-
1
-
-
3042525440
-
Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation
-
IEEE
-
Labayrade, R., Aubert, D., Tarel, J.P., Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation. IEEE Intelligent Vehicle Symposium, 2002, Vol. 2, 2002, IEEE, 646–651.
-
(2002)
IEEE Intelligent Vehicle Symposium, 2002, Vol. 2
, pp. 646-651
-
-
Labayrade, R.1
Aubert, D.2
Tarel, J.P.3
-
2
-
-
84892411787
-
Weighted V-disparity approach for obstacles localization in highway environments
-
IEEE
-
Fakhfakh, N., Gruyer, D., Aubert, D., Weighted V-disparity approach for obstacles localization in highway environments. 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, IEEE, 1271–1278.
-
(2013)
2013 IEEE Intelligent Vehicles Symposium (IV)
, pp. 1271-1278
-
-
Fakhfakh, N.1
Gruyer, D.2
Aubert, D.3
-
3
-
-
84879206998
-
Surrounding moving obstacle detection for autonomous driving using stereo vision
-
Sun, H., Zou, H., Zhou, S., Wang, C., El-Sheimy, N., Surrounding moving obstacle detection for autonomous driving using stereo vision. Int. J. Adv. Robot. Syst., 10(6), 2013, 261.
-
(2013)
Int. J. Adv. Robot. Syst.
, vol.10
, Issue.6
, pp. 261
-
-
Sun, H.1
Zou, H.2
Zhou, S.3
Wang, C.4
El-Sheimy, N.5
-
4
-
-
85041304040
-
-
Obstacle detection using stereo vision for self-driving cars.
-
N. Appiah, N. Bandaru, Obstacle detection using stereo vision for self-driving cars, 2015.
-
(2015)
-
-
Appiah, N.1
Bandaru, N.2
-
5
-
-
84945932099
-
Theta-disparity: An efficient representation of the 3d scene structure
-
Springer
-
Nalpantidis, L., Kragic, D., Kostavelis, I., Gasteratos, A., Theta-disparity: An efficient representation of the 3d scene structure. Intelligent Autonomous Systems 13, 2016, Springer, 795–806.
-
(2016)
Intelligent Autonomous Systems 13
, pp. 795-806
-
-
Nalpantidis, L.1
Kragic, D.2
Kostavelis, I.3
Gasteratos, A.4
-
6
-
-
85019572044
-
Stereo vision based autonomous robot calibration
-
Zhang, X., Song, Y., Yang, Y., Pan, H., Stereo vision based autonomous robot calibration. Robot. Auton. Syst. 93 (2017), 43–51.
-
(2017)
Robot. Auton. Syst.
, vol.93
, pp. 43-51
-
-
Zhang, X.1
Song, Y.2
Yang, Y.3
Pan, H.4
-
7
-
-
85000843811
-
Vision based obstacle detection and collision risk estimation of an unmanned surface vehicle
-
IEEE
-
Woo, J., Kim, N., Vision based obstacle detection and collision risk estimation of an unmanned surface vehicle. 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence, 2016, IEEE, 461–465.
-
(2016)
2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence
, pp. 461-465
-
-
Woo, J.1
Kim, N.2
-
8
-
-
33845971275
-
A sonar approach to obstacle detection for a vision-based autonomous wheelchair
-
Del, C., Skaar, S., Cardenas, A., Fehr, L., A sonar approach to obstacle detection for a vision-based autonomous wheelchair. Robot. Auton. Syst. 54:12 (2006), 967–981.
-
(2006)
Robot. Auton. Syst.
, vol.54
, Issue.12
, pp. 967-981
-
-
Del, C.1
Skaar, S.2
Cardenas, A.3
Fehr, L.4
-
9
-
-
84961238603
-
A stereo vision based obstacle detection system for agricultural applications
-
Springer
-
Fleischmann, P., Berns, K., A stereo vision based obstacle detection system for agricultural applications. Field and Service Robotics, 2016, Springer, 217–231.
-
(2016)
Field and Service Robotics
, pp. 217-231
-
-
Fleischmann, P.1
Berns, K.2
-
10
-
-
84979710953
-
3D Lidar-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes
-
Asvadi, A., Premebida, C., Peixoto, P., Nunes, U., 3D Lidar-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes. Robot. Auton. Syst. 83 (2016), 299–311.
-
(2016)
Robot. Auton. Syst.
, vol.83
, pp. 299-311
-
-
Asvadi, A.1
Premebida, C.2
Peixoto, P.3
Nunes, U.4
-
11
-
-
84964049714
-
Real-time rear obstacle detection using reliable disparity for driver assistance
-
Yoo, H., Son, J., Ham, B., Sohn, K., Real-time rear obstacle detection using reliable disparity for driver assistance. Expert Syst. Appl. 56 (2016), 186–196.
-
(2016)
Expert Syst. Appl.
, vol.56
, pp. 186-196
-
-
Yoo, H.1
Son, J.2
Ham, B.3
Sohn, K.4
-
12
-
-
33745948961
-
UV-disparity: an efficient algorithm for stereovision based scene analysis
-
IEEE
-
Hu, Z., Uchimura, K., UV-disparity: an efficient algorithm for stereovision based scene analysis. IEEE Intelligent Vehicles Symposium, 2005. Proceedings, 2005, IEEE, 48–54.
-
(2005)
IEEE Intelligent Vehicles Symposium, 2005. Proceedings
, pp. 48-54
-
-
Hu, Z.1
Uchimura, K.2
-
13
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
IEEE
-
Dalal, N., Triggs, B., Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. Vol. 1, CVPR 2005, 2005, IEEE, 886–893.
-
(2005)
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. Vol. 1, CVPR 2005
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
14
-
-
85014295399
-
Off-road path and obstacle detection using monocular camera
-
IEEE
-
Nadav, I., Katz, E., Off-road path and obstacle detection using monocular camera. IEEE International Conference on the Science of Electrical Engineering, 2016, IEEE, 1–5.
-
(2016)
IEEE International Conference on the Science of Electrical Engineering
, pp. 1-5
-
-
Nadav, I.1
Katz, E.2
-
15
-
-
84871706351
-
Obstacle detection with stereo vision for off-road vehicle navigation
-
IEEE
-
Broggi, A., Caraffi, C., Fedriga, R.I., Grisleri, P., Obstacle detection with stereo vision for off-road vehicle navigation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2005 CVPR Workshops, 2005, IEEE, 65.
-
(2005)
IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2005, CVPR Workshops
, pp. 65
-
-
Broggi, A.1
Caraffi, C.2
Fedriga, R.I.3
Grisleri, P.4
-
16
-
-
34547254609
-
Moving obstacle detection using monocular vision
-
IEEE
-
Yamaguchi, K., Kato, T., Ninomiya, Y., Moving obstacle detection using monocular vision. Intelligent Vehicles Symposium, 2006, IEEE, 288–293.
-
(2006)
Intelligent Vehicles Symposium
, pp. 288-293
-
-
Yamaguchi, K.1
Kato, T.2
Ninomiya, Y.3
-
17
-
-
84958183887
-
Obstacle detection for self-driving cars using only monocular cameras and wheel odometry
-
IEEE
-
Häne, C., Sattler, T., Pollefeys, M., Obstacle detection for self-driving cars using only monocular cameras and wheel odometry. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, IEEE, 5101–5108.
-
(2015)
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 5101-5108
-
-
Häne, C.1
Sattler, T.2
Pollefeys, M.3
-
18
-
-
85010473703
-
Obstacle detection in stereo sequences using multiple representations of the disparity map
-
IEEE
-
Burlacu, A., Bostaca, S., Hector, I., Herghelegiu, P., Ivanica, G., Moldoveanul, A., Caraiman, S., Obstacle detection in stereo sequences using multiple representations of the disparity map. 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), 2016, IEEE, 854–859.
-
(2016)
2016 20th International Conference on System Theory, Control and Computing (ICSTCC)
, pp. 854-859
-
-
Burlacu, A.1
Bostaca, S.2
Hector, I.3
Herghelegiu, P.4
Ivanica, G.5
Moldoveanul, A.6
Caraiman, S.7
-
19
-
-
84942543554
-
Adaptive control algorithm of flexible robotic gripper by extreme learning machine
-
Petković, D., Danesh, A.S., Dadkhah, M., Misaghian, N., Shamshirband, S., Zalnezhad, E., Pavlović, N.D., Adaptive control algorithm of flexible robotic gripper by extreme learning machine. Robot. Comput.-Integr. Manuf. 37 (2016), 170–178.
-
(2016)
Robot. Comput.-Integr. Manuf.
, vol.37
, pp. 170-178
-
-
Petković, D.1
Danesh, A.S.2
Dadkhah, M.3
Misaghian, N.4
Shamshirband, S.5
Zalnezhad, E.6
Pavlović, N.D.7
-
20
-
-
80055068563
-
Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning
-
Duguleana, M., Barbuceanu, F.G., Teirelbar, A., Mogan, G., Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning. Robot. Comput.-Integr. Manuf. 28:2 (2012), 132–146.
-
(2012)
Robot. Comput.-Integr. Manuf.
, vol.28
, Issue.2
, pp. 132-146
-
-
Duguleana, M.1
Barbuceanu, F.G.2
Teirelbar, A.3
Mogan, G.4
-
21
-
-
34547975052
-
Scaling learning algorithms towards AI
-
Bengio, Y., LeCun, Y., et al. Scaling learning algorithms towards AI. Large Scale Kernel Mach. 34:5 (2007), 1–41.
-
(2007)
Large Scale Kernel Mach.
, vol.34
, Issue.5
, pp. 1-41
-
-
Bengio, Y.1
LeCun, Y.2
-
22
-
-
84857435937
-
Pedestrian detection: An evaluation of the state of the art
-
Dollar, P., Wojek, C., Schiele, B., Perona, P., Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34:4 (2012), 743–761.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.4
, pp. 743-761
-
-
Dollar, P.1
Wojek, C.2
Schiele, B.3
Perona, P.4
-
23
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio, Y., et al. Learning deep architectures for AI. Found. Trends Mach. Learn. 2:1 (2009), 1–127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
24
-
-
35348818718
-
Learning multiple layers of representation
-
Hinton, G.E., Learning multiple layers of representation. Trends Cogn. Sci. 11:10 (2007), 428–434.
-
(2007)
Trends Cogn. Sci.
, vol.11
, Issue.10
, pp. 428-434
-
-
Hinton, G.E.1
-
25
-
-
84992027340
-
Learning framework for robust obstacle detection, recognition, and tracking
-
Nguyen, V.D., Van Nguyen, H., Tran, D.T., Lee, S.J., Jeon, J.W., Learning framework for robust obstacle detection, recognition, and tracking. IEEE Trans. Intell. Transp. Syst., 2016.
-
(2016)
IEEE Trans. Intell. Transp. Syst.
-
-
Nguyen, V.D.1
Van Nguyen, H.2
Tran, D.T.3
Lee, S.J.4
Jeon, J.W.5
-
26
-
-
85041311361
-
Detecting unexpected obstacles for self-driving cars
-
arXiv preprint
-
Ramos, S., Gehrig, S., Pinggera, P., Franke, U., Rother, C., Detecting unexpected obstacles for self-driving cars. Fusing Deep Learn. Geom. Model., 2016 arXiv preprint arXiv:1612.06573.
-
(2016)
Fusing Deep Learn. Geom. Model.
-
-
Ramos, S.1
Gehrig, S.2
Pinggera, P.3
Franke, U.4
Rother, C.5
-
27
-
-
33746612664
-
In-vehicle obstacles detection and characterization by stereovision
-
Proceedings of the 1st International Workshop on In-Vehicle Cognitive Computer Vision Systems, Graz, Austria.
-
R. Labayrade, D. Aubert, In-vehicle obstacles detection and characterization by stereovision, in: Proceedings of the 1st International Workshop on In-Vehicle Cognitive Computer Vision Systems, Graz, Austria, 2003.
-
(2003)
-
-
Labayrade, R.1
Aubert, D.2
-
28
-
-
84992311617
-
High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
-
Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C., High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 58 (2016), 121–134.
-
(2016)
Pattern Recognit.
, vol.58
, pp. 121-134
-
-
Erfani, S.M.1
Rajasegarar, S.2
Karunasekera, S.3
Leckie, C.4
-
29
-
-
85085272778
-
An overview of deep generative models
-
Xu, J., Li, H., Zhou, S., An overview of deep generative models. IETE Tech. Rev. 32:2 (2015), 131–139.
-
(2015)
IETE Tech. Rev.
, vol.32
, Issue.2
, pp. 131-139
-
-
Xu, J.1
Li, H.2
Zhou, S.3
-
30
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
ACM
-
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A., Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning, 2008, ACM, 1096–1103.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
31
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11:Dec (2010), 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, Issue.Dec
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
32
-
-
84887042736
-
Using very deep autoencoders for content-based image retrieval
-
Krizhevsky, A., Hinton, G.E., Using very deep autoencoders for content-based image retrieval. ESANN, 2011.
-
(2011)
ESANN
-
-
Krizhevsky, A.1
Hinton, G.E.2
-
33
-
-
85041310341
-
-
Information processing in dynamical systems: Foundations of harmony theory; cu-cs-321-86.
-
P. Smolensky, Information processing in dynamical systems: Foundations of harmony theory; cu-cs-321-86, 1986.
-
(1986)
-
-
Smolensky, P.1
-
34
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
36
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
Mohamed, A.-r., Dahl, G.E., Hinton, G., Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20:1 (2012), 14–22.
-
(2012)
IEEE Trans. Audio Speech Lang. Process.
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.-R.1
Dahl, G.E.2
Hinton, G.3
-
37
-
-
84888811418
-
Real-time classification and sensor fusion with a spiking deep belief network
-
O'Connor, P., Neil, D., Liu, S.-C., Delbruck, T., Pfeiffer, M., Real-time classification and sensor fusion with a spiking deep belief network. Front. Neurosci., 7, 2013.
-
(2013)
Front. Neurosci.
, vol.7
-
-
O'Connor, P.1
Neil, D.2
Liu, S.-C.3
Delbruck, T.4
Pfeiffer, M.5
-
38
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
Bengio Y. Schuurmans D. Lafferty J.D. Williams C.K.I. Culotta A. Curran Associates
-
Lee, H., Pham, P., Largman, Y., Ng, A.Y., Unsupervised feature learning for audio classification using convolutional deep belief networks. Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A., (eds.) Advances in Neural Information Processing Systems 22, 2009, Curran Associates, 1096–1104 http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf.
-
(2009)
Advances in Neural Information Processing Systems 22
, pp. 1096-1104
-
-
Lee, H.1
Pham, P.2
Largman, Y.3
Ng, A.Y.4
-
39
-
-
84890527090
-
Multi-distribution deep belief network for speech synthesis
-
IEEE
-
Kang, S., Qian, X., Meng, H., Multi-distribution deep belief network for speech synthesis. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, IEEE, 8012–8016.
-
(2013)
2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 8012-8016
-
-
Kang, S.1
Qian, X.2
Meng, H.3
-
40
-
-
84911384987
-
Facial expression recognition via a boosted deep belief network
-
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1805–1812.
-
(2014)
, pp. 1805-1812
-
-
Liu, P.1
Han, S.2
Meng, Z.3
Tong, Y.4
-
41
-
-
51949105316
-
Learning a nonlinear embedding by preserving class neighbourhood structure
-
Salakhutdinov, R., Hinton, G.E., Learning a nonlinear embedding by preserving class neighbourhood structure. AISTATs, Vol.11, 2007.
-
(2007)
AISTATs, Vol.11
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
42
-
-
84919489106
-
A 3D model recognition mechanism based on deep Boltzmann machines
-
Leng, B., Zhang, X., Yao, M., Xiong, Z., A 3D model recognition mechanism based on deep Boltzmann machines. Neurocomputing 151 (2015), 593–602.
-
(2015)
Neurocomputing
, vol.151
, pp. 593-602
-
-
Leng, B.1
Zhang, X.2
Yao, M.3
Xiong, Z.4
-
43
-
-
84964033470
-
Posed and spontaneous facial expression differentiation using deep Boltzmann machines
-
IEEE
-
Gan, Q., Wu, C., Wang, S., Ji, Q., Posed and spontaneous facial expression differentiation using deep Boltzmann machines. 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), 2015, IEEE, 643–648.
-
(2015)
2015 International Conference on Affective Computing and Intelligent Interaction (ACII)
, pp. 643-648
-
-
Gan, Q.1
Wu, C.2
Wang, S.3
Ji, Q.4
-
44
-
-
84862291504
-
Efficient learning of deep Boltzmann machines
-
Salakhutdinov, R., Larochelle, H., Efficient learning of deep Boltzmann machines. AISTATs, Vol. 9, 2010, 693–700.
-
(2010)
AISTATs, Vol. 9
, pp. 693-700
-
-
Salakhutdinov, R.1
Larochelle, H.2
-
45
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C., Estimating the support of a high-dimensional distribution. Neural Comput. 13:7 (2001), 1443–1471.
-
(2001)
Neural Comput.
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
46
-
-
0942266514
-
Support vector data description
-
Tax, D.M., Duin, R.P., Support vector data description. Mach. Learn. 54:1 (2004), 45–66.
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.1
Duin, R.P.2
-
47
-
-
43549085268
-
Real-time disparity map computation module
-
Georgoulas, C., Kotoulas, L., Sirakoulis, G.C., Andreadis, I., Gasteratos, A., Real-time disparity map computation module. Microprocess. Microsyst. 32:3 (2008), 159–170.
-
(2008)
Microprocess. Microsyst.
, vol.32
, Issue.3
, pp. 159-170
-
-
Georgoulas, C.1
Kotoulas, L.2
Sirakoulis, G.C.3
Andreadis, I.4
Gasteratos, A.5
-
49
-
-
84938222889
-
The Mlaga Urban Dataset: High-rate stereo and lidars in a realistic urban scenario
-
Blanco, J.-L., Moreno, F.-A., Gonzlez-Jimnez, J., The Mlaga Urban Dataset: High-rate stereo and lidars in a realistic urban scenario. Int. J. Robot. Res. 33:2 (2014), 207–214 http://www.mrpt.org/MalagaUrbanDataset.
-
(2014)
Int. J. Robot. Res.
, vol.33
, Issue.2
, pp. 207-214
-
-
Blanco, J.-L.1
Moreno, F.-A.2
Gonzlez-Jimnez, J.3
-
50
-
-
84886419616
-
Efficient multi-cue scene segmentation
-
Springer
-
Scharwächter, T., Enzweiler, M., Franke, U., Roth, S., Efficient multi-cue scene segmentation. German Conference on Pattern Recognition, 2013, Springer, 435–445.
-
(2013)
German Conference on Pattern Recognition
, pp. 435-445
-
-
Scharwächter, T.1
Enzweiler, M.2
Franke, U.3
Roth, S.4
-
51
-
-
84906511155
-
Stixmantics: A medium-level model for real-time semantic scene understanding
-
Springer
-
Scharwächter, T., Enzweiler, M., Franke, U., Roth, S., Stixmantics: A medium-level model for real-time semantic scene understanding. European Conference on Computer Vision, 2014, Springer, 533–548.
-
(2014)
European Conference on Computer Vision
, pp. 533-548
-
-
Scharwächter, T.1
Enzweiler, M.2
Franke, U.3
Roth, S.4
|