-
1
-
-
84872921649
-
Earliest evidence for cheese making in the sixth millennium BC in Northern Europe
-
Salque, M., Bogucki, P.I., Pyzel, J., Sobkowiak-Tabaka, I., Grygiel, R., Szmyt, M. et al. (2012) Earliest evidence for cheese making in the sixth millennium BC in Northern Europe. Nature 493, 522–525 https://doi.org/10.1038/nature11698
-
(2012)
Nature
, vol.493
, pp. 522-525
-
-
Salque, M.1
Bogucki, P.I.2
Pyzel, J.3
Sobkowiak-Tabaka, I.4
Grygiel, R.5
Szmyt, M.6
-
2
-
-
1042290278
-
Lactic acid bacteria as functional starter cultures for the food fermentation industry
-
Leroy, F. and De Vuyst, L. (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15, 67–78 https://doi.org/10.1016/j.tifs.2003.09.004
-
(2004)
Trends Food Sci. Technol.
, vol.15
, pp. 67-78
-
-
Leroy, F.1
De Vuyst, L.2
-
3
-
-
0001053002
-
Fermented foods — A world perspective
-
Campbell-Platt, G. (1994) Fermented foods — a world perspective. Food Res. Int. 27, 253–257 https://doi.org/10.1016/0963-9969(94)90093-0
-
(1994)
Food Res. Int.
, vol.27
, pp. 253-257
-
-
Campbell-Platt, G.1
-
4
-
-
80052241978
-
Systems solutions by lactic acid bacteria: From paradigms to practice
-
de Vos, W.M. (2011) Systems solutions by lactic acid bacteria: from paradigms to practice. Microb. Cell Fact. 10(Suppl 1), S2 https://doi.org/10.1186/ 1475-2859-10-S1-S2
-
(2011)
Microb. Cell Fact.
, vol.10
, pp. S2
-
-
De Vos, W.M.1
-
5
-
-
85024478306
-
Recent advances in microbial fermentation for dairy and health
-
Hill, D., Sugrue, I., Arendt, E., Hill, C., Stanton, C. and Ross, R.P. (2017) Recent advances in microbial fermentation for dairy and health. F1000Research 6, 751 https://doi.org/10.12688/f1000research.10896.1
-
(2017)
F1000Research
, vol.6
, pp. 751
-
-
Hill, D.1
Sugrue, I.2
Arendt, E.3
Hill, C.4
Stanton, C.5
Ross, R.P.6
-
6
-
-
0002685481
-
Commercial production of dairy starter cultures
-
(Cogan, T.M. and Accolas, J., eds), VCH Publishers, New York
-
Sandine, W.E. (1996) Commercial production of dairy starter cultures. In Dairy Starter Cultures (Cogan, T.M. and Accolas, J.P., eds), pp. 191–206, VCH Publishers, New York
-
(1996)
Dairy Starter Cultures
, pp. 191-206
-
-
Sandine, W.E.1
-
7
-
-
79954423271
-
The production, application and action of lactic cheese starter cultures
-
(Law, B.A. and Tamime, A.Y., eds), Wiley-Blackwell, Chichester
-
Høier, E., Janzen, T., Rattray, F., Sørensen, K., Børsting, M.W., Brockmann, E. et al. (2010) The production, application and action of lactic cheese starter cultures. In Technology of Cheesemaking (Law, B.A. and Tamime, A.Y., eds), pp. 166–192, Wiley-Blackwell, Chichester
-
(2010)
Technology of Cheesemaking
, pp. 166-192
-
-
Høier, E.1
Janzen, T.2
Rattray, F.3
Sørensen, K.4
Børsting, M.W.5
Brockmann, E.6
-
8
-
-
85046895044
-
Industrial production of starter cultures
-
(Speranza, B., Bevilacqua, A., Corbo, M.R. and Sinigaglia, M., eds), John Wiley & Sons, Ltd, Chichester
-
Taskila, S. (2017) Industrial production of starter cultures. In Starter Cultures in Food Production (Speranza, B., Bevilacqua, A., Corbo, M.R. and Sinigaglia, M., eds), pp. 79–100, John Wiley & Sons, Ltd, Chichester
-
(2017)
Starter Cultures in Food Production
, pp. 79-100
-
-
Taskila, S.1
-
9
-
-
58549108388
-
Reconstruction of biochemical networks in microorganisms
-
Feist, A.M., Herrgard, M.J., Thiele, I., Reed, J.L. and Palsson, B.O. (2009) Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7, 129–143 https://doi.org/10.1038/nrmicro1949
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 129-143
-
-
Feist, A.M.1
Herrgard, M.J.2
Thiele, I.3
Reed, J.L.4
Palsson, B.O.5
-
10
-
-
75149129569
-
A protocol for generating a high-quality genome-scale metabolic reconstruction
-
Thiele, I. and Palsson, B.Ø. (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 https://doi.org/10.1038/nprot.2009.203
-
(2010)
Nat. Protoc.
, vol.5
, pp. 93-121
-
-
Thiele, I.1
Palsson, B.Ø.2
-
11
-
-
77749320898
-
What is flux balance analysis?
-
Orth, J. D., Thiele, I. and Palsson, B. Ø. (2010) What is flux balance analysis? Nat. Biotechnol. 28, 245–248 https://doi.org/10.1038/nbt.1614
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 245-248
-
-
Orth, J.D.1
Thiele, I.2
Palsson, B.Ø.3
-
12
-
-
9544253891
-
Genome-scale models of microbial cells: Evaluating the consequences of constraints
-
Price, N.D., Reed, J.L. and Palsson, B.Ø. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 https://doi.org/10.1038/nrmicro1023
-
(2004)
Nat. Rev. Microbiol.
, vol.2
, pp. 886-897
-
-
Price, N.D.1
Reed, J.L.2
Palsson, B.Ø.3
-
13
-
-
73849090293
-
Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
-
Milne, C.B., Kim, P.-J., Eddy, J.A. and Price, N.D. (2009) Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol. J. 4, 1653–1670 https://doi.org/10.1002/biot.200900234
-
(2009)
Biotechnol. J.
, vol.4
, pp. 1653-1670
-
-
Milne, C.B.1
Kim, P.-J.2
Eddy, J.A.3
Price, N.D.4
-
14
-
-
84858439602
-
Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods
-
Lewis, N.E., Nagarajan, H. and Palsson, B.O. (2012) Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 https://doi.org/10.1038/nrmicro2737
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 291-305
-
-
Lewis, N.E.1
Nagarajan, H.2
Palsson, B.O.3
-
15
-
-
84879002382
-
Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
-
McCloskey, D., Palsson, B.O. and Feist, A.M. (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 9, 661 https://doi.org/10.1038/msb.2013.18
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 661
-
-
McCloskey, D.1
Palsson, B.O.2
Feist, A.M.3
-
16
-
-
85045348745
-
Current state and applications of microbial genome-scale metabolic models
-
Kim, W.J., Kim, H.U. and Lee, S.Y. (2017) Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2, 10–18 https://doi.org/10.1016/j.coisb.2017.03.001
-
(2017)
Curr. Opin. Syst. Biol.
, vol.2
, pp. 10-18
-
-
Kim, W.J.1
Kim, H.U.2
Lee, S.Y.3
-
17
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
O’Brien, E.J., Monk, J.M. and Palsson, B.O. (2015) Using genome-scale models to predict biological capabilities. Cell 161, 971–987 https://doi.org/10.1016/j.cell.2015.05.019
-
(2015)
Cell
, vol.161
, pp. 971-987
-
-
O’Brien, E.J.1
Monk, J.M.2
Palsson, B.O.3
-
18
-
-
85030117495
-
Elucidation of complexity and prediction of interactions in microbial communities
-
Zuniga, C., Zaramela, L. and Zengler, K. (2017) Elucidation of complexity and prediction of interactions in microbial communities. Microb. Biotechnol. 10, 1500–1522 https://doi.org/10.1111/1751-7915.12855
-
(2017)
Microb. Biotechnol.
, vol.10
, pp. 1500-1522
-
-
Zuniga, C.1
Zaramela, L.2
Zengler, K.3
-
19
-
-
84900988344
-
Elucidating the interactions between the human gut microbiota and its host through metabolic modeling
-
Shoaie, S. and Nielsen, J. (2014) Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front. Genet. 5, 86 https://doi.org/10.3389/fgene.2014.00086
-
(2014)
Front. Genet.
, vol.5
, pp. 86
-
-
Shoaie, S.1
Nielsen, J.2
-
21
-
-
31344432121
-
Modelling strategies for the industrial exploitation of lactic acid bacteria
-
Teusink, B. and Smid, E.J. (2006) Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat. Rev. Microbiol. 4, 46–56 https://doi.org/10.1038/nrmicro1319
-
(2006)
Nat. Rev. Microbiol.
, vol.4
, pp. 46-56
-
-
Teusink, B.1
Smid, E.J.2
-
22
-
-
80052251730
-
Systems biology of lactic acid bacteria: A critical review
-
Teusink, B., Bachmann, H. and Molenaar, D. (2011) Systems biology of lactic acid bacteria: a critical review. Microb. Cell Fact. 10(Suppl 1), S11 https://doi.org/10.1186/1475-2859-10-S1-S11
-
(2011)
Microb. Cell Fact.
, vol.10
, pp. S11
-
-
Teusink, B.1
Bachmann, H.2
Molenaar, D.3
-
23
-
-
84874990293
-
Towards metagenome-scale models for industrial applications—the case of lactic acid bacteria
-
Branco dos Santos, F., de Vos, W.M. and Teusink, B. (2013) Towards metagenome-scale models for industrial applications—the case of lactic acid bacteria. Curr. Opin. Biotechnol. 24, 200–206 https://doi.org/10.1016/j.copbio.2012.11.003
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 200-206
-
-
Branco Dos Santos, F.1
De Vos, W.M.2
Teusink, B.3
-
25
-
-
79959687662
-
An integrated approach to characterize genetic interaction networks in yeast metabolism
-
Szappanos, B., Kovacs, K., Szamecz, B., Honti, F., Costanzo, M., Baryshnikova, A. et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat. Genet. 43, 656–662 https://doi.org/10.1038/ng.846
-
(2011)
Nat. Genet.
, vol.43
, pp. 656-662
-
-
Szappanos, B.1
Kovacs, K.2
Szamecz, B.3
Honti, F.4
Costanzo, M.5
Baryshnikova, A.6
-
26
-
-
85042295059
-
Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries
-
Pan, S. and Reed, J.L. (2018) Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries. Curr. Opin. Biotechnol. 51, 103–108 https://doi.org/10.1016/j.copbio.2017.12.012
-
(2018)
Curr. Opin. Biotechnol.
, vol.51
, pp. 103-108
-
-
Pan, S.1
Reed, J.L.2
-
27
-
-
84892788440
-
Constraint-based models predict metabolic and associated cellular functions
-
Bordbar, A., Monk, J.M., King, Z.A. and Palsson, B.O. (2014) Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 https://doi.org/10.1038/nrg3643
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 107-120
-
-
Bordbar, A.1
Monk, J.M.2
King, Z.A.3
Palsson, B.O.4
-
28
-
-
34447523907
-
Systematic evaluation of objective functions forpredicting intracellular fluxes in Escherichia coli
-
Schuetz, R., Kuepfer, L. and Sauer, U. (2007) Systematic evaluation of objective functions forpredicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 https://doi.org/10.1038/msb4100162
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 119
-
-
Schuetz, R.1
Kuepfer, L.2
Sauer, U.3
-
29
-
-
84885376218
-
Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation
-
Flahaut, N.A., Wiersma, A., van de Bunt, B., Martens, D.E., Schaap, P.J., Sijtsma, L. et al. (2013) Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl. Microbiol. Biotechnol. 97, 8729–8739 https://doi.org/10.1007/ s00253-013-5140-2
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 8729-8739
-
-
Flahaut, N.A.1
Wiersma, A.2
Van de Bunt, B.3
Martens, D.E.4
Schaap, P.J.5
Sijtsma, L.6
-
30
-
-
23944440242
-
Modeling Lactococcus lactis using a genome-scale flux model
-
Oliveira, A.P., Nielsen, J. and Förster, J. (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5, 39 https://doi.org/10.1186/1471-2180-5-39
-
(2005)
BMC Microbiol
, vol.5
, pp. 39
-
-
Oliveira, A.P.1
Nielsen, J.2
Förster, J.3
-
31
-
-
33846015888
-
Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model
-
Teusink, B., Wiersma, A., Molenaar, D., Francke, C., de Vos, W.M., Siezen, R.J. et al. (2006) Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J. Biol. Chem. 281, 40041–40048 https://doi.org/10.1074/jbc.M606263200
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 40041-40048
-
-
Teusink, B.1
Wiersma, A.2
Molenaar, D.3
Francke, C.4
De Vos, W.M.5
Siezen, R.J.6
-
32
-
-
66249144433
-
Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria
-
Pastink, M.I., Teusink, B., Hols, P., Visser, S., de Vos, W.M. and Hugenholtz, J. (2009) Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75, 3627–3633 https://doi.org/10.1128/AEM.00138-09
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 3627-3633
-
-
Pastink, M.I.1
Teusink, B.2
Hols, P.3
Visser, S.4
De Vos, W.M.5
Hugenholtz, J.6
-
33
-
-
84909619972
-
Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A
-
Vinay-Lara, E., Hamilton, J.J., Stahl, B., Broadbent, J.R., Reed, J.L. and Steele, J.L. (2014) Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A. PLoS ONE 9, e110785 https://doi.org/10.1371/journal.pone.0110785
-
(2014)
PLoS ONE
, vol.9
, pp. e110785
-
-
Vinay-Lara, E.1
Hamilton, J.J.2
Stahl, B.3
Broadbent, J.R.4
Reed, J.L.5
Steele, J.L.6
-
34
-
-
85016599418
-
Genome-scale reconstruction of the metabolic network in Oenococcus oeni to assess wine malolactic fermentation
-
Mendoza, S., Cañón, P., Contreras, A., Ribbeck, M. and Agosin, E. (2017) Genome-scale reconstruction of the metabolic network in Oenococcus oeni to assess wine malolactic fermentation. Front. Microbiol. 8, 534 https://doi.org/10.3389/fmicb.2017.00534
-
(2017)
Front. Microbiol.
, vol.8
, pp. 534
-
-
Mendoza, S.1
Cañón, P.2
Contreras, A.3
Ribbeck, M.4
Agosin, E.5
-
35
-
-
85046889343
-
Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria
-
Koduru, L., Kim, Y., Bang, J., Lakshmanan, M., Han, N.S. and Lee, D.-Y. (2017) Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria. Sci. Rep. 7, 15721 https://doi.org/10.1038/s41598-017-16026-9
-
(2017)
Sci. Rep.
, vol.7
, pp. 15721
-
-
Koduru, L.1
Kim, Y.2
Bang, J.3
Lakshmanan, M.4
Han, N.S.5
Lee, D.-Y.6
-
36
-
-
77957277248
-
Understanding the physiology of Lactobacillus plantarum at zero growth
-
Goffin, P., van de Bunt, B., Giovane, M., Leveau, J.H., Hoppener-Ogawa, S., Teusink, B. et al. (2010) Understanding the physiology of Lactobacillus plantarum at zero growth. Mol. Syst. Biol. 6, 413 https://doi.org/10.1038/msb.2010.67
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 413
-
-
Goffin, P.1
Van de Bunt, B.2
Giovane, M.3
Leveau, J.H.4
Hoppener-Ogawa, S.5
Teusink, B.6
-
37
-
-
67650904950
-
Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation
-
Teusink, B., Wiersma, A., Jacobs, L., Notebaart, R.A. and Smid, E.J. (2009) Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation. PLoS Comput. Biol. 5, e1000410 https://doi.org/10.1371/journal.pcbi.1000410
-
(2009)
PLoS Comput. Biol.
, vol.5
, pp. e1000410
-
-
Teusink, B.1
Wiersma, A.2
Jacobs, L.3
Notebaart, R.A.4
Smid, E.J.5
-
38
-
-
84872093417
-
Analysis of omics data with genome-scale models of metabolism
-
Hyduke, D.R., Lewis, N.E. and Palsson, B.O. (2013) Analysis of omics data with genome-scale models of metabolism. Mol. Biosyst. 9, 167–174 https://doi.org/10.1039/C2MB25453K
-
(2013)
Mol. Biosyst.
, vol.9
, pp. 167-174
-
-
Hyduke, D.R.1
Lewis, N.E.2
Palsson, B.O.3
-
39
-
-
33644527950
-
The model organism as a system: Integrating ‘omics’ data sets
-
Joyce, A.R. and Palsson, B.O. (2006) The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell Biol. 7, 198–210 https://doi.org/10.1038/nrm1857
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 198-210
-
-
Joyce, A.R.1
Palsson, B.O.2
-
40
-
-
84866487453
-
Integration of expression data in genome-scale metabolic network reconstructions
-
Blazier, A.S. and Papin, J.A. (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front. Physiol. 3, 299 https://doi.org/10.3389/fphys.2012.00299
-
(2012)
Front. Physiol.
, vol.3
, pp. 299
-
-
Blazier, A.S.1
Papin, J.A.2
-
41
-
-
84969752776
-
Characterizing strain variation in engineered E. Coli using a multi-omics-based workflow
-
Brunk, E., George, K.W., Alonso-Gutierrez, J., Thompson, M., Baidoo, E., Wang, G. et al. (2016) Characterizing strain variation in engineered E. coli using a multi-omics-based workflow. Cell Syst. 2, 335–346 https://doi.org/10.1016/j.cels.2016.04.004
-
(2016)
Cell Syst
, vol.2
, pp. 335-346
-
-
Brunk, E.1
George, K.W.2
Alonso-Gutierrez, J.3
Thompson, M.4
Baidoo, E.5
Wang, G.6
-
42
-
-
84930373777
-
Prediction of intracellular metabolic states from extracellular metabolomic data
-
Aurich, M.K., Paglia, G., Rolfsson, O., Hrafnsdottir, S., Magnusdottir, M., Stefaniak, M.M. et al. (2015) Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics 11, 603–619 https://doi.org/10.1007/s11306-014-0721-3
-
(2015)
Metabolomics
, vol.11
, pp. 603-619
-
-
Aurich, M.K.1
Paglia, G.2
Rolfsson, O.3
Hrafnsdottir, S.4
Magnusdottir, M.5
Stefaniak, M.M.6
-
43
-
-
84990177186
-
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
-
Kim, M., Rai, N., Zorraquino, V. and Tagkopoulos, I. (2016) Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nat. Commun. 7, 13090 https://doi.org/10.1038/ncomms13090
-
(2016)
Nat. Commun.
, vol.7
, pp. 13090
-
-
Kim, M.1
Rai, N.2
Zorraquino, V.3
Tagkopoulos, I.4
-
44
-
-
79960558373
-
Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis
-
Santos, F., Spinler, J.K., Saulnier, D.M., Molenaar, D., Teusink, B., de Vos, W.M. et al. (2011) Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microb. Cell Fact. 10, 55 https://doi.org/10.1186/ 1475-2859-10-55
-
(2011)
Microb. Cell Fact.
, vol.10
, pp. 55
-
-
Santos, F.1
Spinler, J.K.2
Saulnier, D.M.3
Molenaar, D.4
Teusink, B.5
De Vos, W.M.6
-
45
-
-
14544268137
-
Uncovering transcriptional regulation of metabolism by using metabolic network topology
-
Patil, K.R. and Nielsen, J. (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl Acad. Sci. U.S.A. 102, 2685–2689 https://doi.org/10.1073/pnas.0406811102
-
(2005)
Proc. Natl Acad. Sci. U.S.A.
, vol.102
, pp. 2685-2689
-
-
Patil, K.R.1
Nielsen, J.2
-
46
-
-
77953128693
-
Use of genome-scale metabolic models for understanding microbial physiology
-
Liu, L., Agren, R., Bordel, S. and Nielsen, J. (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett. 584, 2556–2564 https://doi.org/10.1016/j.febslet.2010.04.052
-
(2010)
FEBS Lett
, vol.584
, pp. 2556-2564
-
-
Liu, L.1
Agren, R.2
Bordel, S.3
Nielsen, J.4
-
47
-
-
85037687527
-
Integration of comparative genomics with genome-scale metabolic modeling to investigate strain-specific phenotypical differences
-
Monk, J. and Bosi, E. (2018) Integration of comparative genomics with genome-scale metabolic modeling to investigate strain-specific phenotypical differences. Methods Mol. Biol. 1716, 151–175 https://doi.org/10.1007/978-1-4939-7528-0_7
-
(2018)
Methods Mol. Biol.
, vol.1716
, pp. 151-175
-
-
Monk, J.1
Bosi, E.2
-
48
-
-
84971661491
-
Analysis of genetic variation and potential applications in genome-scale metabolic modeling
-
Cardoso, J.G., Andersen, M.R., Herrgard, M.J. and Sonnenschein, N. (2015) Analysis of genetic variation and potential applications in genome-scale metabolic modeling. Front. Bioeng. Biotechnol. 3, 13 https://doi.org/10.3389/fbioe.2015.00013
-
(2015)
Front. Bioeng. Biotechnol.
, vol.3
, pp. 13
-
-
Cardoso, J.G.1
Andersen, M.R.2
Herrgard, M.J.3
Sonnenschein, N.4
-
49
-
-
85042164575
-
Genome-scale modeling of yeast: Chronology, applications and critical perspectives
-
Lopes, H. and Rocha, I. (2017) Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res. 17 https://doi.org/10.1093/femsyr/fox050
-
(2017)
FEMS Yeast Res
, vol.17
-
-
Lopes, H.1
Rocha, I.2
-
50
-
-
27744488443
-
Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals
-
Mahadevan, R., Burgard, A.P., Famili, I., Dien, S. and Schilling, C.H. (2005) Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals. Biotechnol. Bioprocess Eng. 10, 408–417 https://doi.org/10.1007/BF02989823
-
(2005)
Biotechnol. Bioprocess Eng.
, vol.10
, pp. 408-417
-
-
Mahadevan, R.1
Burgard, A.P.2
Famili, I.3
Dien, S.4
Schilling, C.H.5
-
51
-
-
84976549436
-
Genome-scale metabolic models as platforms for strain design and biological discovery
-
Mienda, B.S. (2017) Genome-scale metabolic models as platforms for strain design and biological discovery. J. Biomol. Struct. Dyn. 35, 1863–1873 https://doi.org/10.1080/07391102.2016.1197153
-
(2017)
J. Biomol. Struct. Dyn.
, vol.35
, pp. 1863-1873
-
-
Mienda, B.S.1
-
52
-
-
40649112563
-
The lactic acid bacterium as a cell factory for food ingredient production
-
Hugenholtz, J. (2008) The lactic acid bacterium as a cell factory for food ingredient production. Int. Dairy J. 18, 466–475 https://doi.org/10.1016/j.idairyj.2007.11.015
-
(2008)
Int. Dairy J.
, vol.18
, pp. 466-475
-
-
Hugenholtz, J.1
-
53
-
-
84908052283
-
Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: A review
-
Waters, D.M., Mauch, A., Coffey, A., Arendt, E.K. and Zannini, E. (2015) Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: a review. Crit. Rev. Food Sci. Nutr. 55, 503–520 https://doi.org/10.1080/10408398.2012.660251
-
(2015)
Crit. Rev. Food Sci. Nutr.
, vol.55
, pp. 503-520
-
-
Waters, D.M.1
Mauch, A.2
Coffey, A.3
Arendt, E.K.4
Zannini, E.5
-
54
-
-
84976588026
-
Lactic acid bacteria as a cell factory for riboflavin production
-
Thakur, K., Tomar, S.K. and De, S. (2016) Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 9, 441–451 https://doi.org/10.1111/1751-7915.12335
-
(2016)
Microb. Biotechnol.
, vol.9
, pp. 441-451
-
-
Thakur, K.1
Tomar, S.K.2
De, S.3
-
55
-
-
85010917657
-
Lactic acid bacteria as cell factories for the generation of bioactive peptides
-
Brown, L., Pingitore, E.V., Mozzi, F., Saavedra, L., Villegas, J.M. and Hebert, E.M. (2017) Lactic acid bacteria as cell factories for the generation of bioactive peptides. Protein Pept. Lett. 24, 146–155 https://doi.org/10.2174/0929866524666161123111333
-
(2017)
Protein Pept. Lett.
, vol.24
, pp. 146-155
-
-
Brown, L.1
Pingitore, E.V.2
Mozzi, F.3
Saavedra, L.4
Villegas, J.M.5
Hebert, E.M.6
-
56
-
-
79151479542
-
Lactic acid bacteria as live vectors: Heterologous protein production and delivery systems
-
In (Mozzi, F., Raya, R.R. and Vignolo, G.M., eds), Wiley-Blackwell, Chichester
-
Miyoshi, A., Bermúdez-Humarán, L.G., de Azevedo, M.S.P., Langella, P. and Azevedo, V. (2010) Lactic acid bacteria as live vectors: heterologous protein production and delivery systems. In Biotechnology of Lactic Acid Bacteria: Novel Applications (Mozzi, F., Raya, R.R. and Vignolo, G.M., eds), Wiley-Blackwell, Chichester
-
(2010)
Biotechnology of Lactic Acid Bacteria: Novel Applications
-
-
Miyoshi, A.1
Bermúdez-Humarán, L.G.2
De Azevedo, M.S.P.3
Langella, P.4
Azevedo, V.5
-
57
-
-
84920896587
-
Next-generation genome-scale models for metabolic engineering
-
King, Z.A., Lloyd, C.J., Feist, A.M. and Palsson, B.O. (2015) Next-generation genome-scale models for metabolic engineering. Curr. Opin. Biotechnol. 35, 23–29 https://doi.org/10.1016/j.copbio.2014.12.016
-
(2015)
Curr. Opin. Biotechnol.
, vol.35
, pp. 23-29
-
-
King, Z.A.1
Lloyd, C.J.2
Feist, A.M.3
Palsson, B.O.4
-
58
-
-
84964043843
-
In silico constraint-based strain optimization methods: The quest for optimal cell factories
-
Maia, P., Rocha, M. and Rocha, I. (2016) In silico constraint-based strain optimization methods: the quest for optimal cell factories. Microbiol. Mol. Biol. Rev. 80, 45–67 https://doi.org/10.1128/MMBR.00014-15
-
(2016)
Microbiol. Mol. Biol. Rev.
, vol.80
, pp. 45-67
-
-
Maia, P.1
Rocha, M.2
Rocha, I.3
-
59
-
-
84976513521
-
Stoichiometric and constraint-based analysis of biochemical reaction networks
-
In (Benner, Findeisen, R., Flockerzi, D., Reichl, U. and Sundmacher, K., eds), Springer International Publishing, Cham
-
Klamt, S., Hädicke, O. and von Kamp, A. (2014) Stoichiometric and constraint-based analysis of biochemical reaction networks. In Large-Scale Networks in Engineering and Life Sciences (Benner, P., Findeisen, R., Flockerzi, D., Reichl, U. and Sundmacher, K., eds), pp. 263–316, Springer International Publishing, Cham
-
(2014)
Large-Scale Networks in Engineering and Life Sciences
, pp. 263-316
-
-
Klamt, S.1
Hädicke, O.2
Von Kamp, A.3
-
60
-
-
84860405978
-
Mathematical models of cell factories: Moving towards the core of industrial biotechnology
-
Cvijovic, M., Bordel, S. and Nielsen, J. (2011) Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microb. Biotechnol. 4, 572–584 https://doi.org/10.1111/j.1751-7915.2010.00233.x
-
(2011)
Microb. Biotechnol.
, vol.4
, pp. 572-584
-
-
Cvijovic, M.1
Bordel, S.2
Nielsen, J.3
-
61
-
-
84938074954
-
Co-evolution of strain design methods based on flux balance and elementary mode analysis
-
Machado, D. and Herrgård, M.J. (2015) Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab. Eng. Commun. 2, 85–92 https://doi.org/10.1016/j.meteno.2015.04.001
-
(2015)
Metab. Eng. Commun.
, vol.2
, pp. 85-92
-
-
Machado, D.1
Herrgård, M.J.2
-
62
-
-
70449521460
-
A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression
-
Oddone, G.M., Mills, D.A. and Block, D.E. (2009) A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. Metab. Eng. 11, 367–381 https://doi.org/10.1016/j.ymben.2009.07.007
-
(2009)
Metab. Eng.
, vol.11
, pp. 367-381
-
-
Oddone, G.M.1
Mills, D.A.2
Block, D.E.3
-
63
-
-
85035143234
-
Computational methods to assess the production potential of bio-based chemicals
-
In (Jensen, M.K. and Keasling, J.D., eds), Springer, New York
-
Campodonico, M.A., Sukumara, S., Feist, A.M. and Herrgård, M.J. (2018) Computational methods to assess the production potential of bio-based chemicals. In Synthetic Metabolic Pathways: Methods and Protocols (Jensen, M.K. and Keasling, J.D., eds), pp. 97–116, Springer, New York
-
(2018)
Synthetic Metabolic Pathways: Methods and Protocols
, pp. 97-116
-
-
Campodonico, M.A.1
Sukumara, S.2
Feist, A.M.3
Herrgård, M.J.4
-
64
-
-
84958233208
-
Metabolic assessment of E. Coli as a biofactory for commercial products
-
Zhang, X., Tervo, C.J. and Reed, J.L. (2016) Metabolic assessment of E. coli as a biofactory for commercial products. Metab. Eng. 35, 64–74 https://doi.org/10.1016/j.ymben.2016.01.007
-
(2016)
Metab. Eng.
, vol.35
, pp. 64-74
-
-
Zhang, X.1
Tervo, C.J.2
Reed, J.L.3
-
65
-
-
84886539519
-
Genetically modified lactic acid bacteria
-
(Mozzi, F., Raya, R.R. and Vignolo, G.M., eds), Wiley-Blackwell, Chichester
-
Renault, P. (2010) Genetically modified lactic acid bacteria. In Biotechnology of Lactic Acid Bacteria: Novel Applications (Mozzi, F., Raya, R.R. and Vignolo, G.M., eds), pp. 361–381, Wiley-Blackwell, Chichester
-
(2010)
Biotechnology of Lactic Acid Bacteria: Novel Applications
, pp. 361-381
-
-
Renault, P.1
-
66
-
-
84906834885
-
The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology
-
Derkx, P.M., Janzen, T., Sorensen, K.I., Christensen, J.E., Stuer-Lauridsen, B. and Johansen, E. (2014) The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb. Cell Fact. 13(Suppl 13), S5 https://doi.org/10.1186/1475-2859-13-S1-S5
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. S5
-
-
Derkx, P.M.1
Janzen, T.2
Sorensen, K.I.3
Christensen, J.E.4
Stuer-Lauridsen, B.5
Johansen, E.6
-
67
-
-
85046902803
-
MARSI: Metabolite analogues for rational strain improvement
-
Cardoso, J.G.R., Zeidan, A.A., Jensen, K., Sonnenschein, N., Neves, A.R. and Herrgård, M.J. (2018) MARSI: metabolite analogues for rational strain improvement. Bioinformatics bty108 https://doi.org/10.1093/bioinformatics/bty108
-
(2018)
Bioinformatics Bty108
-
-
Cardoso, J.G.R.1
Zeidan, A.A.2
Jensen, K.3
Sonnenschein, N.4
Neves, A.R.5
Herrgård, M.J.6
-
68
-
-
85006058313
-
Genome-editing technologies: Principles and applications
-
Gaj, T., Sirk, S.J., Shui, S.L. and Liu, J. (2016) Genome-editing technologies: principles and applications. Cold Spring Harb. Perspect. Biol. 8, a023754 https://doi.org/10.1101/cshperspect.a023754
-
(2016)
Cold Spring Harb. Perspect. Biol.
, vol.8
, pp. a023754
-
-
Gaj, T.1
Sirk, S.J.2
Shui, S.L.3
Liu, J.4
-
70
-
-
84939233322
-
Metabolic interactions in microbial communities: Untangling the Gordian knot
-
Ponomarova, O. and Patil, K.R. (2015) Metabolic interactions in microbial communities: untangling the Gordian knot. Curr. Opin. Microbiol. 27, 37–44 https://doi.org/10.1016/j.mib.2015.06.014
-
(2015)
Curr. Opin. Microbiol.
, vol.27
, pp. 37-44
-
-
Ponomarova, O.1
Patil, K.R.2
-
71
-
-
84928807017
-
Unraveling interactions in microbial communities — From co-cultures to microbiomes
-
Tan, J., Zuniga, C. and Zengler, K. (2015) Unraveling interactions in microbial communities — from co-cultures to microbiomes. J. Microbiol. 53, 295–305 https://doi.org/10.1007/s12275-015-5060-1
-
(2015)
J. Microbiol.
, vol.53
, pp. 295-305
-
-
Tan, J.1
Zuniga, C.2
Zengler, K.3
-
72
-
-
84942297394
-
Metabolic network modeling of microbial communities
-
Biggs, M.B., Medlock, G.L., Kolling, G.L. and Papin, J.A. (2015) Metabolic network modeling of microbial communities. Wiley Interdiscip. Rev.: Syst. Biol. Med. 7, 317–334 https://doi.org/10.1002/wsbm.1308
-
(2015)
Wiley Interdiscip. Rev.: Syst. Biol. Med.
, vol.7
, pp. 317-334
-
-
Biggs, M.B.1
Medlock, G.L.2
Kolling, G.L.3
Papin, J.A.4
-
73
-
-
85045220281
-
Model microbial communities for ecosystems biology
-
Blasche, S., Kim, Y., Oliveira, A.P. and Patil, K.R. (2017) Model microbial communities for ecosystems biology. Curr. Opin. Syst. Biol. 6, 51–57 https://doi.org/10.1016/j.coisb.2017.09.002
-
(2017)
Curr. Opin. Syst. Biol.
, vol.6
, pp. 51-57
-
-
Blasche, S.1
Kim, Y.2
Oliveira, A.P.3
Patil, K.R.4
-
74
-
-
85006107025
-
Constraint-based stoichiometric modelling from single organisms to microbial communities
-
Gottstein, W., Olivier, B.G., Bruggeman, F.J. and Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. J. R. Soc. Interface 13, 20160627 https://doi.org/10.1098/rsif.2016.0627
-
(2016)
J. R. Soc. Interface
, vol.13
, pp. 20160627
-
-
Gottstein, W.1
Olivier, B.G.2
Bruggeman, F.J.3
Teusink, B.4
-
75
-
-
84978438292
-
Microbial community metabolic modeling: A community data-driven network reconstruction
-
Henry, C.S., Bernstein, H.C., Weisenhorn, P., Taylor, R.C., Lee, J.-Y., Zucker, J. et al. (2016) Microbial community metabolic modeling: a community data-driven network reconstruction. J. Cell Physiol. 231, 2339–2345 https://doi.org/10.1002/jcp.25428
-
(2016)
J. Cell Physiol.
, vol.231
, pp. 2339-2345
-
-
Henry, C.S.1
Bernstein, H.C.2
Weisenhorn, P.3
Taylor, R.C.4
Lee, J.-Y.5
Zucker, J.6
-
76
-
-
85021229025
-
Perspectives and challenges in microbial communities metabolic modeling
-
Bosi, E., Bacci, G., Mengoni, A. and Fondi, M. (2017) Perspectives and challenges in microbial communities metabolic modeling. Front. Genet. 8, 88 https://doi.org/10.3389/fgene.2017.00088
-
(2017)
Front. Genet.
, vol.8
, pp. 88
-
-
Bosi, E.1
Bacci, G.2
Mengoni, A.3
Fondi, M.4
-
77
-
-
84961130174
-
Constructing and analyzing metabolic flux models of microbial communities
-
(McGenity, T.J., Timmis, K.N. and Nogales, B., eds), Springer, Berlin, Heidelberg
-
Faria, J.P., Khazaei, T., Edirisinghe, J.N., Weisenhorn, P., Seaver, S. M.D., Conrad, N. et al. (2017) Constructing and analyzing metabolic flux models of microbial communities. In Hydrocarbon and Lipid Microbiology Protocols: Genetic, Genomic and System Analyses of Communities (McGenity, T.J., Timmis, K.N. and Nogales, B., eds), pp. 247–273, Springer, Berlin, Heidelberg
-
(2017)
Hydrocarbon and Lipid Microbiology Protocols: Genetic, Genomic and System Analyses of Communities
, pp. 247-273
-
-
Faria, J.P.1
Khazaei, T.2
Edirisinghe, J.N.3
Weisenhorn, P.4
Seaver, S.M.D.5
Conrad, N.6
-
78
-
-
63849246681
-
Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. Bulgaricus: Involvement of nitrogen, purine, and iron metabolism
-
Herve-Jimenez, L., Guillouard, I., Guedon, E., Boudebbouze, S., Hols, P., Monnet, V. et al. (2009) Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl. Environ. Microbiol. 75, 2062–2073 https://doi.org/10.1128/AEM.01984-08
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 2062-2073
-
-
Herve-Jimenez, L.1
Guillouard, I.2
Guedon, E.3
Boudebbouze, S.4
Hols, P.5
Monnet, V.6
-
79
-
-
84927157543
-
Systems modeling approaches for microbial community studies: From metagenomics to inference of the community structure
-
Hanemaaijer, M., Roling, W.F., Olivier, B.G., Khandelwal, R.A., Teusink, B. and Bruggeman, F.J. (2015) Systems modeling approaches for microbial community studies: from metagenomics to inference of the community structure. Front. Microbiol. 6, 213 https://doi.org/10.3389/fmicb.2015.00213
-
(2015)
Front. Microbiol.
, vol.6
, pp. 213
-
-
Hanemaaijer, M.1
Roling, W.F.2
Olivier, B.G.3
Khandelwal, R.A.4
Teusink, B.5
Bruggeman, F.J.6
-
80
-
-
84969674096
-
Predicting microbial interactions through computational approaches
-
Li, C., Lim, K.M., Chng, K.R. and Nagarajan, N. (2016) Predicting microbial interactions through computational approaches. Methods 102, 12–19 https://doi.org/10.1016/j.ymeth.2016.02.019
-
(2016)
Methods
, vol.102
, pp. 12-19
-
-
Li, C.1
Lim, K.M.2
Chng, K.R.3
Nagarajan, N.4
-
81
-
-
85046886402
-
Genome-scale metabolic modeling and its application to microbial communities
-
The National Academies Press, Washington (DC) PMID: 28806041
-
Reed, J.L. (2017) Genome-scale metabolic modeling and its application to microbial communities. In The Chemistry of Microbiomes: Proceedings of a Seminar Series, The National Academies Press, Washington (DC) PMID: 28806041
-
(2017)
The Chemistry of Microbiomes: Proceedings of A Seminar Series
-
-
Reed, J.L.1
-
82
-
-
84929440325
-
Metabolic dependencies drive species co-occurrence in diverse microbial communities
-
Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D.R., Bork, P. and Patil, K.R. (2015) Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. U.S.A. 112, 6449–6454 https://doi.org/10.1073/pnas.1421834112
-
(2015)
Proc. Natl Acad. Sci. U.S.A.
, vol.112
, pp. 6449-6454
-
-
Zelezniak, A.1
Andrejev, S.2
Ponomarova, O.3
Mende, D.R.4
Bork, P.5
Patil, K.R.6
-
83
-
-
84949234080
-
A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods
-
Kort, R., Westerik, N., Mariela Serrano, L., Douillard, F.P., Gottstein, W., Mukisa, I.M. et al. (2015) A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods. Microb. Cell Fact. 14, 195 https://doi.org/10.1186/s12934-015-0370-x
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 195
-
-
Kort, R.1
Westerik, N.2
Mariela Serrano, L.3
Douillard, F.P.4
Gottstein, W.5
Mukisa, I.M.6
-
84
-
-
85030158230
-
Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow
-
e6
-
Ponomarova, O., Gabrielli, N., Sevin, D.C., Mulleder, M., Zirngibl, K., Bulyha, K. et al. (2017) Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 https://doi.org/10.1016/j.cels.2017.09.002
-
(2017)
Cell Syst
, vol.5
, pp. 345-357
-
-
Ponomarova, O.1
Gabrielli, N.2
Sevin, D.C.3
Mulleder, M.4
Zirngibl, K.5
Bulyha, K.6
-
85
-
-
85011094697
-
Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
-
Magnúsdóttir, S., Heinken, A., Kutt, L., Ravcheev, D.A., Bauer, E., Noronha, A. et al. (2017) Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 https://doi.org/10.1038/nbt.3703
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 81-89
-
-
Magnúsdóttir, S.1
Heinken, A.2
Kutt, L.3
Ravcheev, D.A.4
Bauer, E.5
Noronha, A.6
-
86
-
-
84938586730
-
Quantifying diet-Induced metabolic changes of the human gut microbiome
-
Shoaie, S., Ghaffari, P., Kovatcheva-Datchary, P., Mardinoglu, A., Sen, P., Pujos-Guillot, E. et al. (2015) Quantifying diet-Induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 https://doi.org/10.1016/j.cmet.2015.07.001
-
(2015)
Cell Metab
, vol.22
, pp. 320-331
-
-
Shoaie, S.1
Ghaffari, P.2
Kovatcheva-Datchary, P.3
Mardinoglu, A.4
Sen, P.5
Pujos-Guillot, E.6
-
87
-
-
84883389182
-
Understanding the interactions between bacteria in the human gut through metabolic modeling
-
Article number
-
Shoaie, S., Karlsson, F., Mardinoglu, A., Nookaew, I., Bordel, S. and Nielsen, J. (2013) Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3, Article number: 2532 https://doi.org/10.1038/srep02532
-
(2013)
Sci. Rep.
, vol.3
-
-
Shoaie, S.1
Karlsson, F.2
Mardinoglu, A.3
Nookaew, I.4
Bordel, S.5
Nielsen, J.6
-
88
-
-
84897947195
-
Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction
-
El-Semman, I.E. Karlsson, F.H., Shoaie, S., Nookaew, I., Soliman, T.H. and Nielsen, J. (2014) Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol. 8, 41 https://doi.org/10.1186/ 1752-0509-8-41
-
(2014)
BMC Syst. Biol.
, vol.8
, pp. 41
-
-
El-Semman, I.E.1
Karlsson, F.H.2
Shoaie, S.3
Nookaew, I.4
Soliman, T.H.5
Nielsen, J.6
-
89
-
-
84871588520
-
Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut
-
Heinken, A., Sahoo, S., Fleming, R.M. and Thiele, I. (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4, 28–40 https://doi.org/10.4161/gmic.22370
-
(2013)
Gut Microbes
, vol.4
, pp. 28-40
-
-
Heinken, A.1
Sahoo, S.2
Fleming, R.M.3
Thiele, I.4
-
90
-
-
84878949529
-
Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells
-
Sahoo, S. and Thiele, I. (2013) Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells. Hum. Mol. Genet. 22, 2705–2722 https://doi.org/10.1093/hmg/ddt119
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 2705-2722
-
-
Sahoo, S.1
Thiele, I.2
-
91
-
-
84881110826
-
Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules
-
Levy, R. and Borenstein, E. (2013) Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl Acad. Sci. U.S.A. 110, 12804–12809 https://doi.org/10.1073/pnas.1300926110
-
(2013)
Proc. Natl Acad. Sci. U.S.A.
, vol.110
, pp. 12804-12809
-
-
Levy, R.1
Borenstein, E.2
-
92
-
-
85038215952
-
Modeling metabolism of the human gut microbiome
-
Magnúsdóttir, S. and Thiele, I. (2018) Modeling metabolism of the human gut microbiome. Curr. Opin. Biotechnol. 51, 90–96 https://doi.org/10.1016/j.copbio.2017.12.005
-
(2018)
Curr. Opin. Biotechnol.
, vol.51
, pp. 90-96
-
-
Magnúsdóttir, S.1
Thiele, I.2
-
93
-
-
85019614311
-
Next-generation probiotics: The spectrum from probiotics to live biotherapeutics
-
O’Toole, P.W., Marchesi, J.R. and Hill, C. (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 https://doi.org/10.1038/nmicrobiol.2017.57
-
(2017)
Nat. Microbiol.
, vol.2
, pp. 17057
-
-
O’Toole, P.W.1
Marchesi, J.R.2
Hill, C.3
-
94
-
-
84962538599
-
Manipulating bacterial communities by in situ microbiome engineering
-
Sheth, R.U., Cabral, V., Chen, S.P. and Wang, H.H. (2016) Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 https://doi.org/10.1016/j.tig.2016.01.005
-
(2016)
Trends Genet
, vol.32
, pp. 189-200
-
-
Sheth, R.U.1
Cabral, V.2
Chen, S.P.3
Wang, H.H.4
-
95
-
-
85014919668
-
Model-based quantification of metabolic interactions from dynamic microbial-community data
-
Hanemaaijer, M., Olivier, B.G., Roling, W.F., Bruggeman, F.J. and Teusink, B. (2017) Model-based quantification of metabolic interactions from dynamic microbial-community data. PLoS ONE 12, e0173183 https://doi.org/10.1371/journal.pone.0173183
-
(2017)
PLoS ONE
, vol.12
, pp. e0173183
-
-
Hanemaaijer, M.1
Olivier, B.G.2
Roling, W.F.3
Bruggeman, F.J.4
Teusink, B.5
-
96
-
-
33947276100
-
Metabolic modeling of a mutualistic microbial community
-
Stolyar, S., Van Dien, S., Hillesland, K.L., Pinel, N., Lie, T.J., Leigh, J.A. et al. (2007) Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92 https://doi.org/10.1038/msb4100131
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 92
-
-
Stolyar, S.1
Van Dien, S.2
Hillesland, K.L.3
Pinel, N.4
Lie, T.J.5
Leigh, J.A.6
-
97
-
-
84960382191
-
Engineering microbial consortia for controllable outputs
-
Lindemann, S.R., Bernstein, H.C., Song, H.-S., Fredrickson, J.K., Fields, M.W., Shou, W. et al. (2016) Engineering microbial consortia for controllable outputs. ISME J. 10, 2077–2084 https://doi.org/10.1038/ismej.2016.26
-
(2016)
ISME J
, vol.10
, pp. 2077-2084
-
-
Lindemann, S.R.1
Bernstein, H.C.2
Song, H.-S.3
Fredrickson, J.K.4
Fields, M.W.5
Shou, W.6
-
98
-
-
84897714751
-
Production of aroma compounds in lactic fermentations
-
Smid, E.J. and Kleerebezem, M. (2014) Production of aroma compounds in lactic fermentations. Annu. Rev. Food Sci. Technol. 5, 313–326 https://doi.org/10.1146/annurev-food-030713-092339
-
(2014)
Annu. Rev. Food Sci. Technol.
, vol.5
, pp. 313-326
-
-
Smid, E.J.1
Kleerebezem, M.2
-
99
-
-
85041465200
-
Polysaccharide production by lactic acid bacteria: From genes to industrial applications
-
Zeidan, A.A., Poulsen, V.K., Janzen, T., Buldo, P., Derkx, P.M.F., Øregaard, G. et al. (2017) Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol. Rev. 41, S168–S200 https://doi.org/10.1093/femsre/fux017
-
(2017)
FEMS Microbiol. Rev.
, vol.41
, pp. S168-S200
-
-
Zeidan, A.A.1
Poulsen, V.K.2
Janzen, T.3
Buldo, P.4
Derkx, P.M.F.5
Øregaard, G.6
-
100
-
-
0004068410
-
-
Springer, New York
-
Villadsen, J., Nielsen, J. and Lidén, G. (2011) Bioreaction Engineering Principles, Springer, New York
-
(2011)
Bioreaction Engineering Principles
-
-
Villadsen, J.1
Nielsen, J.2
Lidén, G.3
-
101
-
-
0004179567
-
-
Butterworth Heinemann, Oxford
-
Stanbury, P.F., Whitaker, A. and Hall, S.J. (2013) Principles of Fermentation Technology, Butterworth Heinemann, Oxford
-
(2013)
Principles of Fermentation Technology
-
-
Stanbury, P.F.1
Whitaker, A.2
Hall, S.J.3
-
102
-
-
85011954307
-
Strategies for fermentation medium optimization: An in-depth review
-
Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M. and Tripathi, C.K. (2016) Strategies for fermentation medium optimization: an in-depth review. Front. Microbiol. 7, 2087
-
(2016)
Front. Microbiol.
, vol.7
, pp. 2087
-
-
Singh, V.1
Haque, S.2
Niwas, R.3
Srivastava, A.4
Pasupuleti, M.5
Tripathi, C.K.6
-
103
-
-
0033797405
-
Improvement of microbial strains and fermentation processes
-
Parekh, S., Vinci, V.A. and Strobel, R.J. (2000) Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54, 287–301 https://doi.org/10.1007/s002530000403
-
(2000)
Appl. Microbiol. Biotechnol.
, vol.54
, pp. 287-301
-
-
Parekh, S.1
Vinci, V.A.2
Strobel, R.J.3
-
104
-
-
42549143731
-
Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence
-
Song, H., Kim, T.Y., Choi, B.-K., Choi, S.J., Nielsen, L.K., Chang, H.N. et al. (2008) Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence. Appl. Microbiol. Biotechnol. 79, 263–272 https://doi.org/10.1007/s00253-008-1425-2
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.79
, pp. 263-272
-
-
Song, H.1
Kim, T.Y.2
Choi, B.-K.3
Choi, S.J.4
Nielsen, L.K.5
Chang, H.N.6
-
105
-
-
85031690141
-
Probing the genome-scale metabolic landscape of Bordetella pertussis, the causative agent of whooping cough
-
Santos, B.., Olivier, F., Boele, B.G., Smessaert, J., De Rop, V., Krumpochova, P. et al. (2017) Probing the genome-scale metabolic landscape of Bordetella pertussis, the causative agent of whooping cough. Appl. Environ. Microbiol. 83, e01528-17 https://doi.org/10.1128/AEM.01528-17
-
(2017)
Appl. Environ. Microbiol.
, vol.83
, pp. e01528-e01617
-
-
Santos, B.1
Olivier, F.2
Boele, B.G.3
Smessaert, J.4
De Rop, V.5
Krumpochova, P.6
-
106
-
-
33645462347
-
Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri
-
Feist, A.M., Scholten, J.C., Palsson, B.O., Brockman, F.J. and Ideker, T. (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2, 2006.0004 https://doi.org/10.1038/msb4100046
-
(2006)
Mol. Syst. Biol.
, vol.2
-
-
Feist, A.M.1
Scholten, J.C.2
Palsson, B.O.3
Brockman, F.J.4
Ideker, T.5
-
107
-
-
33646165647
-
Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media
-
Imielinski, M., Belta, C., Rubin, H. and Halasz, A. (2006) Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media. Biophys. J. 90, 2659–2672 https://doi.org/10.1529/biophysj.105.069278
-
(2006)
Biophys. J.
, vol.90
, pp. 2659-2672
-
-
Imielinski, M.1
Belta, C.2
Rubin, H.3
Halasz, A.4
-
108
-
-
34147167214
-
Fermentation technologies for the production of probiotics with high viability and functionality
-
Lacroix, C. and Yildirim, S. (2007) Fermentation technologies for the production of probiotics with high viability and functionality. Curr. Opin. Biotechnol. 18, 176–183 https://doi.org/10.1016/j.copbio.2007.02.002
-
(2007)
Curr. Opin. Biotechnol.
, vol.18
, pp. 176-183
-
-
Lacroix, C.1
Yildirim, S.2
-
109
-
-
1142293808
-
Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. Bulgaricus
-
Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X. and Gibbs, P. (2004) Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. . Biotechnol. Prog. 20, 248–254 https://doi.org/10.1021/bp034165y
-
(2004)
Biotechnol. Prog.
, vol.20
, pp. 248-254
-
-
Carvalho, A.S.1
Silva, J.2
Ho, P.3
Teixeira, P.4
Malcata, F.X.5
Gibbs, P.6
-
110
-
-
0036131271
-
Mannitol production by lactic acid bacteria: A review
-
Wisselink, H.W., Weusthuis, R.A., Eggink, G., Hugenholtz, J. and Grobben, G.J. (2002) Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12, 151–161 https://doi.org/10.1016/S0958-6946(01)00153-4
-
(2002)
Int. Dairy J.
, vol.12
, pp. 151-161
-
-
Wisselink, H.W.1
Weusthuis, R.A.2
Eggink, G.3
Hugenholtz, J.4
Grobben, G.J.5
-
111
-
-
85017208176
-
Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics
-
Bordbar, A., Yurkovich, J.T., Paglia, G., Rolfsson, O., Sigurjonsson, O.E. and Palsson, B.O. (2017) Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci. Rep. 7, 46249 https://doi.org/10.1038/srep46249
-
(2017)
Sci. Rep.
, vol.7
, pp. 46249
-
-
Bordbar, A.1
Yurkovich, J.T.2
Paglia, G.3
Rolfsson, O.4
Sigurjonsson, O.E.5
Palsson, B.O.6
-
112
-
-
84863614552
-
Transcriptomes reveal genetic signatures underlying physiological variations imposed by different fermentation conditions in Lactobacillus plantarum
-
Bron, P.A., Wels, M., Bongers, R.S., van de Veen, H.V.B., Wiersma, A., Overmars, L. et al. (2012) Transcriptomes reveal genetic signatures underlying physiological variations imposed by different fermentation conditions in Lactobacillus plantarum. PLoS ONE 7, e38720 https://doi.org/10.1371/journal.pone.0038720
-
(2012)
PLoS ONE
, vol.7
, pp. e38720
-
-
Bron, P.A.1
Wels, M.2
Bongers, R.S.3
Van de Veen, H.V.B.4
Wiersma, A.5
Overmars, L.6
-
113
-
-
84855929956
-
Using the reconstructed genome-scale human metabolic network to study physiology and pathology
-
Bordbar, A. and Palsson, B.O. (2012) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271, 131–141 https://doi.org/10.1111/j.1365-2796.2011.02494.x
-
(2012)
J. Intern. Med.
, vol.271
, pp. 131-141
-
-
Bordbar, A.1
Palsson, B.O.2
-
114
-
-
84867554554
-
Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling
-
Jerby, L. and Ruppin, E. (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin. Cancer Res. 18, 5572–5584 https://doi.org/10.1158/1078-0432.CCR-12-1856
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 5572-5584
-
-
Jerby, L.1
Ruppin, E.2
-
115
-
-
84891956059
-
Microbial heterogeneity affects bioprocess robustness: Dynamic single-cell analysis contributes to understanding of microbial populations
-
Delvigne, F. and Goffin, P. (2014) Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol. J. 9, 61–72 https://doi.org/10.1002/biot.201300119
-
(2014)
Biotechnol. J.
, vol.9
, pp. 61-72
-
-
Delvigne, F.1
Goffin, P.2
-
116
-
-
84897627707
-
Lost in transition: Start-up of glycolysis yields subpopulations of nongrowing cells
-
van Heerden, J.H., Wortel, M.T., Bruggeman, F.J., Heijnen, J.J., Bollen, Y.J., Planque, R. et al. (2014) Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343, 1245114 https://doi.org/10.1126/science.1245114
-
(2014)
Science
, vol.343
, pp. 1245114
-
-
Van Heerden, J.H.1
Wortel, M.T.2
Bruggeman, F.J.3
Heijnen, J.J.4
Bollen, Y.J.5
Planque, R.6
-
117
-
-
85030679471
-
A protocol for generating and exchanging (genome-scale) metabolic resource allocation models
-
Reimers, A.-M., Lindhorst, H. and Waldherr, S. (2017) A protocol for generating and exchanging (genome-scale) metabolic resource allocation models. Metabolites 7, 47 https://doi.org/10.3390/metabo7030047
-
(2017)
Metabolites
, vol.7
, pp. 47
-
-
Reimers, A.-M.1
Lindhorst, H.2
Waldherr, S.3
-
118
-
-
85030660761
-
-
arXiv preprint
-
Lindhorst, H., Lucia, S., Findeisen, R. and Waldherr, S. (2017) Modeling metabolic networks including gene expression and uncertainties. arXiv preprint, arXiv:1609.08961
-
(2017)
Modeling Metabolic Networks Including Gene Expression and Uncertainties
-
-
Lindhorst, H.1
Lucia, S.2
Findeisen, R.3
Waldherr, S.4
-
119
-
-
84937573954
-
Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production
-
Zhuang, K.H. and Herrgard, M.J. (2015) Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production. Metab. Eng. 31, 1–12 https://doi.org/10.1016/j.ymben.2015.05.007
-
(2015)
Metab. Eng.
, vol.31
, pp. 1-12
-
-
Zhuang, K.H.1
Herrgard, M.J.2
-
120
-
-
84875973063
-
The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum
-
Agren, R., Liu, L., Shoaie, S., Vongsangnak, W., Nookaew, I. and Nielsen, J. (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput. Biol. 9, e1002980 https://doi.org/10.1371/journal.pcbi.1002980
-
(2013)
PLoS Comput. Biol.
, vol.9
, pp. e1002980
-
-
Agren, R.1
Liu, L.2
Shoaie, S.3
Vongsangnak, W.4
Nookaew, I.5
Nielsen, J.6
-
121
-
-
77956696072
-
High-throughput generation, optimization and analysis of genome-scale metabolic models
-
Henry, C.S., DeJongh, M., Best, A.A., Frybarger, P.M., Linsay, B. and Stevens, R.L. (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 https://doi.org/10.1038/nbt.1672
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 977-982
-
-
Henry, C.S.1
DeJongh, M.2
Best, A.A.3
Frybarger, P.M.4
Linsay, B.5
Stevens, R.L.6
-
122
-
-
84856038703
-
The suBliMinaL toolbox: Automating steps in the reconstruction of metabolic networks
-
Swainston, N., Smallbone, K., Mendes, P., Kell, D. and Paton, N. (2011) The suBliMinaL toolbox: automating steps in the reconstruction of metabolic networks. J. Integr. Bioinform. 8, 186 https://doi.org/10.1515/jib-2011-186
-
(2011)
J. Integr. Bioinform.
, vol.8
, pp. 186
-
-
Swainston, N.1
Smallbone, K.2
Mendes, P.3
Kell, D.4
Paton, N.5
-
123
-
-
84930225331
-
Reconstructing genome-scale metabolic models with merlin
-
Dias, O., Rocha, M., Ferreira, E.C. and Rocha, I. (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 43, 3899–3910 https://doi.org/10.1093/nar/gkv294
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 3899-3910
-
-
Dias, O.1
Rocha, M.2
Ferreira, E.C.3
Rocha, I.4
-
124
-
-
84980049332
-
From DNA to FBA: How to build your own genome-scale metabolic model
-
Cuevas, D.A., Edirisinghe, J., Henry, C.S., Overbeek, R., O’Connell, T.G. and Edwards, R.A. (2016) From DNA to FBA: how to build your own genome-scale metabolic model. Front. Microbiol. 7, 907 https://doi.org/10.3389/fmicb.2016.00907
-
(2016)
Front. Microbiol.
, vol.7
, pp. 907
-
-
Cuevas, D.A.1
Edirisinghe, J.2
Henry, C.S.3
Overbeek, R.4
O’Connell, T.G.5
Edwards, R.A.6
-
125
-
-
79960126760
-
Rbionet: A COBRA toolbox extension for reconstructing high-quality biochemical networks
-
Thorleifsson, S.G. and Thiele, I. (2011) Rbionet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27, 2009–2010 https://doi.org/10.1093/bioinformatics/btr308
-
(2011)
Bioinformatics
, vol.27
, pp. 2009-2010
-
-
Thorleifsson, S.G.1
Thiele, I.2
-
126
-
-
84886740491
-
Path2models: Large-scale generation of computational models from biochemical pathway maps
-
Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R. et al. (2013) Path2models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7, 116 https://doi.org/10.1186/1752-0509-7-116
-
(2013)
BMC Syst. Biol.
, vol.7
, pp. 116
-
-
Büchel, F.1
Rodriguez, N.2
Swainston, N.3
Wrzodek, C.4
Czauderna, T.5
Keller, R.6
-
127
-
-
84891635463
-
Software platforms to facilitate reconstructing genome-scale metabolic networks
-
Hamilton, J.J. and Reed, J.L. (2014) Software platforms to facilitate reconstructing genome-scale metabolic networks. Environ. Microbiol. 16, 49–59 https://doi.org/10.1111/1462-2920.12312
-
(2014)
Environ. Microbiol.
, vol.16
, pp. 49-59
-
-
Hamilton, J.J.1
Reed, J.L.2
-
128
-
-
85046906819
-
Fast automated reconstruction of genome-scale metabolic models for microbial species and communities
-
Machado, D., Andrejev, S., Tramontano, M. and Patil, K. R. (2018) Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. bioRxiv, 223198 https://doi.org/10.1101/223198
-
(2018)
bioRxiv
, pp. 223198
-
-
Machado, D.1
Andrejev, S.2
Tramontano, M.3
Patil, K.R.4
-
129
-
-
34547676311
-
Optimization based automated curation of metabolic reconstructions
-
Kumar, V.S., Dasika, M.S. and Maranas, C.D. (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinf. 8, 212 https://doi.org/10.1186/1471-2105-8-212
-
(2007)
BMC Bioinf
, vol.8
, pp. 212
-
-
Kumar, V.S.1
Dasika, M.S.2
Maranas, C.D.3
-
130
-
-
33751226921
-
Systems approach to refining genome annotation
-
Reed, J.L., Patel, T.R., Chen, K.H., Joyce, A.R., Applebee, M.K., Herring, C.D. et al. (2006) Systems approach to refining genome annotation. Proc. Natl Acad. Sci. U.S.A. 103, 17480–17484 https://doi.org/10.1073/pnas.0603364103
-
(2006)
Proc. Natl Acad. Sci. U.S.A.
, vol.103
, pp. 17480-17484
-
-
Reed, J.L.1
Patel, T.R.2
Chen, K.H.3
Joyce, A.R.4
Applebee, M.K.5
Herring, C.D.6
-
131
-
-
78651335279
-
Systematizing the generation of missing metabolic knowledge
-
Orth, J.D. and Palsson, B.O. (2010) Systematizing the generation of missing metabolic knowledge. Biotechnol. Bioeng. 107, 403–412 https://doi.org/10.1002/bit.22844
-
(2010)
Biotechnol. Bioeng.
, vol.107
, pp. 403-412
-
-
Orth, J.D.1
Palsson, B.O.2
-
132
-
-
84907026934
-
Fastgapfill: Efficient gap filling in metabolic networks
-
Thiele, I., Vlassis, N. and Fleming, R.M. (2014) Fastgapfill: efficient gap filling in metabolic networks. Bioinformatics 30, 2529–2531 https://doi.org/10.1093/bioinformatics/btu321
-
(2014)
Bioinformatics
, vol.30
, pp. 2529-2531
-
-
Thiele, I.1
Vlassis, N.2
Fleming, R.M.3
-
133
-
-
84940514861
-
Sequence-based network completion reveals the integrality of missing reactions in metabolic networks
-
Krumholz, E.W. and Libourel, I.G. (2015) Sequence-based network completion reveals the integrality of missing reactions in metabolic networks. J. Biol. Chem. 290, 19197–19207 https://doi.org/10.1074/jbc.M114.634121
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 19197-19207
-
-
Krumholz, E.W.1
Libourel, I.G.2
-
134
-
-
85020322393
-
Estimation of biomass composition from genomic and transcriptomic information
-
Santos, S. and Rocha, I. (2016) Estimation of biomass composition from genomic and transcriptomic information. J. Integr. Bioinform. 13, 285 https://doi.org/10.1515/jib-2016-285
-
(2016)
J. Integr. Bioinform.
, vol.13
, pp. 285
-
-
Santos, S.1
Rocha, I.2
-
135
-
-
84892965416
-
Software applications toward quantitative metabolic flux analysis and modeling
-
Dandekar, T., Fieselmann, A., Majeed, S. and Ahmed, Z. (2014) Software applications toward quantitative metabolic flux analysis and modeling. Brief. Bioinform. 15, 91–107 https://doi.org/10.1093/bib/bbs065
-
(2014)
Brief. Bioinform.
, vol.15
, pp. 91-107
-
-
Dandekar, T.1
Fieselmann, A.2
Majeed, S.3
Ahmed, Z.4
-
136
-
-
84920923824
-
Computing the functional proteome: Recent progress and future prospects for genome-scale models
-
O’Brien, E.J. and Palsson, B.O. (2015) Computing the functional proteome: recent progress and future prospects for genome-scale models. Curr. Opin. Biotechnol. 34, 125–134 https://doi.org/10.1016/j.copbio.2014.12.017
-
(2015)
Curr. Opin. Biotechnol.
, vol.34
, pp. 125-134
-
-
O’Brien, E.J.1
Palsson, B.O.2
-
137
-
-
85027590368
-
Resource allocation in living organisms
-
Goelzer, A. and Fromion, V. (2017) Resource allocation in living organisms. Biochem. Soc. Trans. 45, 945–952 https://doi.org/10.1042/BST20160436
-
(2017)
Biochem. Soc. Trans.
, vol.45
, pp. 945-952
-
-
Goelzer, A.1
Fromion, V.2
-
138
-
-
85042407052
-
Metabolic models of protein allocation call for the kinetome
-
Nilsson, A., Nielsen, J. and Palsson, B.O. (2017) Metabolic models of protein allocation call for the kinetome. Cell Syst. 5, 538–541 https://doi.org/10.1016/j.cels.2017.11.013
-
(2017)
Cell Syst
, vol.5
, pp. 538-541
-
-
Nilsson, A.1
Nielsen, J.2
Palsson, B.O.3
-
139
-
-
84963706952
-
Public goods and metabolic strategies
-
Bachmann, H., Bruggeman, F.J., Molenaar, D., dos Santos, F.B. and Teusink, B. (2016) Public goods and metabolic strategies. Curr. Opin. Microbiol. 31, 109–115 https://doi.org/10.1016/j.mib.2016.03.007
-
(2016)
Curr. Opin. Microbiol.
, vol.31
, pp. 109-115
-
-
Bachmann, H.1
Bruggeman, F.J.2
Molenaar, D.3
Dos Santos, F.B.4
Teusink, B.5
-
140
-
-
85028309923
-
Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
-
Sanchez, B.J., Zhang, C., Nilsson, A., Lahtvee, P.J., Kerkhoven, E.J. and Nielsen, J. (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935 https://doi.org/10.15252/msb.20167411
-
(2017)
Mol. Syst. Biol.
, vol.13
, pp. 935
-
-
Sanchez, B.J.1
Zhang, C.2
Nilsson, A.3
Lahtvee, P.J.4
Kerkhoven, E.J.5
Nielsen, J.6
|