-
1
-
-
84959547925
-
The prevention of hospital readmissions in heart failure
-
Ziaeian B, Fonarow GC. The prevention of hospital readmissions in heart failure. Prog Cardiovasc Dis. 2016;58(4):379-385.
-
(2016)
Prog Cardiovasc Dis
, vol.58
, Issue.4
, pp. 379-385
-
-
Ziaeian, B.1
Fonarow, G.C.2
-
2
-
-
84873383996
-
National survey of hospital strategies to reduce heart failure readmissions: Findings from the Get With the Guidelines-Heart Failure registry
-
Kociol RD, Peterson ED, Hammill BG, et al. National survey of hospital strategies to reduce heart failure readmissions: findings from the Get With the Guidelines-Heart Failure registry. Circ Heart Fail. 2012;5(6):680-687.
-
(2012)
Circ Heart Fail
, vol.5
, Issue.6
, pp. 680-687
-
-
Kociol, R.D.1
Peterson, E.D.2
Hammill, B.G.3
-
3
-
-
84885845957
-
2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines
-
American College of Cardiology Foundation/
-
Yancy CW, Jessup M, Bozkurt B, et al; WRITING COMMITTEE MEMBERS; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16): e240-e327.
-
(2013)
Circulation
, vol.128
, Issue.16
, pp. e240-e327
-
-
Yancy, C.W.1
Jessup, M.2
Bozkurt, B.3
-
4
-
-
0033133619
-
Prediction of hospital readmission for heart failure: Development of a simple risk score based on administrative data
-
Philbin EF, DiSalvo TG. Prediction of hospital readmission for heart failure: development of a simple risk score based on administrative data. J Am Coll Cardiol. 1999;33(6):1560-1566.
-
(1999)
J Am Coll Cardiol
, vol.33
, Issue.6
, pp. 1560-1566
-
-
Philbin, E.F.1
DiSalvo, T.G.2
-
5
-
-
0034573227
-
Risk stratification in heart failure using artificial neural networks
-
Atienza F, Martinez-Alzamora N, De Velasco JA, Dreiseitl S, Ohno-Machado L. Risk stratification in heart failure using artificial neural networks. Proc AMIA Symp. 2000;32-36.
-
(2000)
Proc AMIA Symp
, pp. 32-36
-
-
Atienza, F.1
Martinez-Alzamora, N.2
De Velasco, J.A.3
Dreiseitl, S.4
Ohno-Machado, L.5
-
6
-
-
0033971364
-
Predictors of readmission among elderly survivors of admission with heart failure
-
Krumholz HM, Chen Y-T, Wang Y, Vaccarino V, Radford MJ, Horwitz RI. Predictors of readmission among elderly survivors of admission with heart failure. Am Heart J. 2000;139(1, pt 1):72-77.
-
(2000)
Am Heart J.
, vol.139
, Issue.1
, pp. 72-77
-
-
Krumholz, H.M.1
Chen, Y.-T.2
Wang, Y.3
Vaccarino, V.4
Radford, M.J.5
Horwitz, R.I.6
-
7
-
-
78049334037
-
An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data
-
Amarasingham R, Moore BJ, Tabak YP, et al. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care. 2010;48(11):981-988.
-
(2010)
Med Care
, vol.48
, Issue.11
, pp. 981-988
-
-
Amarasingham, R.1
Moore, B.J.2
Tabak, Y.P.3
-
8
-
-
79952783450
-
Incremental value of clinical data beyond claims data in predicting 30-day outcomes after heart failure hospitalization
-
Hammill BG, Curtis LH, Fonarow GC, et al. Incremental value of clinical data beyond claims data in predicting 30-day outcomes after heart failure hospitalization. Circ Cardiovasc Qual Outcomes. 2011;4(1):60-67.
-
(2011)
Circ Cardiovasc Qual Outcomes
, vol.4
, Issue.1
, pp. 60-67
-
-
Hammill, B.G.1
Curtis, L.H.2
Fonarow, G.C.3
-
9
-
-
80054764509
-
Risk prediction models for hospital readmission: A systematic review
-
Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):1688-1698.
-
(2011)
JAMA
, vol.306
, Issue.15
, pp. 1688-1698
-
-
Kansagara, D.1
Englander, H.2
Salanitro, A.3
-
10
-
-
84878645318
-
Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients
-
Eapen ZJ, Liang L, Fonarow GC, et al. Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients. JACC Heart Fail. 2013;1(3):245-251.
-
(2013)
JACC Heart Fail
, vol.1
, Issue.3
, pp. 245-251
-
-
Eapen, Z.J.1
Liang, L.2
Fonarow, G.C.3
-
11
-
-
85031401062
-
New opportunities, new challenges: The changing nature of biomedical science
-
National Research Council (US) and Institute of Medicine. (US) Committee on the Organizational Structure of the National Institutes of Health, eds. Washington, DC: National Academies Press
-
National Research Council (US) and Institute of Medicine. New opportunities, new challenges: the changing nature of biomedical science. In: (US) Committee on the Organizational Structure of the National Institutes of Health, eds. Enhancing the Vitality of the National Institutes of Health: Organizational Change to Meet New Challenges. Washington, DC: National Academies Press; 2003.
-
(2003)
Enhancing The Vitality of The National Institutes of Health: Organizational Change to Meet New Challenges
-
-
-
12
-
-
67049159418
-
Linking inpatient clinical registry data to Medicare claims data using indirect identifiers
-
Hammill BG, Hernandez AF, Peterson ED, Fonarow GC, Schulman KA, Curtis LH. Linking inpatient clinical registry data to Medicare claims data using indirect identifiers. Am Heart J. 2009; 157(6):995-1000.
-
(2009)
Am Heart J
, vol.157
, Issue.6
, pp. 995-1000
-
-
Hammill, B.G.1
Hernandez, A.F.2
Peterson, E.D.3
Fonarow, G.C.4
Schulman, K.A.5
Curtis, L.H.6
-
13
-
-
54049122494
-
An administrative claims measure suitable for profiling hospital performance on the basis of 30-day all-cause readmission rates among patients with heart failure
-
Keenan PS, Normand SL, Lin Z, et al. An administrative claims measure suitable for profiling hospital performance on the basis of 30-day all-cause readmission rates among patients with heart failure. Circ Cardiovasc Qual Outcomes. 2008;1(1):29-37.
-
(2008)
Circ Cardiovasc Qual Outcomes
, vol.1
, Issue.1
, pp. 29-37
-
-
Keenan, P.S.1
Normand, S.L.2
Lin, Z.3
-
14
-
-
84984965285
-
-
Published Accessed February 22, 2016
-
Centers For Medicare and Medicaid Services. Readmissions reduction program (hrrp). http://www.cms.gov/medicare/medicare-fee-for -service-payment/acuteinpatientpps/readmissions -reduction-program.html. Published 2016. Accessed February 22, 2016.
-
(2016)
Readmissions Reduction Program (hrrp)
-
-
-
15
-
-
84872764931
-
Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia
-
Dharmarajan K, Hsieh AF, Lin Z, et al. Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309(4): 355-363.
-
(2013)
JAMA
, vol.309
, Issue.4
, pp. 355-363
-
-
Dharmarajan, K.1
Hsieh, A.F.2
Lin, Z.3
-
16
-
-
84951788538
-
Do non-clinical factors improve prediction of readmission risk? Results from the tele-hf study
-
Krumholz HM, Chaudhry SI, Spertus JA, Mattera JA, Hodshon B, Herrin J. Do non-clinical factors improve prediction of readmission risk? Results from the tele-hf study. JACC Heart Fail. 2016;4(1):12-20.
-
(2016)
JACC Heart Fail
, vol.4
, Issue.1
, pp. 12-20
-
-
Krumholz, H.M.1
Chaudhry, S.I.2
Spertus, J.A.3
Mattera, J.A.4
Hodshon, B.5
Herrin, J.6
|