메뉴 건너뛰기




Volumn 2, Issue 2, 2017, Pages 204-209

Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches

Author keywords

[No Author keywords available]

Indexed keywords

30 DAY ALL CAUSE READMISSION; ALGORITHM; ARTICLE; BAYES THEOREM; CALIBRATION; CONTROLLED STUDY; CONVENTIONAL STATISTICS BASED METHOD; ELECTRONIC HEALTH RECORD; GRADIENT BOOSTED MODEL; HEART FAILURE; HOSPITAL DISCHARGE; HOSPITAL READMISSION; HUMAN; INTERMETHOD COMPARISON; LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR MODEL; LOGISTIC REGRESSION ANALYSIS; LOGISTIC REGRESSION MODEL; MACHINE LEARNING; MAJOR CLINICAL STUDY; MEDICARE; PRACTICE GUIDELINE; PREDICTION; PREDICTIVE VALUE; PRIORITY JOURNAL; RANDOM FOREST; STATISTICAL ANALYSIS; STATISTICAL MODEL; TREE AUGMENTED NAIVE BAYESIAN NETWORK MODEL; VALIDATION PROCESS; CLINICAL TRIAL; COMPARATIVE STUDY; FOLLOW UP; MULTICENTER STUDY; PROGNOSIS; REGISTER; STATISTICS AND NUMERICAL DATA; UNITED STATES;

EID: 85017203403     PISSN: 23806583     EISSN: 23806591     Source Type: Journal    
DOI: 10.1001/jamacardio.2016.3956     Document Type: Article
Times cited : (272)

References (16)
  • 1
    • 84959547925 scopus 로고    scopus 로고
    • The prevention of hospital readmissions in heart failure
    • Ziaeian B, Fonarow GC. The prevention of hospital readmissions in heart failure. Prog Cardiovasc Dis. 2016;58(4):379-385.
    • (2016) Prog Cardiovasc Dis , vol.58 , Issue.4 , pp. 379-385
    • Ziaeian, B.1    Fonarow, G.C.2
  • 2
    • 84873383996 scopus 로고    scopus 로고
    • National survey of hospital strategies to reduce heart failure readmissions: Findings from the Get With the Guidelines-Heart Failure registry
    • Kociol RD, Peterson ED, Hammill BG, et al. National survey of hospital strategies to reduce heart failure readmissions: findings from the Get With the Guidelines-Heart Failure registry. Circ Heart Fail. 2012;5(6):680-687.
    • (2012) Circ Heart Fail , vol.5 , Issue.6 , pp. 680-687
    • Kociol, R.D.1    Peterson, E.D.2    Hammill, B.G.3
  • 3
    • 84885845957 scopus 로고    scopus 로고
    • 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines
    • American College of Cardiology Foundation/
    • Yancy CW, Jessup M, Bozkurt B, et al; WRITING COMMITTEE MEMBERS; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16): e240-e327.
    • (2013) Circulation , vol.128 , Issue.16 , pp. e240-e327
    • Yancy, C.W.1    Jessup, M.2    Bozkurt, B.3
  • 4
    • 0033133619 scopus 로고    scopus 로고
    • Prediction of hospital readmission for heart failure: Development of a simple risk score based on administrative data
    • Philbin EF, DiSalvo TG. Prediction of hospital readmission for heart failure: development of a simple risk score based on administrative data. J Am Coll Cardiol. 1999;33(6):1560-1566.
    • (1999) J Am Coll Cardiol , vol.33 , Issue.6 , pp. 1560-1566
    • Philbin, E.F.1    DiSalvo, T.G.2
  • 7
    • 78049334037 scopus 로고    scopus 로고
    • An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data
    • Amarasingham R, Moore BJ, Tabak YP, et al. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care. 2010;48(11):981-988.
    • (2010) Med Care , vol.48 , Issue.11 , pp. 981-988
    • Amarasingham, R.1    Moore, B.J.2    Tabak, Y.P.3
  • 8
    • 79952783450 scopus 로고    scopus 로고
    • Incremental value of clinical data beyond claims data in predicting 30-day outcomes after heart failure hospitalization
    • Hammill BG, Curtis LH, Fonarow GC, et al. Incremental value of clinical data beyond claims data in predicting 30-day outcomes after heart failure hospitalization. Circ Cardiovasc Qual Outcomes. 2011;4(1):60-67.
    • (2011) Circ Cardiovasc Qual Outcomes , vol.4 , Issue.1 , pp. 60-67
    • Hammill, B.G.1    Curtis, L.H.2    Fonarow, G.C.3
  • 9
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission: A systematic review
    • Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):1688-1698.
    • (2011) JAMA , vol.306 , Issue.15 , pp. 1688-1698
    • Kansagara, D.1    Englander, H.2    Salanitro, A.3
  • 10
    • 84878645318 scopus 로고    scopus 로고
    • Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients
    • Eapen ZJ, Liang L, Fonarow GC, et al. Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients. JACC Heart Fail. 2013;1(3):245-251.
    • (2013) JACC Heart Fail , vol.1 , Issue.3 , pp. 245-251
    • Eapen, Z.J.1    Liang, L.2    Fonarow, G.C.3
  • 11
    • 85031401062 scopus 로고    scopus 로고
    • New opportunities, new challenges: The changing nature of biomedical science
    • National Research Council (US) and Institute of Medicine. (US) Committee on the Organizational Structure of the National Institutes of Health, eds. Washington, DC: National Academies Press
    • National Research Council (US) and Institute of Medicine. New opportunities, new challenges: the changing nature of biomedical science. In: (US) Committee on the Organizational Structure of the National Institutes of Health, eds. Enhancing the Vitality of the National Institutes of Health: Organizational Change to Meet New Challenges. Washington, DC: National Academies Press; 2003.
    • (2003) Enhancing The Vitality of The National Institutes of Health: Organizational Change to Meet New Challenges
  • 13
    • 54049122494 scopus 로고    scopus 로고
    • An administrative claims measure suitable for profiling hospital performance on the basis of 30-day all-cause readmission rates among patients with heart failure
    • Keenan PS, Normand SL, Lin Z, et al. An administrative claims measure suitable for profiling hospital performance on the basis of 30-day all-cause readmission rates among patients with heart failure. Circ Cardiovasc Qual Outcomes. 2008;1(1):29-37.
    • (2008) Circ Cardiovasc Qual Outcomes , vol.1 , Issue.1 , pp. 29-37
    • Keenan, P.S.1    Normand, S.L.2    Lin, Z.3
  • 14
    • 84984965285 scopus 로고    scopus 로고
    • Published Accessed February 22, 2016
    • Centers For Medicare and Medicaid Services. Readmissions reduction program (hrrp). http://www.cms.gov/medicare/medicare-fee-for -service-payment/acuteinpatientpps/readmissions -reduction-program.html. Published 2016. Accessed February 22, 2016.
    • (2016) Readmissions Reduction Program (hrrp)
  • 15
    • 84872764931 scopus 로고    scopus 로고
    • Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia
    • Dharmarajan K, Hsieh AF, Lin Z, et al. Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309(4): 355-363.
    • (2013) JAMA , vol.309 , Issue.4 , pp. 355-363
    • Dharmarajan, K.1    Hsieh, A.F.2    Lin, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.