메뉴 건너뛰기




Volumn 132, Issue 20, 2015, Pages 1920-1930

Machine learning in medicine

Author keywords

artificial intelligence; computers; prognosis; risk factors; statistics

Indexed keywords

ARTICLE; HEART FAILURE WITH PRESERVED EJECTION FRACTION; HUMAN; LEARNING ALGORITHM; MACHINE LEARNING; MEDICAL INFORMATION; PRIORITY JOURNAL; ALGORITHM; MEDICINE; TRENDS;

EID: 84947466043     PISSN: 00097322     EISSN: 15244539     Source Type: Journal    
DOI: 10.1161/CIRCULATIONAHA.115.001593     Document Type: Article
Times cited : (2034)

References (40)
  • 3
    • 0016746520 scopus 로고
    • Precursors of sudden coronary death. Factors related to the incidence of sudden death
    • Kannel WB, Doyle JT, McNamara PM, Quickenton P, Gordon T, Precursors of sudden coronary death. Factors related to the incidence of sudden death. Circulation 1975 51 606 613
    • (1975) Circulation , vol.51 , pp. 606-613
    • Kannel, W.B.1    Doyle, J.T.2    McNamara, P.M.3    Quickenton, P.4    Gordon, T.5
  • 4
    • 76749163232 scopus 로고    scopus 로고
    • Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The Euro Heart Survey on atrial fibrillation
    • Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ, Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest 2010 137 263 272. doi: 10.1378/chest.09-1584
    • (2010) Chest , vol.137 , pp. 263-272
    • Lip, G.Y.1    Nieuwlaat, R.2    Pisters, R.3    Lane, D.A.4    Crijns, H.J.5
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A, An introduction to variable and feature selection. J Mach Learn Res 2003 3 1157 1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik VN, An overview of statistical learning theory. IEEE Trans Neural Netw 1999 10 988 999. doi: 10.1109/72.788640
    • (1999) IEEE Trans Neural Netw , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 11
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T, Hart P, Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967 13 21 27
    • (1967) IEEE Trans Inf Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 12
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman JH, Greedy function approximation: a gradient boosting machine. Ann Statist 2001 29 1189 1232
    • (2001) Ann Statist , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L, Random forests. Mach Learn 2001 45 5 32
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 15
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJ, A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998 2 121 167
    • (1998) Data Min Knowl Discov , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 16
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L, Bagging predictors. Mach Learn 1996 24 123 140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 18
    • 79952837540 scopus 로고    scopus 로고
    • Identifying important risk factors for survival in patient with systolic heart failure using random survival forests
    • Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, Lauer MS, Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. Circ Cardiovasc Qual Outcomes 2011 4 39 45. doi: 10.1161/CIRCOUTCOMES.110.939371
    • (2011) Circ Cardiovasc Qual Outcomes , vol.4 , pp. 39-45
    • Hsich, E.1    Gorodeski, E.Z.2    Blackstone, E.H.3    Ishwaran, H.4    Lauer, M.S.5
  • 20
    • 0034945516 scopus 로고    scopus 로고
    • Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation
    • CHD Risk Prediction Group
    • D'Agostino RB Sr, Grundy S, Sullivan LM, Wilson P, CHD Risk Prediction Group Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA 2001 286 180 187
    • (2001) JAMA , vol.286 , pp. 180-187
    • D'Agostino, R.B.1    Grundy, S.2    Sullivan, L.M.3    Wilson, P.4
  • 22
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R, Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol 1996 58 267 288
    • (1996) J R Stat Soc ser B Stat Methodol , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 84877737214 scopus 로고    scopus 로고
    • Development of a prognostic model for breast cancer survival in an open challenge environment
    • 181ra50
    • Cheng WY, Ou Yang TH, Anastassiou D, Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med 2013 5 181ra50. doi: 10.1126/scitranslmed.3005974
    • (2013) Sci Transl Med , vol.5
    • Cheng, W.Y.1    Ou Yang, T.H.2    Anastassiou, D.3
  • 28
    • 84874763866 scopus 로고    scopus 로고
    • Biomolecular events in cancer revealed by attractor metagenes
    • Cheng WY, Ou Yang TH, Anastassiou D, Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol 2013 9 e1002920. doi: 10.1371/journal.pcbi.1002920
    • (2013) Plos Comput Biol , vol.9 , pp. e1002920
    • Cheng, W.Y.1    Ou Yang, T.H.2    Anastassiou, D.3
  • 29
    • 81855220371 scopus 로고    scopus 로고
    • Heart failure with preserved ejection fraction
    • Udelson JE, Heart failure with preserved ejection fraction. Circulation 2011 124 e540 e543. doi: 10.1161/CIRCULATIONAHA.111.071696
    • (2011) Circulation , vol.124 , pp. e540-e543
    • Udelson, J.E.1
  • 30
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS, Learning the parts of objects by non-negative matrix factorization. Nature 1999 401 788 791. doi: 10.1038/44565
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 31
    • 43049150241 scopus 로고
    • Clustering by means of medoids
    • ISSUE 87, PART 3 Delft, The Netherlands Delft University of Technology, Faculty of Mathematics and Informatics
    • Kaufman L, Rousseeuw P, Clustering by means of medoids. Reports of the Faculty of Mathematics and Informatics 1987 Issue 87, Part 3 Delft, The Netherlands Delft University of Technology, Faculty of Mathematics and Informatics
    • (1987) Reports of the Faculty of Mathematics and Informatics
    • Kaufman, L.1    Rousseeuw, P.2
  • 32
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • Olshausen BA, Field DJ, Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res 1997 37 3311 3325
    • (1997) Vision Res , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 37
    • 84947441894 scopus 로고    scopus 로고
    • Quantitative human phenotyping: The next frontier in medicine
    • discussion 226
    • Ausiello D, Shaw S, Quantitative human phenotyping: the next frontier in medicine. Trans Am Clin Climatol Assoc 2014 125 219 226; discussion 226
    • (2014) Trans Am Clin Climatol Assoc , vol.125 , pp. 219-226
    • Ausiello, D.1    Shaw, S.2
  • 38
    • 84860190466 scopus 로고    scopus 로고
    • A molecular imaging primer: Modalities, imaging agents, and applications
    • James ML, Gambhir SS, A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012 92 897 965. doi: 10.1152/physrev.00049.2010
    • (2012) Physiol Rev , vol.92 , pp. 897-965
    • James, M.L.1    Gambhir, S.S.2
  • 40
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y, Learning deep architectures for AI. FONT Machine Learning 2009 2 1 127
    • (2009) FONT Machine Learning , vol.2 , pp. 1-127
    • Bengio, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.