메뉴 건너뛰기




Volumn 46, Issue 2, 2018, Pages 249-260

Constraint-based modeling in microbial food biotechnology

Author keywords

[No Author keywords available]

Indexed keywords

ANALYSIS; COMPUTER MODEL; CONSTRAINT BASED MODELING; FOOD BIOTECHNOLOGY; FOOD INDUSTRY; FOOD PROCESSING; GENOTYPE PHENOTYPE CORRELATION; MICROBIAL COMMUNITY; MICROBIAL METABOLISM; NONHUMAN; PRIORITY JOURNAL; REVIEW; BIOLOGICAL MODEL; BIOTECHNOLOGY; CATALYSIS; FERMENTATION; FOOD CONTROL; FOOD HANDLING; GENOTYPE; METABOLISM; MICROBIAL CONSORTIUM; PHENOTYPE;

EID: 85046889300     PISSN: 03005127     EISSN: 14708752     Source Type: Journal    
DOI: 10.1042/BST20170268     Document Type: Review
Times cited : (21)

References (141)
  • 1
    • 84872921649 scopus 로고    scopus 로고
    • Earliest evidence for cheese making in the sixth millennium BC in Northern Europe
    • Salque, M., Bogucki, P.I., Pyzel, J., Sobkowiak-Tabaka, I., Grygiel, R., Szmyt, M. et al. (2012) Earliest evidence for cheese making in the sixth millennium BC in Northern Europe. Nature 493, 522–525 https://doi.org/10.1038/nature11698
    • (2012) Nature , vol.493 , pp. 522-525
    • Salque, M.1    Bogucki, P.I.2    Pyzel, J.3    Sobkowiak-Tabaka, I.4    Grygiel, R.5    Szmyt, M.6
  • 2
    • 1042290278 scopus 로고    scopus 로고
    • Lactic acid bacteria as functional starter cultures for the food fermentation industry
    • Leroy, F. and De Vuyst, L. (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15, 67–78 https://doi.org/10.1016/j.tifs.2003.09.004
    • (2004) Trends Food Sci. Technol. , vol.15 , pp. 67-78
    • Leroy, F.1    De Vuyst, L.2
  • 3
    • 0001053002 scopus 로고
    • Fermented foods — A world perspective
    • Campbell-Platt, G. (1994) Fermented foods — a world perspective. Food Res. Int. 27, 253–257 https://doi.org/10.1016/0963-9969(94)90093-0
    • (1994) Food Res. Int. , vol.27 , pp. 253-257
    • Campbell-Platt, G.1
  • 4
    • 80052241978 scopus 로고    scopus 로고
    • Systems solutions by lactic acid bacteria: From paradigms to practice
    • de Vos, W.M. (2011) Systems solutions by lactic acid bacteria: from paradigms to practice. Microb. Cell Fact. 10(Suppl 1), S2 https://doi.org/10.1186/ 1475-2859-10-S1-S2
    • (2011) Microb. Cell Fact. , vol.10 , pp. S2
    • De Vos, W.M.1
  • 5
    • 85024478306 scopus 로고    scopus 로고
    • Recent advances in microbial fermentation for dairy and health
    • Hill, D., Sugrue, I., Arendt, E., Hill, C., Stanton, C. and Ross, R.P. (2017) Recent advances in microbial fermentation for dairy and health. F1000Research 6, 751 https://doi.org/10.12688/f1000research.10896.1
    • (2017) F1000Research , vol.6 , pp. 751
    • Hill, D.1    Sugrue, I.2    Arendt, E.3    Hill, C.4    Stanton, C.5    Ross, R.P.6
  • 6
    • 0002685481 scopus 로고    scopus 로고
    • Commercial production of dairy starter cultures
    • (Cogan, T.M. and Accolas, J., eds), VCH Publishers, New York
    • Sandine, W.E. (1996) Commercial production of dairy starter cultures. In Dairy Starter Cultures (Cogan, T.M. and Accolas, J.P., eds), pp. 191–206, VCH Publishers, New York
    • (1996) Dairy Starter Cultures , pp. 191-206
    • Sandine, W.E.1
  • 7
    • 79954423271 scopus 로고    scopus 로고
    • The production, application and action of lactic cheese starter cultures
    • (Law, B.A. and Tamime, A.Y., eds), Wiley-Blackwell, Chichester
    • Høier, E., Janzen, T., Rattray, F., Sørensen, K., Børsting, M.W., Brockmann, E. et al. (2010) The production, application and action of lactic cheese starter cultures. In Technology of Cheesemaking (Law, B.A. and Tamime, A.Y., eds), pp. 166–192, Wiley-Blackwell, Chichester
    • (2010) Technology of Cheesemaking , pp. 166-192
    • Høier, E.1    Janzen, T.2    Rattray, F.3    Sørensen, K.4    Børsting, M.W.5    Brockmann, E.6
  • 8
    • 85046895044 scopus 로고    scopus 로고
    • Industrial production of starter cultures
    • (Speranza, B., Bevilacqua, A., Corbo, M.R. and Sinigaglia, M., eds), John Wiley & Sons, Ltd, Chichester
    • Taskila, S. (2017) Industrial production of starter cultures. In Starter Cultures in Food Production (Speranza, B., Bevilacqua, A., Corbo, M.R. and Sinigaglia, M., eds), pp. 79–100, John Wiley & Sons, Ltd, Chichester
    • (2017) Starter Cultures in Food Production , pp. 79-100
    • Taskila, S.1
  • 10
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele, I. and Palsson, B.Ø. (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 https://doi.org/10.1038/nprot.2009.203
    • (2010) Nat. Protoc. , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.Ø.2
  • 11
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth, J. D., Thiele, I. and Palsson, B. Ø. (2010) What is flux balance analysis? Nat. Biotechnol. 28, 245–248 https://doi.org/10.1038/nbt.1614
    • (2010) Nat. Biotechnol. , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.Ø.3
  • 12
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells: Evaluating the consequences of constraints
    • Price, N.D., Reed, J.L. and Palsson, B.Ø. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 https://doi.org/10.1038/nrmicro1023
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 886-897
    • Price, N.D.1    Reed, J.L.2    Palsson, B.Ø.3
  • 13
    • 73849090293 scopus 로고    scopus 로고
    • Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
    • Milne, C.B., Kim, P.-J., Eddy, J.A. and Price, N.D. (2009) Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol. J. 4, 1653–1670 https://doi.org/10.1002/biot.200900234
    • (2009) Biotechnol. J. , vol.4 , pp. 1653-1670
    • Milne, C.B.1    Kim, P.-J.2    Eddy, J.A.3    Price, N.D.4
  • 14
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods
    • Lewis, N.E., Nagarajan, H. and Palsson, B.O. (2012) Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 https://doi.org/10.1038/nrmicro2737
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 15
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
    • McCloskey, D., Palsson, B.O. and Feist, A.M. (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 9, 661 https://doi.org/10.1038/msb.2013.18
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 661
    • McCloskey, D.1    Palsson, B.O.2    Feist, A.M.3
  • 16
    • 85045348745 scopus 로고    scopus 로고
    • Current state and applications of microbial genome-scale metabolic models
    • Kim, W.J., Kim, H.U. and Lee, S.Y. (2017) Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2, 10–18 https://doi.org/10.1016/j.coisb.2017.03.001
    • (2017) Curr. Opin. Syst. Biol. , vol.2 , pp. 10-18
    • Kim, W.J.1    Kim, H.U.2    Lee, S.Y.3
  • 17
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O’Brien, E.J., Monk, J.M. and Palsson, B.O. (2015) Using genome-scale models to predict biological capabilities. Cell 161, 971–987 https://doi.org/10.1016/j.cell.2015.05.019
    • (2015) Cell , vol.161 , pp. 971-987
    • O’Brien, E.J.1    Monk, J.M.2    Palsson, B.O.3
  • 18
    • 85030117495 scopus 로고    scopus 로고
    • Elucidation of complexity and prediction of interactions in microbial communities
    • Zuniga, C., Zaramela, L. and Zengler, K. (2017) Elucidation of complexity and prediction of interactions in microbial communities. Microb. Biotechnol. 10, 1500–1522 https://doi.org/10.1111/1751-7915.12855
    • (2017) Microb. Biotechnol. , vol.10 , pp. 1500-1522
    • Zuniga, C.1    Zaramela, L.2    Zengler, K.3
  • 19
    • 84900988344 scopus 로고    scopus 로고
    • Elucidating the interactions between the human gut microbiota and its host through metabolic modeling
    • Shoaie, S. and Nielsen, J. (2014) Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front. Genet. 5, 86 https://doi.org/10.3389/fgene.2014.00086
    • (2014) Front. Genet. , vol.5 , pp. 86
    • Shoaie, S.1    Nielsen, J.2
  • 20
    • 84930379775 scopus 로고    scopus 로고
    • Systems biology of host-microbe metabolomics
    • Heinken, A. and Thiele, I. (2015) Systems biology of host-microbe metabolomics. Wiley Interdiscip. Rev.: Syst. Biol. Med. 7, 195–219 https://doi.org/10.1002/wsbm.1301
    • (2015) Wiley Interdiscip. Rev.: Syst. Biol. Med. , vol.7 , pp. 195-219
    • Heinken, A.1    Thiele, I.2
  • 21
    • 31344432121 scopus 로고    scopus 로고
    • Modelling strategies for the industrial exploitation of lactic acid bacteria
    • Teusink, B. and Smid, E.J. (2006) Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat. Rev. Microbiol. 4, 46–56 https://doi.org/10.1038/nrmicro1319
    • (2006) Nat. Rev. Microbiol. , vol.4 , pp. 46-56
    • Teusink, B.1    Smid, E.J.2
  • 22
    • 80052251730 scopus 로고    scopus 로고
    • Systems biology of lactic acid bacteria: A critical review
    • Teusink, B., Bachmann, H. and Molenaar, D. (2011) Systems biology of lactic acid bacteria: a critical review. Microb. Cell Fact. 10(Suppl 1), S11 https://doi.org/10.1186/1475-2859-10-S1-S11
    • (2011) Microb. Cell Fact. , vol.10 , pp. S11
    • Teusink, B.1    Bachmann, H.2    Molenaar, D.3
  • 23
    • 84874990293 scopus 로고    scopus 로고
    • Towards metagenome-scale models for industrial applications—the case of lactic acid bacteria
    • Branco dos Santos, F., de Vos, W.M. and Teusink, B. (2013) Towards metagenome-scale models for industrial applications—the case of lactic acid bacteria. Curr. Opin. Biotechnol. 24, 200–206 https://doi.org/10.1016/j.copbio.2012.11.003
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 200-206
    • Branco Dos Santos, F.1    De Vos, W.M.2    Teusink, B.3
  • 25
    • 79959687662 scopus 로고    scopus 로고
    • An integrated approach to characterize genetic interaction networks in yeast metabolism
    • Szappanos, B., Kovacs, K., Szamecz, B., Honti, F., Costanzo, M., Baryshnikova, A. et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat. Genet. 43, 656–662 https://doi.org/10.1038/ng.846
    • (2011) Nat. Genet. , vol.43 , pp. 656-662
    • Szappanos, B.1    Kovacs, K.2    Szamecz, B.3    Honti, F.4    Costanzo, M.5    Baryshnikova, A.6
  • 26
    • 85042295059 scopus 로고    scopus 로고
    • Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries
    • Pan, S. and Reed, J.L. (2018) Advances in gap-filling genome-scale metabolic models and model-driven experiments lead to novel metabolic discoveries. Curr. Opin. Biotechnol. 51, 103–108 https://doi.org/10.1016/j.copbio.2017.12.012
    • (2018) Curr. Opin. Biotechnol. , vol.51 , pp. 103-108
    • Pan, S.1    Reed, J.L.2
  • 27
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions
    • Bordbar, A., Monk, J.M., King, Z.A. and Palsson, B.O. (2014) Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 https://doi.org/10.1038/nrg3643
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 107-120
    • Bordbar, A.1    Monk, J.M.2    King, Z.A.3    Palsson, B.O.4
  • 28
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions forpredicting intracellular fluxes in Escherichia coli
    • Schuetz, R., Kuepfer, L. and Sauer, U. (2007) Systematic evaluation of objective functions forpredicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 https://doi.org/10.1038/msb4100162
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 119
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 29
    • 84885376218 scopus 로고    scopus 로고
    • Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation
    • Flahaut, N.A., Wiersma, A., van de Bunt, B., Martens, D.E., Schaap, P.J., Sijtsma, L. et al. (2013) Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl. Microbiol. Biotechnol. 97, 8729–8739 https://doi.org/10.1007/ s00253-013-5140-2
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 8729-8739
    • Flahaut, N.A.1    Wiersma, A.2    Van de Bunt, B.3    Martens, D.E.4    Schaap, P.J.5    Sijtsma, L.6
  • 30
    • 23944440242 scopus 로고    scopus 로고
    • Modeling Lactococcus lactis using a genome-scale flux model
    • Oliveira, A.P., Nielsen, J. and Förster, J. (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5, 39 https://doi.org/10.1186/1471-2180-5-39
    • (2005) BMC Microbiol , vol.5 , pp. 39
    • Oliveira, A.P.1    Nielsen, J.2    Förster, J.3
  • 31
    • 33846015888 scopus 로고    scopus 로고
    • Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model
    • Teusink, B., Wiersma, A., Molenaar, D., Francke, C., de Vos, W.M., Siezen, R.J. et al. (2006) Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J. Biol. Chem. 281, 40041–40048 https://doi.org/10.1074/jbc.M606263200
    • (2006) J. Biol. Chem. , vol.281 , pp. 40041-40048
    • Teusink, B.1    Wiersma, A.2    Molenaar, D.3    Francke, C.4    De Vos, W.M.5    Siezen, R.J.6
  • 32
    • 66249144433 scopus 로고    scopus 로고
    • Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria
    • Pastink, M.I., Teusink, B., Hols, P., Visser, S., de Vos, W.M. and Hugenholtz, J. (2009) Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75, 3627–3633 https://doi.org/10.1128/AEM.00138-09
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 3627-3633
    • Pastink, M.I.1    Teusink, B.2    Hols, P.3    Visser, S.4    De Vos, W.M.5    Hugenholtz, J.6
  • 33
    • 84909619972 scopus 로고    scopus 로고
    • Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A
    • Vinay-Lara, E., Hamilton, J.J., Stahl, B., Broadbent, J.R., Reed, J.L. and Steele, J.L. (2014) Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A. PLoS ONE 9, e110785 https://doi.org/10.1371/journal.pone.0110785
    • (2014) PLoS ONE , vol.9 , pp. e110785
    • Vinay-Lara, E.1    Hamilton, J.J.2    Stahl, B.3    Broadbent, J.R.4    Reed, J.L.5    Steele, J.L.6
  • 34
    • 85016599418 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the metabolic network in Oenococcus oeni to assess wine malolactic fermentation
    • Mendoza, S., Cañón, P., Contreras, A., Ribbeck, M. and Agosin, E. (2017) Genome-scale reconstruction of the metabolic network in Oenococcus oeni to assess wine malolactic fermentation. Front. Microbiol. 8, 534 https://doi.org/10.3389/fmicb.2017.00534
    • (2017) Front. Microbiol. , vol.8 , pp. 534
    • Mendoza, S.1    Cañón, P.2    Contreras, A.3    Ribbeck, M.4    Agosin, E.5
  • 35
    • 85046889343 scopus 로고    scopus 로고
    • Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria
    • Koduru, L., Kim, Y., Bang, J., Lakshmanan, M., Han, N.S. and Lee, D.-Y. (2017) Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria. Sci. Rep. 7, 15721 https://doi.org/10.1038/s41598-017-16026-9
    • (2017) Sci. Rep. , vol.7 , pp. 15721
    • Koduru, L.1    Kim, Y.2    Bang, J.3    Lakshmanan, M.4    Han, N.S.5    Lee, D.-Y.6
  • 37
    • 67650904950 scopus 로고    scopus 로고
    • Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation
    • Teusink, B., Wiersma, A., Jacobs, L., Notebaart, R.A. and Smid, E.J. (2009) Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation. PLoS Comput. Biol. 5, e1000410 https://doi.org/10.1371/journal.pcbi.1000410
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000410
    • Teusink, B.1    Wiersma, A.2    Jacobs, L.3    Notebaart, R.A.4    Smid, E.J.5
  • 38
    • 84872093417 scopus 로고    scopus 로고
    • Analysis of omics data with genome-scale models of metabolism
    • Hyduke, D.R., Lewis, N.E. and Palsson, B.O. (2013) Analysis of omics data with genome-scale models of metabolism. Mol. Biosyst. 9, 167–174 https://doi.org/10.1039/C2MB25453K
    • (2013) Mol. Biosyst. , vol.9 , pp. 167-174
    • Hyduke, D.R.1    Lewis, N.E.2    Palsson, B.O.3
  • 39
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: Integrating ‘omics’ data sets
    • Joyce, A.R. and Palsson, B.O. (2006) The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell Biol. 7, 198–210 https://doi.org/10.1038/nrm1857
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 198-210
    • Joyce, A.R.1    Palsson, B.O.2
  • 40
    • 84866487453 scopus 로고    scopus 로고
    • Integration of expression data in genome-scale metabolic network reconstructions
    • Blazier, A.S. and Papin, J.A. (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front. Physiol. 3, 299 https://doi.org/10.3389/fphys.2012.00299
    • (2012) Front. Physiol. , vol.3 , pp. 299
    • Blazier, A.S.1    Papin, J.A.2
  • 41
    • 84969752776 scopus 로고    scopus 로고
    • Characterizing strain variation in engineered E. Coli using a multi-omics-based workflow
    • Brunk, E., George, K.W., Alonso-Gutierrez, J., Thompson, M., Baidoo, E., Wang, G. et al. (2016) Characterizing strain variation in engineered E. coli using a multi-omics-based workflow. Cell Syst. 2, 335–346 https://doi.org/10.1016/j.cels.2016.04.004
    • (2016) Cell Syst , vol.2 , pp. 335-346
    • Brunk, E.1    George, K.W.2    Alonso-Gutierrez, J.3    Thompson, M.4    Baidoo, E.5    Wang, G.6
  • 42
    • 84930373777 scopus 로고    scopus 로고
    • Prediction of intracellular metabolic states from extracellular metabolomic data
    • Aurich, M.K., Paglia, G., Rolfsson, O., Hrafnsdottir, S., Magnusdottir, M., Stefaniak, M.M. et al. (2015) Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics 11, 603–619 https://doi.org/10.1007/s11306-014-0721-3
    • (2015) Metabolomics , vol.11 , pp. 603-619
    • Aurich, M.K.1    Paglia, G.2    Rolfsson, O.3    Hrafnsdottir, S.4    Magnusdottir, M.5    Stefaniak, M.M.6
  • 43
    • 84990177186 scopus 로고    scopus 로고
    • Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
    • Kim, M., Rai, N., Zorraquino, V. and Tagkopoulos, I. (2016) Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nat. Commun. 7, 13090 https://doi.org/10.1038/ncomms13090
    • (2016) Nat. Commun. , vol.7 , pp. 13090
    • Kim, M.1    Rai, N.2    Zorraquino, V.3    Tagkopoulos, I.4
  • 44
    • 79960558373 scopus 로고    scopus 로고
    • Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis
    • Santos, F., Spinler, J.K., Saulnier, D.M., Molenaar, D., Teusink, B., de Vos, W.M. et al. (2011) Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microb. Cell Fact. 10, 55 https://doi.org/10.1186/ 1475-2859-10-55
    • (2011) Microb. Cell Fact. , vol.10 , pp. 55
    • Santos, F.1    Spinler, J.K.2    Saulnier, D.M.3    Molenaar, D.4    Teusink, B.5    De Vos, W.M.6
  • 45
    • 14544268137 scopus 로고    scopus 로고
    • Uncovering transcriptional regulation of metabolism by using metabolic network topology
    • Patil, K.R. and Nielsen, J. (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl Acad. Sci. U.S.A. 102, 2685–2689 https://doi.org/10.1073/pnas.0406811102
    • (2005) Proc. Natl Acad. Sci. U.S.A. , vol.102 , pp. 2685-2689
    • Patil, K.R.1    Nielsen, J.2
  • 46
    • 77953128693 scopus 로고    scopus 로고
    • Use of genome-scale metabolic models for understanding microbial physiology
    • Liu, L., Agren, R., Bordel, S. and Nielsen, J. (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett. 584, 2556–2564 https://doi.org/10.1016/j.febslet.2010.04.052
    • (2010) FEBS Lett , vol.584 , pp. 2556-2564
    • Liu, L.1    Agren, R.2    Bordel, S.3    Nielsen, J.4
  • 47
    • 85037687527 scopus 로고    scopus 로고
    • Integration of comparative genomics with genome-scale metabolic modeling to investigate strain-specific phenotypical differences
    • Monk, J. and Bosi, E. (2018) Integration of comparative genomics with genome-scale metabolic modeling to investigate strain-specific phenotypical differences. Methods Mol. Biol. 1716, 151–175 https://doi.org/10.1007/978-1-4939-7528-0_7
    • (2018) Methods Mol. Biol. , vol.1716 , pp. 151-175
    • Monk, J.1    Bosi, E.2
  • 48
    • 84971661491 scopus 로고    scopus 로고
    • Analysis of genetic variation and potential applications in genome-scale metabolic modeling
    • Cardoso, J.G., Andersen, M.R., Herrgard, M.J. and Sonnenschein, N. (2015) Analysis of genetic variation and potential applications in genome-scale metabolic modeling. Front. Bioeng. Biotechnol. 3, 13 https://doi.org/10.3389/fbioe.2015.00013
    • (2015) Front. Bioeng. Biotechnol. , vol.3 , pp. 13
    • Cardoso, J.G.1    Andersen, M.R.2    Herrgard, M.J.3    Sonnenschein, N.4
  • 49
    • 85042164575 scopus 로고    scopus 로고
    • Genome-scale modeling of yeast: Chronology, applications and critical perspectives
    • Lopes, H. and Rocha, I. (2017) Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res. 17 https://doi.org/10.1093/femsyr/fox050
    • (2017) FEMS Yeast Res , vol.17
    • Lopes, H.1    Rocha, I.2
  • 50
    • 27744488443 scopus 로고    scopus 로고
    • Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals
    • Mahadevan, R., Burgard, A.P., Famili, I., Dien, S. and Schilling, C.H. (2005) Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals. Biotechnol. Bioprocess Eng. 10, 408–417 https://doi.org/10.1007/BF02989823
    • (2005) Biotechnol. Bioprocess Eng. , vol.10 , pp. 408-417
    • Mahadevan, R.1    Burgard, A.P.2    Famili, I.3    Dien, S.4    Schilling, C.H.5
  • 51
    • 84976549436 scopus 로고    scopus 로고
    • Genome-scale metabolic models as platforms for strain design and biological discovery
    • Mienda, B.S. (2017) Genome-scale metabolic models as platforms for strain design and biological discovery. J. Biomol. Struct. Dyn. 35, 1863–1873 https://doi.org/10.1080/07391102.2016.1197153
    • (2017) J. Biomol. Struct. Dyn. , vol.35 , pp. 1863-1873
    • Mienda, B.S.1
  • 52
    • 40649112563 scopus 로고    scopus 로고
    • The lactic acid bacterium as a cell factory for food ingredient production
    • Hugenholtz, J. (2008) The lactic acid bacterium as a cell factory for food ingredient production. Int. Dairy J. 18, 466–475 https://doi.org/10.1016/j.idairyj.2007.11.015
    • (2008) Int. Dairy J. , vol.18 , pp. 466-475
    • Hugenholtz, J.1
  • 53
    • 84908052283 scopus 로고    scopus 로고
    • Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: A review
    • Waters, D.M., Mauch, A., Coffey, A., Arendt, E.K. and Zannini, E. (2015) Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: a review. Crit. Rev. Food Sci. Nutr. 55, 503–520 https://doi.org/10.1080/10408398.2012.660251
    • (2015) Crit. Rev. Food Sci. Nutr. , vol.55 , pp. 503-520
    • Waters, D.M.1    Mauch, A.2    Coffey, A.3    Arendt, E.K.4    Zannini, E.5
  • 54
    • 84976588026 scopus 로고    scopus 로고
    • Lactic acid bacteria as a cell factory for riboflavin production
    • Thakur, K., Tomar, S.K. and De, S. (2016) Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 9, 441–451 https://doi.org/10.1111/1751-7915.12335
    • (2016) Microb. Biotechnol. , vol.9 , pp. 441-451
    • Thakur, K.1    Tomar, S.K.2    De, S.3
  • 55
    • 85010917657 scopus 로고    scopus 로고
    • Lactic acid bacteria as cell factories for the generation of bioactive peptides
    • Brown, L., Pingitore, E.V., Mozzi, F., Saavedra, L., Villegas, J.M. and Hebert, E.M. (2017) Lactic acid bacteria as cell factories for the generation of bioactive peptides. Protein Pept. Lett. 24, 146–155 https://doi.org/10.2174/0929866524666161123111333
    • (2017) Protein Pept. Lett. , vol.24 , pp. 146-155
    • Brown, L.1    Pingitore, E.V.2    Mozzi, F.3    Saavedra, L.4    Villegas, J.M.5    Hebert, E.M.6
  • 57
    • 84920896587 scopus 로고    scopus 로고
    • Next-generation genome-scale models for metabolic engineering
    • King, Z.A., Lloyd, C.J., Feist, A.M. and Palsson, B.O. (2015) Next-generation genome-scale models for metabolic engineering. Curr. Opin. Biotechnol. 35, 23–29 https://doi.org/10.1016/j.copbio.2014.12.016
    • (2015) Curr. Opin. Biotechnol. , vol.35 , pp. 23-29
    • King, Z.A.1    Lloyd, C.J.2    Feist, A.M.3    Palsson, B.O.4
  • 58
    • 84964043843 scopus 로고    scopus 로고
    • In silico constraint-based strain optimization methods: The quest for optimal cell factories
    • Maia, P., Rocha, M. and Rocha, I. (2016) In silico constraint-based strain optimization methods: the quest for optimal cell factories. Microbiol. Mol. Biol. Rev. 80, 45–67 https://doi.org/10.1128/MMBR.00014-15
    • (2016) Microbiol. Mol. Biol. Rev. , vol.80 , pp. 45-67
    • Maia, P.1    Rocha, M.2    Rocha, I.3
  • 59
    • 84976513521 scopus 로고    scopus 로고
    • Stoichiometric and constraint-based analysis of biochemical reaction networks
    • In (Benner, Findeisen, R., Flockerzi, D., Reichl, U. and Sundmacher, K., eds), Springer International Publishing, Cham
    • Klamt, S., Hädicke, O. and von Kamp, A. (2014) Stoichiometric and constraint-based analysis of biochemical reaction networks. In Large-Scale Networks in Engineering and Life Sciences (Benner, P., Findeisen, R., Flockerzi, D., Reichl, U. and Sundmacher, K., eds), pp. 263–316, Springer International Publishing, Cham
    • (2014) Large-Scale Networks in Engineering and Life Sciences , pp. 263-316
    • Klamt, S.1    Hädicke, O.2    Von Kamp, A.3
  • 60
    • 84860405978 scopus 로고    scopus 로고
    • Mathematical models of cell factories: Moving towards the core of industrial biotechnology
    • Cvijovic, M., Bordel, S. and Nielsen, J. (2011) Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microb. Biotechnol. 4, 572–584 https://doi.org/10.1111/j.1751-7915.2010.00233.x
    • (2011) Microb. Biotechnol. , vol.4 , pp. 572-584
    • Cvijovic, M.1    Bordel, S.2    Nielsen, J.3
  • 61
    • 84938074954 scopus 로고    scopus 로고
    • Co-evolution of strain design methods based on flux balance and elementary mode analysis
    • Machado, D. and Herrgård, M.J. (2015) Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab. Eng. Commun. 2, 85–92 https://doi.org/10.1016/j.meteno.2015.04.001
    • (2015) Metab. Eng. Commun. , vol.2 , pp. 85-92
    • Machado, D.1    Herrgård, M.J.2
  • 62
    • 70449521460 scopus 로고    scopus 로고
    • A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression
    • Oddone, G.M., Mills, D.A. and Block, D.E. (2009) A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. Metab. Eng. 11, 367–381 https://doi.org/10.1016/j.ymben.2009.07.007
    • (2009) Metab. Eng. , vol.11 , pp. 367-381
    • Oddone, G.M.1    Mills, D.A.2    Block, D.E.3
  • 63
    • 85035143234 scopus 로고    scopus 로고
    • Computational methods to assess the production potential of bio-based chemicals
    • In (Jensen, M.K. and Keasling, J.D., eds), Springer, New York
    • Campodonico, M.A., Sukumara, S., Feist, A.M. and Herrgård, M.J. (2018) Computational methods to assess the production potential of bio-based chemicals. In Synthetic Metabolic Pathways: Methods and Protocols (Jensen, M.K. and Keasling, J.D., eds), pp. 97–116, Springer, New York
    • (2018) Synthetic Metabolic Pathways: Methods and Protocols , pp. 97-116
    • Campodonico, M.A.1    Sukumara, S.2    Feist, A.M.3    Herrgård, M.J.4
  • 64
    • 84958233208 scopus 로고    scopus 로고
    • Metabolic assessment of E. Coli as a biofactory for commercial products
    • Zhang, X., Tervo, C.J. and Reed, J.L. (2016) Metabolic assessment of E. coli as a biofactory for commercial products. Metab. Eng. 35, 64–74 https://doi.org/10.1016/j.ymben.2016.01.007
    • (2016) Metab. Eng. , vol.35 , pp. 64-74
    • Zhang, X.1    Tervo, C.J.2    Reed, J.L.3
  • 65
    • 84886539519 scopus 로고    scopus 로고
    • Genetically modified lactic acid bacteria
    • (Mozzi, F., Raya, R.R. and Vignolo, G.M., eds), Wiley-Blackwell, Chichester
    • Renault, P. (2010) Genetically modified lactic acid bacteria. In Biotechnology of Lactic Acid Bacteria: Novel Applications (Mozzi, F., Raya, R.R. and Vignolo, G.M., eds), pp. 361–381, Wiley-Blackwell, Chichester
    • (2010) Biotechnology of Lactic Acid Bacteria: Novel Applications , pp. 361-381
    • Renault, P.1
  • 66
    • 84906834885 scopus 로고    scopus 로고
    • The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology
    • Derkx, P.M., Janzen, T., Sorensen, K.I., Christensen, J.E., Stuer-Lauridsen, B. and Johansen, E. (2014) The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb. Cell Fact. 13(Suppl 13), S5 https://doi.org/10.1186/1475-2859-13-S1-S5
    • (2014) Microb. Cell Fact. , vol.13 , pp. S5
    • Derkx, P.M.1    Janzen, T.2    Sorensen, K.I.3    Christensen, J.E.4    Stuer-Lauridsen, B.5    Johansen, E.6
  • 68
    • 85006058313 scopus 로고    scopus 로고
    • Genome-editing technologies: Principles and applications
    • Gaj, T., Sirk, S.J., Shui, S.L. and Liu, J. (2016) Genome-editing technologies: principles and applications. Cold Spring Harb. Perspect. Biol. 8, a023754 https://doi.org/10.1101/cshperspect.a023754
    • (2016) Cold Spring Harb. Perspect. Biol. , vol.8 , pp. a023754
    • Gaj, T.1    Sirk, S.J.2    Shui, S.L.3    Liu, J.4
  • 70
    • 84939233322 scopus 로고    scopus 로고
    • Metabolic interactions in microbial communities: Untangling the Gordian knot
    • Ponomarova, O. and Patil, K.R. (2015) Metabolic interactions in microbial communities: untangling the Gordian knot. Curr. Opin. Microbiol. 27, 37–44 https://doi.org/10.1016/j.mib.2015.06.014
    • (2015) Curr. Opin. Microbiol. , vol.27 , pp. 37-44
    • Ponomarova, O.1    Patil, K.R.2
  • 71
    • 84928807017 scopus 로고    scopus 로고
    • Unraveling interactions in microbial communities — From co-cultures to microbiomes
    • Tan, J., Zuniga, C. and Zengler, K. (2015) Unraveling interactions in microbial communities — from co-cultures to microbiomes. J. Microbiol. 53, 295–305 https://doi.org/10.1007/s12275-015-5060-1
    • (2015) J. Microbiol. , vol.53 , pp. 295-305
    • Tan, J.1    Zuniga, C.2    Zengler, K.3
  • 73
    • 85045220281 scopus 로고    scopus 로고
    • Model microbial communities for ecosystems biology
    • Blasche, S., Kim, Y., Oliveira, A.P. and Patil, K.R. (2017) Model microbial communities for ecosystems biology. Curr. Opin. Syst. Biol. 6, 51–57 https://doi.org/10.1016/j.coisb.2017.09.002
    • (2017) Curr. Opin. Syst. Biol. , vol.6 , pp. 51-57
    • Blasche, S.1    Kim, Y.2    Oliveira, A.P.3    Patil, K.R.4
  • 74
    • 85006107025 scopus 로고    scopus 로고
    • Constraint-based stoichiometric modelling from single organisms to microbial communities
    • Gottstein, W., Olivier, B.G., Bruggeman, F.J. and Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. J. R. Soc. Interface 13, 20160627 https://doi.org/10.1098/rsif.2016.0627
    • (2016) J. R. Soc. Interface , vol.13 , pp. 20160627
    • Gottstein, W.1    Olivier, B.G.2    Bruggeman, F.J.3    Teusink, B.4
  • 75
    • 84978438292 scopus 로고    scopus 로고
    • Microbial community metabolic modeling: A community data-driven network reconstruction
    • Henry, C.S., Bernstein, H.C., Weisenhorn, P., Taylor, R.C., Lee, J.-Y., Zucker, J. et al. (2016) Microbial community metabolic modeling: a community data-driven network reconstruction. J. Cell Physiol. 231, 2339–2345 https://doi.org/10.1002/jcp.25428
    • (2016) J. Cell Physiol. , vol.231 , pp. 2339-2345
    • Henry, C.S.1    Bernstein, H.C.2    Weisenhorn, P.3    Taylor, R.C.4    Lee, J.-Y.5    Zucker, J.6
  • 76
    • 85021229025 scopus 로고    scopus 로고
    • Perspectives and challenges in microbial communities metabolic modeling
    • Bosi, E., Bacci, G., Mengoni, A. and Fondi, M. (2017) Perspectives and challenges in microbial communities metabolic modeling. Front. Genet. 8, 88 https://doi.org/10.3389/fgene.2017.00088
    • (2017) Front. Genet. , vol.8 , pp. 88
    • Bosi, E.1    Bacci, G.2    Mengoni, A.3    Fondi, M.4
  • 78
    • 63849246681 scopus 로고    scopus 로고
    • Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. Bulgaricus: Involvement of nitrogen, purine, and iron metabolism
    • Herve-Jimenez, L., Guillouard, I., Guedon, E., Boudebbouze, S., Hols, P., Monnet, V. et al. (2009) Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl. Environ. Microbiol. 75, 2062–2073 https://doi.org/10.1128/AEM.01984-08
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 2062-2073
    • Herve-Jimenez, L.1    Guillouard, I.2    Guedon, E.3    Boudebbouze, S.4    Hols, P.5    Monnet, V.6
  • 79
    • 84927157543 scopus 로고    scopus 로고
    • Systems modeling approaches for microbial community studies: From metagenomics to inference of the community structure
    • Hanemaaijer, M., Roling, W.F., Olivier, B.G., Khandelwal, R.A., Teusink, B. and Bruggeman, F.J. (2015) Systems modeling approaches for microbial community studies: from metagenomics to inference of the community structure. Front. Microbiol. 6, 213 https://doi.org/10.3389/fmicb.2015.00213
    • (2015) Front. Microbiol. , vol.6 , pp. 213
    • Hanemaaijer, M.1    Roling, W.F.2    Olivier, B.G.3    Khandelwal, R.A.4    Teusink, B.5    Bruggeman, F.J.6
  • 80
    • 84969674096 scopus 로고    scopus 로고
    • Predicting microbial interactions through computational approaches
    • Li, C., Lim, K.M., Chng, K.R. and Nagarajan, N. (2016) Predicting microbial interactions through computational approaches. Methods 102, 12–19 https://doi.org/10.1016/j.ymeth.2016.02.019
    • (2016) Methods , vol.102 , pp. 12-19
    • Li, C.1    Lim, K.M.2    Chng, K.R.3    Nagarajan, N.4
  • 81
    • 85046886402 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling and its application to microbial communities
    • The National Academies Press, Washington (DC) PMID: 28806041
    • Reed, J.L. (2017) Genome-scale metabolic modeling and its application to microbial communities. In The Chemistry of Microbiomes: Proceedings of a Seminar Series, The National Academies Press, Washington (DC) PMID: 28806041
    • (2017) The Chemistry of Microbiomes: Proceedings of A Seminar Series
    • Reed, J.L.1
  • 82
    • 84929440325 scopus 로고    scopus 로고
    • Metabolic dependencies drive species co-occurrence in diverse microbial communities
    • Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D.R., Bork, P. and Patil, K.R. (2015) Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. U.S.A. 112, 6449–6454 https://doi.org/10.1073/pnas.1421834112
    • (2015) Proc. Natl Acad. Sci. U.S.A. , vol.112 , pp. 6449-6454
    • Zelezniak, A.1    Andrejev, S.2    Ponomarova, O.3    Mende, D.R.4    Bork, P.5    Patil, K.R.6
  • 83
    • 84949234080 scopus 로고    scopus 로고
    • A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods
    • Kort, R., Westerik, N., Mariela Serrano, L., Douillard, F.P., Gottstein, W., Mukisa, I.M. et al. (2015) A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods. Microb. Cell Fact. 14, 195 https://doi.org/10.1186/s12934-015-0370-x
    • (2015) Microb. Cell Fact. , vol.14 , pp. 195
    • Kort, R.1    Westerik, N.2    Mariela Serrano, L.3    Douillard, F.P.4    Gottstein, W.5    Mukisa, I.M.6
  • 84
    • 85030158230 scopus 로고    scopus 로고
    • Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow
    • e6
    • Ponomarova, O., Gabrielli, N., Sevin, D.C., Mulleder, M., Zirngibl, K., Bulyha, K. et al. (2017) Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 https://doi.org/10.1016/j.cels.2017.09.002
    • (2017) Cell Syst , vol.5 , pp. 345-357
    • Ponomarova, O.1    Gabrielli, N.2    Sevin, D.C.3    Mulleder, M.4    Zirngibl, K.5    Bulyha, K.6
  • 85
    • 85011094697 scopus 로고    scopus 로고
    • Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
    • Magnúsdóttir, S., Heinken, A., Kutt, L., Ravcheev, D.A., Bauer, E., Noronha, A. et al. (2017) Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 https://doi.org/10.1038/nbt.3703
    • (2017) Nat. Biotechnol. , vol.35 , pp. 81-89
    • Magnúsdóttir, S.1    Heinken, A.2    Kutt, L.3    Ravcheev, D.A.4    Bauer, E.5    Noronha, A.6
  • 87
    • 84883389182 scopus 로고    scopus 로고
    • Understanding the interactions between bacteria in the human gut through metabolic modeling
    • Article number
    • Shoaie, S., Karlsson, F., Mardinoglu, A., Nookaew, I., Bordel, S. and Nielsen, J. (2013) Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3, Article number: 2532 https://doi.org/10.1038/srep02532
    • (2013) Sci. Rep. , vol.3
    • Shoaie, S.1    Karlsson, F.2    Mardinoglu, A.3    Nookaew, I.4    Bordel, S.5    Nielsen, J.6
  • 88
    • 84897947195 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction
    • El-Semman, I.E. Karlsson, F.H., Shoaie, S., Nookaew, I., Soliman, T.H. and Nielsen, J. (2014) Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol. 8, 41 https://doi.org/10.1186/ 1752-0509-8-41
    • (2014) BMC Syst. Biol. , vol.8 , pp. 41
    • El-Semman, I.E.1    Karlsson, F.H.2    Shoaie, S.3    Nookaew, I.4    Soliman, T.H.5    Nielsen, J.6
  • 89
    • 84871588520 scopus 로고    scopus 로고
    • Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut
    • Heinken, A., Sahoo, S., Fleming, R.M. and Thiele, I. (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4, 28–40 https://doi.org/10.4161/gmic.22370
    • (2013) Gut Microbes , vol.4 , pp. 28-40
    • Heinken, A.1    Sahoo, S.2    Fleming, R.M.3    Thiele, I.4
  • 90
    • 84878949529 scopus 로고    scopus 로고
    • Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells
    • Sahoo, S. and Thiele, I. (2013) Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells. Hum. Mol. Genet. 22, 2705–2722 https://doi.org/10.1093/hmg/ddt119
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 2705-2722
    • Sahoo, S.1    Thiele, I.2
  • 91
    • 84881110826 scopus 로고    scopus 로고
    • Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules
    • Levy, R. and Borenstein, E. (2013) Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl Acad. Sci. U.S.A. 110, 12804–12809 https://doi.org/10.1073/pnas.1300926110
    • (2013) Proc. Natl Acad. Sci. U.S.A. , vol.110 , pp. 12804-12809
    • Levy, R.1    Borenstein, E.2
  • 92
    • 85038215952 scopus 로고    scopus 로고
    • Modeling metabolism of the human gut microbiome
    • Magnúsdóttir, S. and Thiele, I. (2018) Modeling metabolism of the human gut microbiome. Curr. Opin. Biotechnol. 51, 90–96 https://doi.org/10.1016/j.copbio.2017.12.005
    • (2018) Curr. Opin. Biotechnol. , vol.51 , pp. 90-96
    • Magnúsdóttir, S.1    Thiele, I.2
  • 93
    • 85019614311 scopus 로고    scopus 로고
    • Next-generation probiotics: The spectrum from probiotics to live biotherapeutics
    • O’Toole, P.W., Marchesi, J.R. and Hill, C. (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 https://doi.org/10.1038/nmicrobiol.2017.57
    • (2017) Nat. Microbiol. , vol.2 , pp. 17057
    • O’Toole, P.W.1    Marchesi, J.R.2    Hill, C.3
  • 94
    • 84962538599 scopus 로고    scopus 로고
    • Manipulating bacterial communities by in situ microbiome engineering
    • Sheth, R.U., Cabral, V., Chen, S.P. and Wang, H.H. (2016) Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 https://doi.org/10.1016/j.tig.2016.01.005
    • (2016) Trends Genet , vol.32 , pp. 189-200
    • Sheth, R.U.1    Cabral, V.2    Chen, S.P.3    Wang, H.H.4
  • 95
    • 85014919668 scopus 로고    scopus 로고
    • Model-based quantification of metabolic interactions from dynamic microbial-community data
    • Hanemaaijer, M., Olivier, B.G., Roling, W.F., Bruggeman, F.J. and Teusink, B. (2017) Model-based quantification of metabolic interactions from dynamic microbial-community data. PLoS ONE 12, e0173183 https://doi.org/10.1371/journal.pone.0173183
    • (2017) PLoS ONE , vol.12 , pp. e0173183
    • Hanemaaijer, M.1    Olivier, B.G.2    Roling, W.F.3    Bruggeman, F.J.4    Teusink, B.5
  • 98
    • 84897714751 scopus 로고    scopus 로고
    • Production of aroma compounds in lactic fermentations
    • Smid, E.J. and Kleerebezem, M. (2014) Production of aroma compounds in lactic fermentations. Annu. Rev. Food Sci. Technol. 5, 313–326 https://doi.org/10.1146/annurev-food-030713-092339
    • (2014) Annu. Rev. Food Sci. Technol. , vol.5 , pp. 313-326
    • Smid, E.J.1    Kleerebezem, M.2
  • 99
    • 85041465200 scopus 로고    scopus 로고
    • Polysaccharide production by lactic acid bacteria: From genes to industrial applications
    • Zeidan, A.A., Poulsen, V.K., Janzen, T., Buldo, P., Derkx, P.M.F., Øregaard, G. et al. (2017) Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol. Rev. 41, S168–S200 https://doi.org/10.1093/femsre/fux017
    • (2017) FEMS Microbiol. Rev. , vol.41 , pp. S168-S200
    • Zeidan, A.A.1    Poulsen, V.K.2    Janzen, T.3    Buldo, P.4    Derkx, P.M.F.5    Øregaard, G.6
  • 103
    • 0033797405 scopus 로고    scopus 로고
    • Improvement of microbial strains and fermentation processes
    • Parekh, S., Vinci, V.A. and Strobel, R.J. (2000) Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54, 287–301 https://doi.org/10.1007/s002530000403
    • (2000) Appl. Microbiol. Biotechnol. , vol.54 , pp. 287-301
    • Parekh, S.1    Vinci, V.A.2    Strobel, R.J.3
  • 104
    • 42549143731 scopus 로고    scopus 로고
    • Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence
    • Song, H., Kim, T.Y., Choi, B.-K., Choi, S.J., Nielsen, L.K., Chang, H.N. et al. (2008) Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence. Appl. Microbiol. Biotechnol. 79, 263–272 https://doi.org/10.1007/s00253-008-1425-2
    • (2008) Appl. Microbiol. Biotechnol. , vol.79 , pp. 263-272
    • Song, H.1    Kim, T.Y.2    Choi, B.-K.3    Choi, S.J.4    Nielsen, L.K.5    Chang, H.N.6
  • 105
    • 85031690141 scopus 로고    scopus 로고
    • Probing the genome-scale metabolic landscape of Bordetella pertussis, the causative agent of whooping cough
    • Santos, B.., Olivier, F., Boele, B.G., Smessaert, J., De Rop, V., Krumpochova, P. et al. (2017) Probing the genome-scale metabolic landscape of Bordetella pertussis, the causative agent of whooping cough. Appl. Environ. Microbiol. 83, e01528-17 https://doi.org/10.1128/AEM.01528-17
    • (2017) Appl. Environ. Microbiol. , vol.83 , pp. e01528-e01617
    • Santos, B.1    Olivier, F.2    Boele, B.G.3    Smessaert, J.4    De Rop, V.5    Krumpochova, P.6
  • 106
    • 33645462347 scopus 로고    scopus 로고
    • Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri
    • Feist, A.M., Scholten, J.C., Palsson, B.O., Brockman, F.J. and Ideker, T. (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2, 2006.0004 https://doi.org/10.1038/msb4100046
    • (2006) Mol. Syst. Biol. , vol.2
    • Feist, A.M.1    Scholten, J.C.2    Palsson, B.O.3    Brockman, F.J.4    Ideker, T.5
  • 107
    • 33646165647 scopus 로고    scopus 로고
    • Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media
    • Imielinski, M., Belta, C., Rubin, H. and Halasz, A. (2006) Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media. Biophys. J. 90, 2659–2672 https://doi.org/10.1529/biophysj.105.069278
    • (2006) Biophys. J. , vol.90 , pp. 2659-2672
    • Imielinski, M.1    Belta, C.2    Rubin, H.3    Halasz, A.4
  • 108
    • 34147167214 scopus 로고    scopus 로고
    • Fermentation technologies for the production of probiotics with high viability and functionality
    • Lacroix, C. and Yildirim, S. (2007) Fermentation technologies for the production of probiotics with high viability and functionality. Curr. Opin. Biotechnol. 18, 176–183 https://doi.org/10.1016/j.copbio.2007.02.002
    • (2007) Curr. Opin. Biotechnol. , vol.18 , pp. 176-183
    • Lacroix, C.1    Yildirim, S.2
  • 109
    • 1142293808 scopus 로고    scopus 로고
    • Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. Bulgaricus
    • Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X. and Gibbs, P. (2004) Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. . Biotechnol. Prog. 20, 248–254 https://doi.org/10.1021/bp034165y
    • (2004) Biotechnol. Prog. , vol.20 , pp. 248-254
    • Carvalho, A.S.1    Silva, J.2    Ho, P.3    Teixeira, P.4    Malcata, F.X.5    Gibbs, P.6
  • 111
    • 85017208176 scopus 로고    scopus 로고
    • Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics
    • Bordbar, A., Yurkovich, J.T., Paglia, G., Rolfsson, O., Sigurjonsson, O.E. and Palsson, B.O. (2017) Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci. Rep. 7, 46249 https://doi.org/10.1038/srep46249
    • (2017) Sci. Rep. , vol.7 , pp. 46249
    • Bordbar, A.1    Yurkovich, J.T.2    Paglia, G.3    Rolfsson, O.4    Sigurjonsson, O.E.5    Palsson, B.O.6
  • 112
    • 84863614552 scopus 로고    scopus 로고
    • Transcriptomes reveal genetic signatures underlying physiological variations imposed by different fermentation conditions in Lactobacillus plantarum
    • Bron, P.A., Wels, M., Bongers, R.S., van de Veen, H.V.B., Wiersma, A., Overmars, L. et al. (2012) Transcriptomes reveal genetic signatures underlying physiological variations imposed by different fermentation conditions in Lactobacillus plantarum. PLoS ONE 7, e38720 https://doi.org/10.1371/journal.pone.0038720
    • (2012) PLoS ONE , vol.7 , pp. e38720
    • Bron, P.A.1    Wels, M.2    Bongers, R.S.3    Van de Veen, H.V.B.4    Wiersma, A.5    Overmars, L.6
  • 113
    • 84855929956 scopus 로고    scopus 로고
    • Using the reconstructed genome-scale human metabolic network to study physiology and pathology
    • Bordbar, A. and Palsson, B.O. (2012) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271, 131–141 https://doi.org/10.1111/j.1365-2796.2011.02494.x
    • (2012) J. Intern. Med. , vol.271 , pp. 131-141
    • Bordbar, A.1    Palsson, B.O.2
  • 114
    • 84867554554 scopus 로고    scopus 로고
    • Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling
    • Jerby, L. and Ruppin, E. (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin. Cancer Res. 18, 5572–5584 https://doi.org/10.1158/1078-0432.CCR-12-1856
    • (2012) Clin. Cancer Res. , vol.18 , pp. 5572-5584
    • Jerby, L.1    Ruppin, E.2
  • 115
    • 84891956059 scopus 로고    scopus 로고
    • Microbial heterogeneity affects bioprocess robustness: Dynamic single-cell analysis contributes to understanding of microbial populations
    • Delvigne, F. and Goffin, P. (2014) Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol. J. 9, 61–72 https://doi.org/10.1002/biot.201300119
    • (2014) Biotechnol. J. , vol.9 , pp. 61-72
    • Delvigne, F.1    Goffin, P.2
  • 116
    • 84897627707 scopus 로고    scopus 로고
    • Lost in transition: Start-up of glycolysis yields subpopulations of nongrowing cells
    • van Heerden, J.H., Wortel, M.T., Bruggeman, F.J., Heijnen, J.J., Bollen, Y.J., Planque, R. et al. (2014) Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343, 1245114 https://doi.org/10.1126/science.1245114
    • (2014) Science , vol.343 , pp. 1245114
    • Van Heerden, J.H.1    Wortel, M.T.2    Bruggeman, F.J.3    Heijnen, J.J.4    Bollen, Y.J.5    Planque, R.6
  • 117
    • 85030679471 scopus 로고    scopus 로고
    • A protocol for generating and exchanging (genome-scale) metabolic resource allocation models
    • Reimers, A.-M., Lindhorst, H. and Waldherr, S. (2017) A protocol for generating and exchanging (genome-scale) metabolic resource allocation models. Metabolites 7, 47 https://doi.org/10.3390/metabo7030047
    • (2017) Metabolites , vol.7 , pp. 47
    • Reimers, A.-M.1    Lindhorst, H.2    Waldherr, S.3
  • 119
    • 84937573954 scopus 로고    scopus 로고
    • Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production
    • Zhuang, K.H. and Herrgard, M.J. (2015) Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production. Metab. Eng. 31, 1–12 https://doi.org/10.1016/j.ymben.2015.05.007
    • (2015) Metab. Eng. , vol.31 , pp. 1-12
    • Zhuang, K.H.1    Herrgard, M.J.2
  • 120
    • 84875973063 scopus 로고    scopus 로고
    • The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum
    • Agren, R., Liu, L., Shoaie, S., Vongsangnak, W., Nookaew, I. and Nielsen, J. (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput. Biol. 9, e1002980 https://doi.org/10.1371/journal.pcbi.1002980
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1002980
    • Agren, R.1    Liu, L.2    Shoaie, S.3    Vongsangnak, W.4    Nookaew, I.5    Nielsen, J.6
  • 121
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models
    • Henry, C.S., DeJongh, M., Best, A.A., Frybarger, P.M., Linsay, B. and Stevens, R.L. (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 https://doi.org/10.1038/nbt.1672
    • (2010) Nat. Biotechnol. , vol.28 , pp. 977-982
    • Henry, C.S.1    DeJongh, M.2    Best, A.A.3    Frybarger, P.M.4    Linsay, B.5    Stevens, R.L.6
  • 122
    • 84856038703 scopus 로고    scopus 로고
    • The suBliMinaL toolbox: Automating steps in the reconstruction of metabolic networks
    • Swainston, N., Smallbone, K., Mendes, P., Kell, D. and Paton, N. (2011) The suBliMinaL toolbox: automating steps in the reconstruction of metabolic networks. J. Integr. Bioinform. 8, 186 https://doi.org/10.1515/jib-2011-186
    • (2011) J. Integr. Bioinform. , vol.8 , pp. 186
    • Swainston, N.1    Smallbone, K.2    Mendes, P.3    Kell, D.4    Paton, N.5
  • 123
    • 84930225331 scopus 로고    scopus 로고
    • Reconstructing genome-scale metabolic models with merlin
    • Dias, O., Rocha, M., Ferreira, E.C. and Rocha, I. (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 43, 3899–3910 https://doi.org/10.1093/nar/gkv294
    • (2015) Nucleic Acids Res , vol.43 , pp. 3899-3910
    • Dias, O.1    Rocha, M.2    Ferreira, E.C.3    Rocha, I.4
  • 125
    • 79960126760 scopus 로고    scopus 로고
    • Rbionet: A COBRA toolbox extension for reconstructing high-quality biochemical networks
    • Thorleifsson, S.G. and Thiele, I. (2011) Rbionet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27, 2009–2010 https://doi.org/10.1093/bioinformatics/btr308
    • (2011) Bioinformatics , vol.27 , pp. 2009-2010
    • Thorleifsson, S.G.1    Thiele, I.2
  • 126
    • 84886740491 scopus 로고    scopus 로고
    • Path2models: Large-scale generation of computational models from biochemical pathway maps
    • Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R. et al. (2013) Path2models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7, 116 https://doi.org/10.1186/1752-0509-7-116
    • (2013) BMC Syst. Biol. , vol.7 , pp. 116
    • Büchel, F.1    Rodriguez, N.2    Swainston, N.3    Wrzodek, C.4    Czauderna, T.5    Keller, R.6
  • 127
    • 84891635463 scopus 로고    scopus 로고
    • Software platforms to facilitate reconstructing genome-scale metabolic networks
    • Hamilton, J.J. and Reed, J.L. (2014) Software platforms to facilitate reconstructing genome-scale metabolic networks. Environ. Microbiol. 16, 49–59 https://doi.org/10.1111/1462-2920.12312
    • (2014) Environ. Microbiol. , vol.16 , pp. 49-59
    • Hamilton, J.J.1    Reed, J.L.2
  • 128
    • 85046906819 scopus 로고    scopus 로고
    • Fast automated reconstruction of genome-scale metabolic models for microbial species and communities
    • Machado, D., Andrejev, S., Tramontano, M. and Patil, K. R. (2018) Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. bioRxiv, 223198 https://doi.org/10.1101/223198
    • (2018) bioRxiv , pp. 223198
    • Machado, D.1    Andrejev, S.2    Tramontano, M.3    Patil, K.R.4
  • 129
    • 34547676311 scopus 로고    scopus 로고
    • Optimization based automated curation of metabolic reconstructions
    • Kumar, V.S., Dasika, M.S. and Maranas, C.D. (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinf. 8, 212 https://doi.org/10.1186/1471-2105-8-212
    • (2007) BMC Bioinf , vol.8 , pp. 212
    • Kumar, V.S.1    Dasika, M.S.2    Maranas, C.D.3
  • 131
    • 78651335279 scopus 로고    scopus 로고
    • Systematizing the generation of missing metabolic knowledge
    • Orth, J.D. and Palsson, B.O. (2010) Systematizing the generation of missing metabolic knowledge. Biotechnol. Bioeng. 107, 403–412 https://doi.org/10.1002/bit.22844
    • (2010) Biotechnol. Bioeng. , vol.107 , pp. 403-412
    • Orth, J.D.1    Palsson, B.O.2
  • 132
    • 84907026934 scopus 로고    scopus 로고
    • Fastgapfill: Efficient gap filling in metabolic networks
    • Thiele, I., Vlassis, N. and Fleming, R.M. (2014) Fastgapfill: efficient gap filling in metabolic networks. Bioinformatics 30, 2529–2531 https://doi.org/10.1093/bioinformatics/btu321
    • (2014) Bioinformatics , vol.30 , pp. 2529-2531
    • Thiele, I.1    Vlassis, N.2    Fleming, R.M.3
  • 133
    • 84940514861 scopus 로고    scopus 로고
    • Sequence-based network completion reveals the integrality of missing reactions in metabolic networks
    • Krumholz, E.W. and Libourel, I.G. (2015) Sequence-based network completion reveals the integrality of missing reactions in metabolic networks. J. Biol. Chem. 290, 19197–19207 https://doi.org/10.1074/jbc.M114.634121
    • (2015) J. Biol. Chem. , vol.290 , pp. 19197-19207
    • Krumholz, E.W.1    Libourel, I.G.2
  • 134
    • 85020322393 scopus 로고    scopus 로고
    • Estimation of biomass composition from genomic and transcriptomic information
    • Santos, S. and Rocha, I. (2016) Estimation of biomass composition from genomic and transcriptomic information. J. Integr. Bioinform. 13, 285 https://doi.org/10.1515/jib-2016-285
    • (2016) J. Integr. Bioinform. , vol.13 , pp. 285
    • Santos, S.1    Rocha, I.2
  • 135
    • 84892965416 scopus 로고    scopus 로고
    • Software applications toward quantitative metabolic flux analysis and modeling
    • Dandekar, T., Fieselmann, A., Majeed, S. and Ahmed, Z. (2014) Software applications toward quantitative metabolic flux analysis and modeling. Brief. Bioinform. 15, 91–107 https://doi.org/10.1093/bib/bbs065
    • (2014) Brief. Bioinform. , vol.15 , pp. 91-107
    • Dandekar, T.1    Fieselmann, A.2    Majeed, S.3    Ahmed, Z.4
  • 136
    • 84920923824 scopus 로고    scopus 로고
    • Computing the functional proteome: Recent progress and future prospects for genome-scale models
    • O’Brien, E.J. and Palsson, B.O. (2015) Computing the functional proteome: recent progress and future prospects for genome-scale models. Curr. Opin. Biotechnol. 34, 125–134 https://doi.org/10.1016/j.copbio.2014.12.017
    • (2015) Curr. Opin. Biotechnol. , vol.34 , pp. 125-134
    • O’Brien, E.J.1    Palsson, B.O.2
  • 137
    • 85027590368 scopus 로고    scopus 로고
    • Resource allocation in living organisms
    • Goelzer, A. and Fromion, V. (2017) Resource allocation in living organisms. Biochem. Soc. Trans. 45, 945–952 https://doi.org/10.1042/BST20160436
    • (2017) Biochem. Soc. Trans. , vol.45 , pp. 945-952
    • Goelzer, A.1    Fromion, V.2
  • 138
    • 85042407052 scopus 로고    scopus 로고
    • Metabolic models of protein allocation call for the kinetome
    • Nilsson, A., Nielsen, J. and Palsson, B.O. (2017) Metabolic models of protein allocation call for the kinetome. Cell Syst. 5, 538–541 https://doi.org/10.1016/j.cels.2017.11.013
    • (2017) Cell Syst , vol.5 , pp. 538-541
    • Nilsson, A.1    Nielsen, J.2    Palsson, B.O.3
  • 140
    • 85028309923 scopus 로고    scopus 로고
    • Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
    • Sanchez, B.J., Zhang, C., Nilsson, A., Lahtvee, P.J., Kerkhoven, E.J. and Nielsen, J. (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935 https://doi.org/10.15252/msb.20167411
    • (2017) Mol. Syst. Biol. , vol.13 , pp. 935
    • Sanchez, B.J.1    Zhang, C.2    Nilsson, A.3    Lahtvee, P.J.4    Kerkhoven, E.J.5    Nielsen, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.