메뉴 건너뛰기




Volumn 6, Issue , 2018, Pages 24411-24432

A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends

Author keywords

cyber physical systems; deep learning; emergent applications; Human centered smart systems; Internet of Things; networking; neural networks; platform; security; survey

Indexed keywords

CYBER PHYSICAL SYSTEM; EMBEDDED SYSTEMS; INTERNET OF THINGS; JOB ANALYSIS; LEARNING SYSTEMS; NEURAL NETWORKS; NEURONS; PERSONNEL TRAINING; SURVEYING; SURVEYS;

EID: 85046378997     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2018.2830661     Document Type: Article
Times cited : (513)

References (170)
  • 2
    • 85047745449 scopus 로고    scopus 로고
    • [Online]
    • (2017). Caffe. [Online]. Available: http://caffe.berkeleyvision.org/
    • (2017) Caffe.
  • 8
    • 85030639026 scopus 로고    scopus 로고
    • [Online]
    • (2017). The Microsoft Cognitive Toolkit. [Online]. Available: https://docs.microsoft.com/en-us/cognitive-toolkit/
    • (2017) The Microsoft Cognitive Toolkit.
  • 10
    • 85047740225 scopus 로고    scopus 로고
    • [Online]
    • (2017). Theano. [Online]. Available: http://deeplearning.net/software/ theano/
    • (2017) Theano.
  • 13
    • 84984848251 scopus 로고    scopus 로고
    • Next generation 5G wireless networks: A comprehensive survey
    • 3rd Quart.
    • M. Agiwal, A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617-1655, 3rd Quart., 2016.
    • (2016) IEEE Commun. Surveys Tuts. , vol.18 , Issue.3 , pp. 1617-1655
    • Agiwal, M.1    Roy, A.2    Saxena, N.3
  • 14
    • 85045420000 scopus 로고    scopus 로고
    • Deep abstraction and weighted feature selection forWi-Fi impersonation detection
    • Mar.
    • M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, "Deep abstraction and weighted feature selection forWi-Fi impersonation detection," IEEE Trans. Inf. Forensics Security, vol. 13, no. 3, pp. 621-636, Mar. 2018.
    • (2018) IEEE Trans. Inf. Forensics Security , vol.13 , Issue.3 , pp. 621-636
    • Aminanto, M.E.1    Choi, R.2    Tanuwidjaja, H.C.3    Yoo, P.D.4    Kim, K.5
  • 15
    • 85018466550 scopus 로고    scopus 로고
    • DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning
    • C. Angermueller, H. J. Lee,W. Reik, and O. Stegle, "DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning," Genome Biol., vol. 18, no. 1, p. 67, 2017.
    • (2017) Genome Biol. , vol.18 , Issue.1 , pp. 67
    • Angermueller, C.1    Lee, H.J.2    Reik, W.3    Stegle, O.4
  • 17
    • 85012146253 scopus 로고    scopus 로고
    • Enhancing deep learning sentiment analysis with ensemble techniques in social applications
    • Jul.
    • O. Araque, I. Corcuera-Platas, J. F. Sánchez-Rada, and C. A. Iglesias, "Enhancing deep learning sentiment analysis with ensemble techniques in social applications," Expert Syst. Appl., vol. 77, pp. 236-246, Jul. 2017.
    • (2017) Expert Syst. Appl. , vol.77 , pp. 236-246
    • Araque, O.1    Corcuera-Platas, I.2    Sánchez-Rada, J.F.3    Iglesias, C.A.4
  • 18
    • 85017035500 scopus 로고    scopus 로고
    • Dimensionality reduction using deep belief network in big data case study: Hyperspectral image classification
    • Oct.
    • D. M. S. Arsa, G. Jati, A. J. Mantau, and I. Wasito, "Dimensionality reduction using deep belief network in big data case study: Hyperspectral image classification," in Proc. Int.Workshop Big Data Inf. Secur. (IWBIS), Oct. 2016, pp. 71-76.
    • (2016) Proc. Int.Workshop Big Data Inf. Secur. (IWBIS) , pp. 71-76
    • Arsa, D.M.S.1    Jati, G.2    Mantau, A.J.3    Wasito, I.4
  • 20
    • 85033240356 scopus 로고    scopus 로고
    • Deep learning approach to the Higgs boson CP measurement in H → τ τ decay and associated systematics
    • E. Barberio, B. Le, E. Richter-Was, Z. Was, D. Zanzi, and J. Zaremba, "Deep learning approach to the Higgs boson CP measurement in H → τ τ decay and associated systematics," Phys. Rev., vol. D96, no. 7, p. 073002, 2017.
    • (2017) Phys. Rev. , vol.D96 , Issue.7 , pp. 073002
    • Barberio, E.1    Le, B.2    Richter-Was, E.3    Was, Z.4    Zanzi, D.5    Zaremba, J.6
  • 21
    • 62749117203 scopus 로고    scopus 로고
    • Reinforcement distribution in fuzzy Q-learning
    • A. Bonarini, A. Lazaric, F. Montrone, and M. Restelli, "Reinforcement distribution in fuzzy Q-learning," Fuzzy Sets Syst., vol. 160, no. 10, pp. 1420-1443, 2009.
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.10 , pp. 1420-1443
    • Bonarini, A.1    Lazaric, A.2    Montrone, F.3    Restelli, M.4
  • 23
    • 85046299195 scopus 로고    scopus 로고
    • DeepCorrect: Correcting DNN models against image distortions
    • May
    • T. S. Borkar and L. J. Karam, "DeepCorrect: Correcting DNN models against image distortions," CoRR, vol. abs/1705.02406, May 2017.
    • (2017) CoRR , vol.ABS1705.02406
    • Borkar, T.S.1    Karam, L.J.2
  • 24
    • 84971516631 scopus 로고    scopus 로고
    • A survey of data mining and machine learning methods for cyber security intrusion detection
    • 2nd Quart.
    • A. L. Buczak and E. Guven, "A survey of data mining and machine learning methods for cyber security intrusion detection," IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1153-1176, 2nd Quart., 2016.
    • (2016) IEEE Commun. Surveys Tuts. , vol.18 , Issue.2 , pp. 1153-1176
    • Buczak, A.L.1    Guven, E.2
  • 25
    • 84923318381 scopus 로고    scopus 로고
    • Big data deep learning: Challenges and perspectives
    • X.W. Chen and X. Lin, "Big data deep learning: Challenges and perspectives," IEEE Access, vol. 2, pp. 514-525, 2014.
    • (2014) IEEE Access , vol.2 , pp. 514-525
    • Chen, X.W.1    Lin, X.2
  • 30
    • 85041286281 scopus 로고    scopus 로고
    • Unsupervised obstacle detection in driving environments using deep-learning-based stereovision
    • Feb.
    • A. Dairi, F. Harrou, M. Senouci, and Y. Sun, "Unsupervised obstacle detection in driving environments using deep-learning-based stereovision," Robot. Auto. Syst., vol. 10, pp. 287-301, Feb. 2018.
    • (2018) Robot. Auto. Syst. , vol.10 , pp. 287-301
    • Dairi, A.1    Harrou, F.2    Senouci, M.3    Sun, Y.4
  • 32
    • 85007164413 scopus 로고    scopus 로고
    • Application of deep belief networks for opcode based malware detection
    • Jul.
    • Y. Ding, S. Chen, and J. Xu, "Application of deep belief networks for opcode based malware detection," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016, pp. 3901-3908.
    • (2016) Proc. Int. Joint Conf. Neural Netw. (IJCNN) , pp. 3901-3908
    • Ding, Y.1    Chen, S.2    Xu, J.3
  • 34
    • 85028457260 scopus 로고    scopus 로고
    • A reconfigurable streaming deep convolutional neural network accelerator for Internet of Things
    • Jan.
    • L. Du et al., "A reconfigurable streaming deep convolutional neural network accelerator for Internet of Things," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 1, pp. 198-208, Jan. 2018.
    • (2018) IEEE Trans. Circuits Syst. I, Reg. Papers , vol.65 , Issue.1 , pp. 198-208
    • Du, L.1
  • 35
    • 85016967048 scopus 로고    scopus 로고
    • Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived sst data
    • Dec.
    • A. Ducournau and R. Fablet, "Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived sst data," in Proc. 9th IAPR Workshop Pattern Recognit. Remote Sens. (PRRS), Dec. 2016, pp. 1-6.
    • (2016) Proc. 9th IAPR Workshop Pattern Recognit. Remote Sens. (PRRS) , pp. 1-6
    • Ducournau, A.1    Fablet, R.2
  • 36
    • 84953744670 scopus 로고    scopus 로고
    • Towards experimental evaluation of intelligent transportation system safety and traffic efficiency
    • Jun.
    • N. Ekedebe, C. Lu, and W. Yu, "Towards experimental evaluation of intelligent transportation system safety and traffic efficiency," in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 3757-3762.
    • (2015) Proc. IEEE Int. Conf. Commun. (ICC) , pp. 3757-3762
    • Ekedebe, N.1    Lu, C.2    Yu, W.3
  • 37
    • 85028914209 scopus 로고    scopus 로고
    • Reconstructing cell cycle and disease progression using deep learning
    • P. Eulenberg et al., "Reconstructing cell cycle and disease progression using deep learning," Nature Commun., vol. 8, no. 1, p. 463, 2017.
    • (2017) Nature Commun. , vol.8 , Issue.1 , pp. 463
    • Eulenberg, P.1
  • 38
    • 85032434210 scopus 로고    scopus 로고
    • State-of-the-art deep learning: Evolving machine intelligence toward tomorrow's intelligent network traffic control systems
    • 4th Quart.
    • Z. M. Fadlullah et al., "State-of-the-art deep learning: Evolving machine intelligence toward tomorrow's intelligent network traffic control systems," IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2432-2455, 4th Quart., 2017.
    • (2017) IEEE Commun. Surveys Tuts. , vol.19 , Issue.4 , pp. 2432-2455
    • Fadlullah, Z.M.1
  • 39
    • 85047764247 scopus 로고    scopus 로고
    • Deep learning with long short-term memory networks for financial market predictions
    • T. Fischer and C. Krauss, "Deep learning with long short-term memory networks for financial market predictions," Eur. J. Oper. Res., 2017.
    • (2017) Eur. J. Oper. Res.
    • Fischer, T.1    Krauss, C.2
  • 41
    • 84939194023 scopus 로고    scopus 로고
    • Towards mapreduce based machine learning techniques for processing massive network threat monitoring data
    • S.Yu, X. Lin, J. Misic, and X. Shen, Eds. Boca Raton, FL, USA: CRC Press
    • L. Ge, H. Zhang, G. Xu, W. Yu, C. Chen, and E. P. Blasch, "Towards mapreduce based machine learning techniques for processing massive network threat monitoring data," in Networking for Big Data, S.Yu, X. Lin, J. Misic, and X. Shen, Eds. Boca Raton, FL, USA: CRC Press, 2015.
    • (2015) Networking for Big Data
    • Ge, L.1    Zhang, H.2    Xu, G.3    Yu, W.4    Chen, C.5    Blasch, E.P.6
  • 43
    • 85040448315 scopus 로고    scopus 로고
    • Direct speech reconstruction from articulatory sensor data by machine learning
    • Dec.
    • J. A. Gonzalez et al., "Direct speech reconstruction from articulatory sensor data by machine learning," IEEE/ACM Trans. Audio, Speech, Lan- guage Process., vol. 25, no. 12, pp. 2362-2374, Dec. 2017.
    • (2017) IEEE/ACM Trans. Audio, Speech, Lan- Guage Process. , vol.25 , Issue.12 , pp. 2362-2374
    • Gonzalez, J.A.1
  • 44
    • 84944735469 scopus 로고    scopus 로고
    • Cambridge, MA, USA: MIT Press,. [Online]
    • I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.deeplearningbook.org
    • (2016) Deep Learning.
    • Goodfellow, I.1    Bengio, Y.2    Courville, A.3
  • 45
    • 84937849144 scopus 로고    scopus 로고
    • ArXiv e-prints, Jun. [Online]
    • I. J. Goodfellow et al., "Generative adversarial networks," ArXiv e-prints, Jun. 2014. [Online]. Available: http://adsabs.harvard.edu/abs/ 2014arXiv1406.2661G
    • (2014) Generative Adversarial Networks
    • Goodfellow, I.J.1
  • 46
    • 85027967014 scopus 로고    scopus 로고
    • Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates
    • May
    • S. Gu, E. Holly, T. Lillicrap, and S. Levine, "Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates," in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 3389-3396.
    • (2017) Proc. IEEE Int. Conf. Robot. Autom. (ICRA) , pp. 3389-3396
    • Gu, S.1    Holly, E.2    Lillicrap, T.3    Levine, S.4
  • 47
    • 84995477031 scopus 로고    scopus 로고
    • Multi-view 3D object retrieval with deep embedding network
    • Dec.
    • H. Guo, J.Wang, Y. Gao, J. Li, and H. Lu, "Multi-view 3D object retrieval with deep embedding network," IEEE Trans. Image Process., vol. 25, no. 12, pp. 5526-5537, Dec. 2016.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.12 , pp. 5526-5537
    • Guo, H.1    Wang, J.2    Gao, Y.3    Li, J.4    Lu, H.5
  • 56
    • 84921787304 scopus 로고    scopus 로고
    • Big data machine learning and graph analytics: Current state and future challenges
    • Oct.
    • H. H. Huang and H. Liu, "Big data machine learning and graph analytics: Current state and future challenges," in Proc. IEEE Int. Conf. Big Data (Big Data), Oct. 2014, pp. 16-17.
    • (2014) Proc. IEEE Int. Conf. Big Data (Big Data) , pp. 16-17
    • Huang, H.H.1    Liu, H.2
  • 59
    • 85023621585 scopus 로고    scopus 로고
    • Human action recognition in RGB-D videos using motion sequence information and deep learning
    • Dec.
    • E. P. Ijjina and K. M. Chalavadi, "Human action recognition in RGB-D videos using motion sequence information and deep learning," Pattern Recognit., vol. 72, pp. 504-516, Dec. 2017.
    • (2017) Pattern Recognit. , vol.72 , pp. 504-516
    • Ijjina, E.P.1    Chalavadi, K.M.2
  • 60
    • 85030851833 scopus 로고    scopus 로고
    • Deep fully-connected networks for video compressive sensing
    • Jan.
    • M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, "Deep fully-connected networks for video compressive sensing," Digit. Signal Process., vol. 72, pp. 9-18, Jan. 2018.
    • (2018) Digit. Signal Process. , vol.72 , pp. 9-18
    • Iliadis, M.1    Spinoulas, L.2    Katsaggelos, A.K.3
  • 63
    • 84983550738 scopus 로고    scopus 로고
    • Integrating mobile and cloud for PPG signal selection to monitor heart rate during intensive physical exercise
    • May
    • V. Jindal, "Integrating mobile and cloud for PPG signal selection to monitor heart rate during intensive physical exercise," in Proc. IEEE/ACM Int. Conf. Mobile Softw. Eng. Syst. (MOBILESoft), May 2016, pp. 36-37.
    • (2016) Proc. IEEE/ACM Int. Conf. Mobile Softw. Eng. Syst. (MOBILESoft) , pp. 36-37
    • Jindal, V.1
  • 65
    • 85010282705 scopus 로고    scopus 로고
    • Hardware design exploration of fully-connected deep neural network with binary parameters
    • Oct.
    • J. Kim, J. Kim, B. Kim, M. Lee, and J. Lee, "Hardware design exploration of fully-connected deep neural network with binary parameters," in Proc. Int. SoC Design Conf. (ISOCC), Oct. 2016, pp. 305-306.
    • (2016) Proc. Int. SoC Design Conf. (ISOCC) , pp. 305-306
    • Kim, J.1    Kim, J.2    Kim, B.3    Lee, M.4    Lee, J.5
  • 67
    • 85028060668 scopus 로고    scopus 로고
    • Device-free activity recognition using CSI big data analysis: A survey
    • Jul.
    • S. C. Kim, "Device-free activity recognition using CSI big data analysis: A survey," in Proc. 9th Int. Conf. Ubiquitous Future Netw. (ICUFN), Jul. 2017, pp. 539-541.
    • (2017) Proc. 9th Int. Conf. Ubiquitous Future Netw. (ICUFN) , pp. 539-541
    • Kim, S.C.1
  • 68
    • 85028868655 scopus 로고    scopus 로고
    • A survey of machine learning techniques applied to self-organizing cellular networks
    • 4th Quart.
    • P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, "A survey of machine learning techniques applied to self-organizing cellular networks," IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2392-2431, 4th Quart., 2017.
    • (2017) IEEE Commun. Surveys Tuts. , vol.19 , Issue.4 , pp. 2392-2431
    • Klaine, P.V.1    Imran, M.A.2    Onireti, O.3    Souza, R.D.4
  • 69
    • 85011307893 scopus 로고    scopus 로고
    • Deep learning in color: Towards automated quark/gluon jet discrimination
    • Jan. [Online]
    • P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, "Deep learning in color: Towards automated quark/gluon jet discrimination," J. High Energy Phys., vol. 2017, no. 1, p. 110, Jan. 2017. [Online]. Available: https://doi.org/10.1007/JHEP01(2017)110
    • (2017) J. High Energy Phys. , vol.2017 , Issue.1 , pp. 110
    • Komiske, P.T.1    Metodiev, E.M.2    Schwartz, M.D.3
  • 72
    • 85018293362 scopus 로고    scopus 로고
    • Automated analysis of high-content microscopy data with deep learning
    • O. Z. Kraus et al., "Automated analysis of high-content microscopy data with deep learning," Mole. Syst. Biol., vol. 13, no. 4, p. 924, 2017.
    • (2017) Mole. Syst. Biol. , vol.13 , Issue.4 , pp. 924
    • Kraus, O.Z.1
  • 73
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. NIPS, vol. 1. 2012, pp. 1097-1105.
    • (2012) Proc. NIPS , vol.1 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 76
    • 85028458790 scopus 로고    scopus 로고
    • Deep convolutional computation model for feature learning on big data in Internet of Things
    • Feb.
    • P. Li, Z. Chen, L. T. Yang, Q. Zhang, and M. J. Deen, "Deep convolutional computation model for feature learning on big data in Internet of Things," IEEE Trans. Ind. Informat., vol. 14, no. 2, pp. 790-798, Feb. 2018.
    • (2018) IEEE Trans. Ind. Informat. , vol.14 , Issue.2 , pp. 790-798
    • Li, P.1    Chen, Z.2    Yang, L.T.3    Zhang, Q.4    Deen, M.J.5
  • 77
    • 85018906248 scopus 로고    scopus 로고
    • Multi-key privacy-preserving deep learning in cloud computing
    • Sep.
    • P. Li et al., "Multi-key privacy-preserving deep learning in cloud computing," Future Generat. Comput. Syst., vol. 74, pp. 76-85, Sep. 2017.
    • (2017) Future Generat. Comput. Syst. , vol.74 , pp. 76-85
    • Li, P.1
  • 78
    • 85006716849 scopus 로고    scopus 로고
    • DSCNN: Hardwareoriented optimization for stochastic computing based deep convolutional neural networks
    • Oct.
    • Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, "DSCNN: Hardwareoriented optimization for stochastic computing based deep convolutional neural networks," in Proc. IEEE 34th Int. Conf. Comput. Design (ICCD), Oct. 2016, pp. 678-681.
    • (2016) Proc. IEEE 34th Int. Conf. Comput. Design (ICCD) , pp. 678-681
    • Li, Z.1    Ren, A.2    Li, J.3    Qiu, Q.4    Wang, Y.5    Yuan, B.6
  • 79
    • 85042174359 scopus 로고    scopus 로고
    • A survey on big data market: Pricing, trading and protection
    • F. Liang, W. Yu, D. An, Q. Yang, X. Fu, and W. Zhao, "A survey on big data market: Pricing, trading and protection," IEEE Access, vol. 6, pp. 15132-15154, 2018.
    • (2018) IEEE Access , vol.6 , pp. 15132-15154
    • Liang, F.1    Yu, W.2    An, D.3    Yang, Q.4    Fu, X.5    Zhao, W.6
  • 80
    • 85015738123 scopus 로고    scopus 로고
    • A real-time en-route route guidance decision scheme for transportation-based cyberphysical systems
    • Mar.
    • J. Lin,W. Yu, X. Yang, Q. Yang, X. Fu, andW. Zhao, "A real-time en-route route guidance decision scheme for transportation-based cyberphysical systems," IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 2551-2566, Mar. 2017.
    • (2017) IEEE Trans. Veh. Technol. , vol.66 , Issue.3 , pp. 2551-2566
    • Lin, J.1    Yu, W.2    Yang, X.3    Yang, Q.4    Fu, X.5    Zhao, W.6
  • 81
  • 82
    • 85026378512 scopus 로고    scopus 로고
    • A survey on Internet of things: Architecture, enabling technologies, security and privacy, and applications
    • Oct.
    • J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, "A survey on Internet of things: Architecture, enabling technologies, security and privacy, and applications," IEEE Internet Things J., vol. 4, no. 5, pp. 1125-1142, Oct. 2017.
    • (2017) IEEE Internet Things J. , vol.4 , Issue.5 , pp. 1125-1142
    • Lin, J.1    Yu, W.2    Zhang, N.3    Yang, X.4    Zhang, H.5    Zhao, W.6
  • 83
    • 85029153301 scopus 로고    scopus 로고
    • Network traffic classifier with convolutional and recurrent neural networks for Internet of Things
    • M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, "Network traffic classifier with convolutional and recurrent neural networks for Internet of Things," IEEE Access, vol. 5, pp. 18042-18050, 2017.
    • (2017) IEEE Access , vol.5 , pp. 18042-18050
    • Lopez-Martin, M.1    Carro, B.2    Sanchez-Esguevillas, A.3    Lloret, J.4
  • 85
    • 84964237521 scopus 로고    scopus 로고
    • A laguerre neural network-based ADP learning scheme with its application to tracking control in the Internet of Things
    • X. Luo, Y. Lv, M. Zhou, W. Wang, and W. Zhao, "A laguerre neural network-based ADP learning scheme with its application to tracking control in the Internet of Things," Pers. Ubiquitous Comput., vol. 20, no. 3, pp. 361-372, 2016.
    • (2016) Pers. Ubiquitous Comput. , vol.20 , Issue.3 , pp. 361-372
    • Luo, X.1    Lv, Y.2    Zhou, M.3    Wang, W.4    Zhao, W.5
  • 87
    • 84971635878 scopus 로고    scopus 로고
    • Multimodal deep learning for solar radio burst classification
    • Jan.
    • L. Ma, Z. Chen, L. Xu, and Y. Yan, "Multimodal deep learning for solar radio burst classification," Pattern Recognit., vol. 61, pp. 573-582, Jan. 2017.
    • (2017) Pattern Recognit. , vol.61 , pp. 573-582
    • Ma, L.1    Chen, Z.2    Xu, L.3    Yan, Y.4
  • 90
    • 85017176110 scopus 로고    scopus 로고
    • Deep learning-based document modeling for personality detection from text
    • Mar.
    • N. Majumder et al., "Deep learning-based document modeling for personality detection from text," IEEE Intell. Syst., vol. 32, no. 2, pp. 74-79, Mar. 2017.
    • (2017) IEEE Intell. Syst. , vol.32 , Issue.2 , pp. 74-79
    • Majumder, N.1
  • 92
    • 85042371449 scopus 로고    scopus 로고
    • Noise power spectral density estimation for binaural noise reduction exploiting direction of arrival estimates
    • Oct.
    • D. Marquardt and S. Doclo, "Noise power spectral density estimation for binaural noise reduction exploiting direction of arrival estimates," in Proc. IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA), Oct. 2017, pp. 234-238.
    • (2017) Proc. IEEE Workshop Appl. Signal Process. Audio Acoust. (WASPAA) , pp. 234-238
    • Marquardt, D.1    Doclo, S.2
  • 93
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Feb.
    • V. Mnih et al., "Human-level control through deep reinforcement learning," Nature, vol. 518, pp. 529-533, Feb. 2015.
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1
  • 95
    • 85045442794 scopus 로고    scopus 로고
    • Semisupervised deep reinforcement learning in support of iot and smart city services
    • Apr.
    • M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J. S. Oh, "Semisupervised deep reinforcement learning in support of iot and smart city services," IEEE Internet Things J., vol. 5, no. 2, pp. 624-635, Apr. 2017.
    • (2017) IEEE Internet Things J. , vol.5 , Issue.2 , pp. 624-635
    • Mohammadi, M.1    Al-Fuqaha, A.2    Guizani, M.3    Oh, J.S.4
  • 97
    • 85041953633 scopus 로고    scopus 로고
    • Deep regression for monocular camera-based 6-DoF global localization in outdoor environments
    • Sep.
    • T. Naseer and W. Burgard, "Deep regression for monocular camera-based 6-DoF global localization in outdoor environments," in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 1525-1530.
    • (2017) Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) , pp. 1525-1530
    • Naseer, T.1    Burgard, W.2
  • 98
    • 85035762670 scopus 로고    scopus 로고
    • System design perspective for human-level agents using deep reinforcement learning: A survey
    • N. D. Nguyen, T. Nguyen, and S. Nahavandi, "System design perspective for human-level agents using deep reinforcement learning: A survey," IEEE Access, vol. 5, pp. 27091-27102, 2017.
    • (2017) IEEE Access , vol.5 , pp. 27091-27102
    • Nguyen, N.D.1    Nguyen, T.2    Nahavandi, S.3
  • 101
    • 85011292103 scopus 로고    scopus 로고
    • Situation reasoning framework for the internet of things environments using deep learning results
    • Sep.
    • S. Park, M. Sohn, H. Jin, and H. Lee, "Situation reasoning framework for the internet of things environments using deep learning results," in Proc. IEEE Int. Conf. Knowl. Eng. Appl. (ICKEA), Sep. 2016, pp. 133-138.
    • (2016) Proc. IEEE Int. Conf. Knowl. Eng. Appl. (ICKEA) , pp. 133-138
    • Park, S.1    Sohn, M.2    Jin, H.3    Lee, H.4
  • 102
    • 85018915118 scopus 로고    scopus 로고
    • A probabilistic framework for deep learning
    • D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates
    • A. B. Patel, M. T. Nguyen, and R. Baraniuk, "A probabilistic framework for deep learning," in Advances in Neural Information Processing Systems, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2016, pp. 2558-2566.
    • (2016) Advances in Neural Information Processing Systems , pp. 2558-2566
    • Patel, A.B.1    Nguyen, M.T.2    Baraniuk, R.3
  • 107
    • 85039863846 scopus 로고    scopus 로고
    • On the prediction of DNA-binding proteins only from primary sequences: A deep learning approach
    • Y.-H. Qu, H. Yu, X.-J. Gong, J.-H. Xu, and H.-S. Lee, "On the prediction of DNA-binding proteins only from primary sequences: A deep learning approach," PLoS ONE, vol. 12, no. 12, p. e0188129, 2017.
    • (2017) PLoS ONE , vol.12 , Issue.12 , pp. e0188129
    • Qu, Y.-H.1    Yu, H.2    Gong, X.-J.3    Xu, J.-H.4    Lee, H.-S.5
  • 109
    • 85040306665 scopus 로고    scopus 로고
    • Deep multimodal learning: A survey on recent advances and trends
    • Nov.
    • D. Ramachandram and G.W. Taylor, "Deep multimodal learning: A survey on recent advances and trends," IEEE Signal Process. Mag., vol. 34, no. 6, pp. 96-108, Nov. 2017.
    • (2017) IEEE Signal Process. Mag. , vol.34 , Issue.6 , pp. 96-108
    • Ramachandram, D.1    Taylor, G.W.2
  • 110
    • 85014926848 scopus 로고    scopus 로고
    • A deep learning approach to on-node sensor data analytics for mobile or wearable devices
    • Jan.
    • D. Raví, C. Wong, B. Lo, and G.-Z. Yang, "A deep learning approach to on-node sensor data analytics for mobile or wearable devices," IEEE J. Biomed. Health Informat., vol. 21, no. 1, pp. 56-64, Jan. 2017.
    • (2017) IEEE J. Biomed. Health Informat. , vol.21 , Issue.1 , pp. 56-64
    • Raví, D.1    Wong, C.2    Lo, B.3    Yang, G.-Z.4
  • 111
    • 84992108763 scopus 로고    scopus 로고
    • What to do when K-Means clustering fails: A simple yet principled alternative algorithm
    • Y. P. Raykov, A. Boukouvalas, F. Baig, and M. A. Little, "What to do when K-Means clustering fails: A simple yet principled alternative algorithm," PLoS ONE, vol. 11, no. 9, p. e0162259, 2016.
    • (2016) PLoS ONE , vol.11 , Issue.9 , pp. e0162259
    • Raykov, Y.P.1    Boukouvalas, A.2    Baig, F.3    Little, M.A.4
  • 112
    • 85018806774 scopus 로고    scopus 로고
    • Multichannel signal processing with deep neural networks for automatic speech recognition
    • May
    • T. N. Sainath et al., "Multichannel signal processing with deep neural networks for automatic speech recognition," IEEE/ACM Trans. Audio, Speech, Language Process., vol. 25, no. 5, pp. 965-979, May 2017.
    • (2017) IEEE/ACM Trans. Audio, Speech, Language Process. , vol.25 , Issue.5 , pp. 965-979
    • Sainath, T.N.1
  • 113
    • 85031781820 scopus 로고    scopus 로고
    • Statistical parametric speech synthesis incorporating generative adversarial networks
    • Jan.
    • Y. Saito, S. Takamichi, and H. Saruwatari, "Statistical parametric speech synthesis incorporating generative adversarial networks," IEEE/ACM Trans. Audio, Speech, Language Process., vol. 26, no. 1, pp. 84-96, Jan. 2018.
    • (2018) IEEE/ACM Trans. Audio, Speech, Language Process. , vol.26 , Issue.1 , pp. 84-96
    • Saito, Y.1    Takamichi, S.2    Saruwatari, H.3
  • 117
    • 85030755958 scopus 로고    scopus 로고
    • Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and sar data to map forest above-ground biomass
    • Dec.
    • Z. Shao, L. Zhang, and L. Wang, "Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and sar data to map forest above-ground biomass," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 12, pp. 5569-5582, Dec. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.12 , pp. 5569-5582
    • Shao, Z.1    Zhang, L.2    Wang, L.3
  • 118
    • 85013660022 scopus 로고    scopus 로고
    • Robust acoustic event classification using deep neural networks
    • Aug.
    • R. V. Sharan and T. J. Moir, "Robust acoustic event classification using deep neural networks," Inf. Sci., vol. 396, pp. 24-32, Aug. 2017.
    • (2017) Inf. Sci. , vol.396 , pp. 24-32
    • Sharan, R.V.1    Moir, T.J.2
  • 120
    • 84987842183 scopus 로고    scopus 로고
    • Edge computing: Vision and challenges
    • Oct.
    • W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: Vision and challenges," IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, Oct. 2016.
    • (2016) IEEE Internet Things J. , vol.3 , Issue.5 , pp. 637-646
    • Shi, W.1    Cao, J.2    Zhang, Q.3    Li, Y.4    Xu, L.5
  • 122
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Jan.
    • D. Silver et al., "Mastering the game of Go with deep neural networks and tree search," Nature, vol. 529, pp. 484-489, Jan. 2016.
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1
  • 123
    • 85031918331 scopus 로고    scopus 로고
    • Mastering the game of go without human knowledge
    • Oct.
    • D. Silver et al., "Mastering the game of go without human knowledge," Nature, vol. 550, pp. 354-359, Oct. 2017.
    • (2017) Nature , vol.550 , pp. 354-359
    • Silver, D.1
  • 125
    • 84906842496 scopus 로고    scopus 로고
    • Research directions for the Internet of Things
    • Feb.
    • J. A. Stankovic, "Research directions for the Internet of Things," IEEE Internet Things J., vol. 1, no. 1, pp. 3-9, Feb. 2014.
    • (2014) IEEE Internet Things J. , vol.1 , Issue.1 , pp. 3-9
    • Stankovic, J.A.1
  • 126
    • 85021765726 scopus 로고    scopus 로고
    • Discriminative dimensionality reduction for multi-dimensional sequences
    • Jan.
    • B. Su, X. Ding, H. Wang, and Y. Wu, "Discriminative dimensionality reduction for multi-dimensional sequences," IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 1, pp. 77-91, Jan. 2018.
    • (2018) IEEE Trans. Pattern Anal. Mach. Intell. , vol.40 , Issue.1 , pp. 77-91
    • Su, B.1    Ding, X.2    Wang, H.3    Wu, Y.4
  • 127
    • 84979828689 scopus 로고    scopus 로고
    • Internet of Things and big data analytics for smart and connected communities
    • Y. Sun, H. Song, A. J. Jara, and R. Bie, "Internet of Things and big data analytics for smart and connected communities," IEEE Access, vol. 4, pp. 766-773, 2016.
    • (2016) IEEE Access , vol.4 , pp. 766-773
    • Sun, Y.1    Song, H.2    Jara, A.J.3    Bie, R.4
  • 128
    • 85031708883 scopus 로고    scopus 로고
    • Enabling deep learning on iot devices
    • J. Tang, D. Sun, S. Liu, and J. L. Gaudiot, "Enabling deep learning on iot devices," Computer, vol. 50, no. 10, pp. 92-96, 2017.
    • (2017) Computer , vol.50 , Issue.10 , pp. 92-96
    • Tang, J.1    Sun, D.2    Liu, S.3    Gaudiot, J.L.4
  • 129
    • 85046023297 scopus 로고    scopus 로고
    • Deep convolutional triplet network for quantitative medical image analysis with comparative case study of gamma image classification
    • Nov.
    • P. Thammasorn, L.Wootton, E. Ford, and M. Nyflot, "Deep convolutional triplet network for quantitative medical image analysis with comparative case study of gamma image classification," in Proc. IEEE Int. Conf. Bioinformat. Biomed. (BIBM), Nov. 2017, pp. 1119-1122.
    • (2017) Proc. IEEE Int. Conf. Bioinformat. Biomed. (BIBM) , pp. 1119-1122
    • Thammasorn, P.1    Wootton, L.2    Ford, E.3    Nyflot, M.4
  • 133
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • V. Gulshan et al., "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs," J. Amer. Med. Assoc., vol. 316, no. 22, pp. 2402-2410, 2016.
    • (2016) J. Amer. Med. Assoc. , vol.316 , Issue.22 , pp. 2402-2410
    • Gulshan, V.1
  • 137
    • 85014568631 scopus 로고    scopus 로고
    • Traffic speed prediction and congestion source exploration: A deep learning method
    • Dec.
    • J. Wang, Q. Gu, J. Wu, G. Liu, and Z. Xiong, "Traffic speed prediction and congestion source exploration: A deep learning method," in Proc. IEEE 16th Int. Conf. Data Mining (ICDM), Dec. 2016, pp. 499-508.
    • (2016) Proc. IEEE 16th Int. Conf. Data Mining (ICDM) , pp. 499-508
    • Wang, J.1    Gu, Q.2    Wu, J.3    Liu, G.4    Xiong, Z.5
  • 138
    • 85040364846 scopus 로고    scopus 로고
    • Multiscale rotation-invariant convolutional neural networks for lung texture classification
    • Jan.
    • Q. Wang, Y. Zheng, G. Yang, W. Jin, X. Chen, and Y. Yin, "Multiscale rotation-invariant convolutional neural networks for lung texture classification," IEEE J. Biomed. Health Informat., vol. 22, no. 1, pp. 184-195, Jan. 2018.
    • (2018) IEEE J. Biomed. Health Informat. , vol.22 , Issue.1 , pp. 184-195
    • Wang, Q.1    Zheng, Y.2    Yang, G.3    Jin, W.4    Chen, X.5    Yin, Y.6
  • 140
    • 85001086148 scopus 로고    scopus 로고
    • Re-architecting the on-chip memory subsystem of machine-learning accelerator for embedded devices
    • New York, NY, USA
    • Y. Wang, H. Li, and X. Li, "Re-architecting the on-chip memory subsystem of machine-learning accelerator for embedded devices," in Proc. 35th Int. Conf. Comput.-Aided Design (ICCAD), New York, NY, USA, 2016, pp. 13:1-13:6.
    • (2016) Proc. 35th Int. Conf. Comput.-Aided Design (ICCAD) , pp. 131-136
    • Wang, Y.1    Li, H.2    Li, X.3
  • 141
    • 85028769607 scopus 로고    scopus 로고
    • A fast feature fusion algorithm in image classification for cyber physical systems
    • Y. Wang, B. Song, P. Zhang, N. Xin, and G. Cao, "A fast feature fusion algorithm in image classification for cyber physical systems," IEEE Access, vol. 5, pp. 9089-9098, 2017.
    • (2017) IEEE Access , vol.5 , pp. 9089-9098
    • Wang, Y.1    Song, B.2    Zhang, P.3    Xin, N.4    Cao, G.5
  • 142
    • 85031708821 scopus 로고    scopus 로고
    • ApesNet: A pixel-wise efficient segmentation network for embedded devices
    • C. Wu, H. P. Cheng, S. Li, H. Li, and Y. Chen, "ApesNet: A pixel-wise efficient segmentation network for embedded devices," IET Cyber-Phys. Syst., Theory Appl., vol. 1, no. 1, pp. 78-85, 2016.
    • (2016) IET Cyber-Phys. Syst., Theory Appl. , vol.1 , Issue.1 , pp. 78-85
    • Wu, C.1    Cheng, H.P.2    Li, S.3    Li, H.4    Chen, Y.5
  • 143
    • 85030651432 scopus 로고    scopus 로고
    • Design and realization of WInternet: From net of things to Internet of Things
    • Nov.
    • J. Wu and W. Zhao, "Design and realization of WInternet: From net of things to Internet of Things," ACM Trans. Cyber-Phys. Syst., vol. 1, no. 1, pp. 2:1-2:12, Nov. 2016.
    • (2016) ACM Trans. Cyber-Phys. Syst. , vol.1 , Issue.1 , pp. 21-212
    • Wu, J.1    Zhao, W.2
  • 145
    • 85010015610 scopus 로고    scopus 로고
    • Efficient DV-HOP localization for wireless cyber-physical social sensing system: A correntropy-based neural network learning scheme
    • Y. Xu, X. Luo, W. Wang, and W. Zhao, "Efficient DV-HOP localization for wireless cyber-physical social sensing system: A correntropy-based neural network learning scheme," Sensors, vol. 17, no. 1, p. 135, 2017.
    • (2017) Sensors , vol.17 , Issue.1 , pp. 135
    • Xu, Y.1    Luo, X.2    Wang, W.3    Zhao, W.4
  • 146
    • 85034700187 scopus 로고    scopus 로고
    • Repeatable folding task by humanoid robot worker using deep learning
    • Apr.
    • P. C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata, "Repeatable folding task by humanoid robot worker using deep learning," IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 397-403, Apr. 2017.
    • (2017) IEEE Robot. Autom. Lett. , vol.2 , Issue.2 , pp. 397-403
    • Yang, P.C.1    Sasaki, K.2    Suzuki, K.3    Kase, K.4    Sugano, S.5    Ogata, T.6
  • 147
    • 85018904573 scopus 로고    scopus 로고
    • On optimal PMU placement-based defense against data integrity attacks in smart grid
    • Jul.
    • Q. Yang, D. An, R. Min, W. Yu, X. Yang, and W. Zhao, "On optimal PMU placement-based defense against data integrity attacks in smart grid," IEEE Trans. Forensics Inf. Security, vol. 12, no. 7, pp. 1735-1750, Jul. 2017.
    • (2017) IEEE Trans. Forensics Inf. Security , vol.12 , Issue.7 , pp. 1735-1750
    • Yang, Q.1    An, D.2    Min, R.3    Yu, W.4    Yang, X.5    Zhao, W.6
  • 148
    • 84987899075 scopus 로고    scopus 로고
    • On binary decomposition based privacy-preserving aggregation schemes in real-time monitoring systems
    • Oct.
    • X. Yang, X. Ren, J. Lin, and W. Yu, "On binary decomposition based privacy-preserving aggregation schemes in real-time monitoring systems," IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 10, pp. 2967-2983, Oct. 2016.
    • (2016) IEEE Trans. Parallel Distrib. Syst. , vol.27 , Issue.10 , pp. 2967-2983
    • Yang, X.1    Ren, X.2    Lin, J.3    Yu, W.4
  • 149
    • 85043711129 scopus 로고    scopus 로고
    • Survey on improving data utility in differentially private sequential data publishing
    • to be published
    • X. Yang, T.Wang, X. Ren, andW. Yu, "Survey on improving data utility in differentially private sequential data publishing," IEEE Trans. Big Data, to be published, doi: 10.1109/TBDATA.2017.2715334.
    • IEEE Trans. Big Data
    • Yang, X.1    Wang, T.2    Ren, X.3    Yu, W.4
  • 150
    • 85015246554 scopus 로고    scopus 로고
    • Toward a gaussianmixture model-based detection scheme against data integrity attacks in the smart grid
    • Feb.
    • X. Yang, P. Zhao, X. Zhang, J. Lin, and W. Yu, "Toward a gaussianmixture model-based detection scheme against data integrity attacks in the smart grid," IEEE Internet Things J., vol. 4, no. 1, pp. 147-161, Feb. 2017.
    • (2017) IEEE Internet Things J. , vol.4 , Issue.1 , pp. 147-161
    • Yang, X.1    Zhao, P.2    Zhang, X.3    Lin, J.4    Yu, W.5
  • 151
    • 85030314760 scopus 로고    scopus 로고
    • A survey on security and privacy issues in Internet-of-Things
    • Oct.
    • Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, "A survey on security and privacy issues in Internet-of-Things," IEEE Internet Things J., vol. 4, no. 5, pp. 1250-1258, Oct. 2017.
    • (2017) IEEE Internet Things J. , vol.4 , Issue.5 , pp. 1250-1258
    • Yang, Y.1    Wu, L.2    Yin, G.3    Li, L.4    Zhao, H.5
  • 153
    • 84978287810 scopus 로고    scopus 로고
    • Towards statistical modeling and machine learning based energy usage forecasting in smart grid
    • Mar.
    • W. Yu, D. An, D. Griffith, Q. Yang, and G. Xu, "Towards statistical modeling and machine learning based energy usage forecasting in smart grid," SIGAPP Appl. Comput. Rev., vol. 15, no. 1, pp. 6-16, Mar. 2015.
    • (2015) SIGAPP Appl. Comput. Rev. , vol.15 , Issue.1 , pp. 6-16
    • Yu, W.1    An, D.2    Griffith, D.3    Yang, Q.4    Xu, G.5
  • 154
    • 84927636536 scopus 로고    scopus 로고
    • Towards neural network based malware detection on Android mobile devices
    • R. Pino, A. Kott, and M. Shevenell, Eds. Cham, Switzerland: Springer
    • W. Yu, L. Ge, G. Xu, and X. Fu, "Towards neural network based malware detection on Android mobile devices," Cybersecurity Systems for Human Cognition Augmentation (Advances in Information Security), vol. 61, R. Pino, A. Kott, and M. Shevenell, Eds. Cham, Switzerland: Springer, 2014.
    • (2014) Cybersecurity Systems for Human Cognition Augmentation (Advances in Information Security) , vol.61
    • Yu, W.1    Ge, L.2    Xu, G.3    Fu, X.4
  • 155
    • 85037656743 scopus 로고    scopus 로고
    • A survey on the edge computing for the Internet of Things
    • W. Yu et al., "A survey on the edge computing for the Internet of Things," IEEE Access, vol. 6, pp. 6900-6919, 2017.
    • (2017) IEEE Access , vol.6 , pp. 6900-6919
    • Yu, W.1
  • 156
    • 84893536420 scopus 로고    scopus 로고
    • A cloud computing based architecture for cyber security situation awareness
    • Oct.
    • W. Yu, G. Xu, Z. Chen, and P. Moulema, "A cloud computing based architecture for cyber security situation awareness," in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Oct. 2013, pp. 488-492.
    • (2013) Proc. IEEE Conf. Commun. Netw. Secur. (CNS) , pp. 488-492
    • Yu, W.1    Xu, G.2    Chen, Z.3    Moulema, P.4
  • 160
  • 166
    • 85033224313 scopus 로고    scopus 로고
    • A deep learning ensemble approach for crude oil price forecasting
    • Aug.
    • Y. Zhao, J. Li, and L. Yu, "A deep learning ensemble approach for crude oil price forecasting," Energy Econ., vol. 66, p. 9-16, Aug. 2017.
    • (2017) Energy Econ. , vol.66 , pp. 9-16
    • Zhao, Y.1    Li, J.2    Yu, L.3
  • 168
    • 85030541939 scopus 로고    scopus 로고
    • DeepFlow: Deep learningbased malware detection by mining Android application for abnormal usage of sensitive data
    • Jul.
    • D. Zhu, H. Jin, Y. Yang, D.Wu, andW. Chen, "DeepFlow: Deep learningbased malware detection by mining Android application for abnormal usage of sensitive data," in Proc. IEEE Symp. Comput. Commun. (ISCC), Jul. 2017, pp. 438-443.
    • (2017) Proc. IEEE Symp. Comput. Commun. (ISCC) , pp. 438-443
    • Zhu, D.1    Jin, H.2    Yang, Y.3    Wu, D.4    Chen, W.5
  • 169
    • 85056139103 scopus 로고    scopus 로고
    • A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of Things
    • to be published
    • J. Zhu, Y. Song, D. Jiang, and H. Song, "A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of Things," IEEE Internet Things J., to be published, doi: 10.1109/JIOT.2017.2759728.
    • IEEE Internet Things J.
    • Zhu, J.1    Song, Y.2    Jiang, D.3    Song, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.