 로고    scopus 로고
    • Computational intelligence in early diabetes diagnosis: A review
    • Shankaracharya, Odedra D, Samanta S, Vidyarthi AS. Computational intelligence in early diabetes diagnosis: a review. Rev Diabet Stud. 2010;7(4):252-62.
    • (2010) Rev Diabet Stud , vol.7 , Issue.4 , pp. 252-262
    • Shankaracharya, O.D.1    Samanta, S.2    Vidyarthi, A.S.3
  • 30
    • 84924355452 scopus 로고    scopus 로고
    • Screening for prediabetes using machine learning models
    • Choi SB, Kim WJ, Yoo TK, et al. Screening for prediabetes using machine learning models. Comput Math Methods Med. 2014;2014:618976.
    • (2014) Comput Math Methods Med , vol.2014 , Issue.6 , pp. 18976
    • Choi, S.B.1    Kim, W.J.2    Yoo, T.K.3
  • 31
    • 84864385461 scopus 로고    scopus 로고
    • A simple screening score for diabetes for the Korean population: Development, validation, and comparison with other scores
    • Lee YH, Bang H, Kim HC, et al. A simple screening score for diabetes for the Korean population: development, validation, and comparison with other scores. Diabetes Care. 2012;35(8):1723-30.
    • (2012) Diabetes Care , vol.35 , Issue.8 , pp. 1723-1730
    • Lee, Y.H.1    Bang, H.2    Kim, H.C.3
  • 32
    • 84876720315 scopus 로고    scopus 로고
    • Evaluating the risk of type 2 diabetes mellitus using artificial neural network: An effective classification approach
    • Wang C, Li L, Wang L, et al. Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res Clin Pract. 2013;100(1):111-8.
    • (2013) Diabetes Res Clin Pract , vol.100 , Issue.1 , pp. 111-118
    • Wang, C.1    Li, L.2    Wang, L.3
  • 33
    • 84881299145 scopus 로고    scopus 로고
    • Comparison of artificial neural network, logistic regression and discriminant analysis efficiency in determining risk factors of type 2 diabetes
    • Mansour R, Eghbal Z, Amirhossein H. Comparison of artificial neural network, logistic regression and discriminant analysis efficiency in determining risk factors of type 2 diabetes. World Applied Sciences Journal. 2013;23(11):1522-9. Available from: https://www.idosi.org/wasj/wasj23(11)13/14.pdf. Accessed in 2017 (Feb 20).
    • (2013) World Applied Sciences Journal , vol.23 , Issue.11 , pp. 1522-1529
    • Mansour, R.1    Eghbal, Z.2    Amirhossein, H.3
  • 34
    • 84896485679 scopus 로고    scopus 로고
    • Prediction of fasting plasma glucose status using anthropometric measures for diagnosing type 2 diabetes
    • Lee BJ, Ku B, Nam J, Pham DD, Kim JY. Prediction of fasting plasma glucose status using anthropometric measures for diagnosing type 2 diabetes. IEEE J Biomed Heal Inform. 2014;18(2):555-61.
    • (2014) IEEE J Biomed Heal Inform , vol.18 , Issue.2 , pp. 555-561
    • Lee, B.J.1    Ku, B.2    Nam, J.3    Pham, D.D.4    Kim, J.Y.5
  • 35
    • 84921671055 scopus 로고    scopus 로고
    • Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study
    • Ramezankhani A, Pournik O, Shahrabi J, et al. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study. Diabetes Res Clin Pract. 2014;105(3):391-8.
    • (2014) Diabetes Res Clin Pract , vol.105 , Issue.3 , pp. 391-398
    • Ramezankhani, A.1    Pournik, O.2    Shahrabi, J.3
  • 36
    • 84893877824 scopus 로고    scopus 로고
    • Predicting increased blood pressure using machine learning
    • Golino HF, Amaral LS, Duarte SF, et al. Predicting increased blood pressure using machine learning. J Obes. 2014;2014:637635.
    • (2014) J Obes , vol.2014
    • Golino, H.F.1    Amaral, L.S.2    Duarte, S.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.