메뉴 건너뛰기




Volumn 100, Issue , 2018, Pages 287-301

Unsupervised obstacle detection in driving environments using deep-learning-based stereovision

Author keywords

Autoencoder; DBM; Deep learning; Monitoring; OCSVM; Stereovision

Indexed keywords

AUTOMOBILE DRIVERS; DATABASE SYSTEMS; INTELLIGENT ROBOTS; INTELLIGENT SYSTEMS; LEARNING SYSTEMS; MONITORING; OBSTACLE DETECTORS; SIGNAL ENCODING; STEREO VISION;

EID: 85041286281     PISSN: 09218890     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.robot.2017.11.014     Document Type: Article
Times cited : (74)

References (51)
  • 1
    • 3042525440 scopus 로고    scopus 로고
    • Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation
    • IEEE
    • Labayrade, R., Aubert, D., Tarel, J.P., Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation. IEEE Intelligent Vehicle Symposium, 2002, Vol. 2, 2002, IEEE, 646–651.
    • (2002) IEEE Intelligent Vehicle Symposium, 2002, Vol. 2 , pp. 646-651
    • Labayrade, R.1    Aubert, D.2    Tarel, J.P.3
  • 2
    • 84892411787 scopus 로고    scopus 로고
    • Weighted V-disparity approach for obstacles localization in highway environments
    • IEEE
    • Fakhfakh, N., Gruyer, D., Aubert, D., Weighted V-disparity approach for obstacles localization in highway environments. 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, IEEE, 1271–1278.
    • (2013) 2013 IEEE Intelligent Vehicles Symposium (IV) , pp. 1271-1278
    • Fakhfakh, N.1    Gruyer, D.2    Aubert, D.3
  • 3
    • 84879206998 scopus 로고    scopus 로고
    • Surrounding moving obstacle detection for autonomous driving using stereo vision
    • Sun, H., Zou, H., Zhou, S., Wang, C., El-Sheimy, N., Surrounding moving obstacle detection for autonomous driving using stereo vision. Int. J. Adv. Robot. Syst., 10(6), 2013, 261.
    • (2013) Int. J. Adv. Robot. Syst. , vol.10 , Issue.6 , pp. 261
    • Sun, H.1    Zou, H.2    Zhou, S.3    Wang, C.4    El-Sheimy, N.5
  • 4
    • 85041304040 scopus 로고    scopus 로고
    • Obstacle detection using stereo vision for self-driving cars.
    • N. Appiah, N. Bandaru, Obstacle detection using stereo vision for self-driving cars, 2015.
    • (2015)
    • Appiah, N.1    Bandaru, N.2
  • 6
    • 85019572044 scopus 로고    scopus 로고
    • Stereo vision based autonomous robot calibration
    • Zhang, X., Song, Y., Yang, Y., Pan, H., Stereo vision based autonomous robot calibration. Robot. Auton. Syst. 93 (2017), 43–51.
    • (2017) Robot. Auton. Syst. , vol.93 , pp. 43-51
    • Zhang, X.1    Song, Y.2    Yang, Y.3    Pan, H.4
  • 8
    • 33845971275 scopus 로고    scopus 로고
    • A sonar approach to obstacle detection for a vision-based autonomous wheelchair
    • Del, C., Skaar, S., Cardenas, A., Fehr, L., A sonar approach to obstacle detection for a vision-based autonomous wheelchair. Robot. Auton. Syst. 54:12 (2006), 967–981.
    • (2006) Robot. Auton. Syst. , vol.54 , Issue.12 , pp. 967-981
    • Del, C.1    Skaar, S.2    Cardenas, A.3    Fehr, L.4
  • 9
    • 84961238603 scopus 로고    scopus 로고
    • A stereo vision based obstacle detection system for agricultural applications
    • Springer
    • Fleischmann, P., Berns, K., A stereo vision based obstacle detection system for agricultural applications. Field and Service Robotics, 2016, Springer, 217–231.
    • (2016) Field and Service Robotics , pp. 217-231
    • Fleischmann, P.1    Berns, K.2
  • 10
    • 84979710953 scopus 로고    scopus 로고
    • 3D Lidar-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes
    • Asvadi, A., Premebida, C., Peixoto, P., Nunes, U., 3D Lidar-based static and moving obstacle detection in driving environments: An approach based on voxels and multi-region ground planes. Robot. Auton. Syst. 83 (2016), 299–311.
    • (2016) Robot. Auton. Syst. , vol.83 , pp. 299-311
    • Asvadi, A.1    Premebida, C.2    Peixoto, P.3    Nunes, U.4
  • 11
    • 84964049714 scopus 로고    scopus 로고
    • Real-time rear obstacle detection using reliable disparity for driver assistance
    • Yoo, H., Son, J., Ham, B., Sohn, K., Real-time rear obstacle detection using reliable disparity for driver assistance. Expert Syst. Appl. 56 (2016), 186–196.
    • (2016) Expert Syst. Appl. , vol.56 , pp. 186-196
    • Yoo, H.1    Son, J.2    Ham, B.3    Sohn, K.4
  • 20
    • 80055068563 scopus 로고    scopus 로고
    • Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning
    • Duguleana, M., Barbuceanu, F.G., Teirelbar, A., Mogan, G., Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning. Robot. Comput.-Integr. Manuf. 28:2 (2012), 132–146.
    • (2012) Robot. Comput.-Integr. Manuf. , vol.28 , Issue.2 , pp. 132-146
    • Duguleana, M.1    Barbuceanu, F.G.2    Teirelbar, A.3    Mogan, G.4
  • 21
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • Bengio, Y., LeCun, Y., et al. Scaling learning algorithms towards AI. Large Scale Kernel Mach. 34:5 (2007), 1–41.
    • (2007) Large Scale Kernel Mach. , vol.34 , Issue.5 , pp. 1-41
    • Bengio, Y.1    LeCun, Y.2
  • 23
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y., et al. Learning deep architectures for AI. Found. Trends Mach. Learn. 2:1 (2009), 1–127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 24
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • Hinton, G.E., Learning multiple layers of representation. Trends Cogn. Sci. 11:10 (2007), 428–434.
    • (2007) Trends Cogn. Sci. , vol.11 , Issue.10 , pp. 428-434
    • Hinton, G.E.1
  • 27
    • 33746612664 scopus 로고    scopus 로고
    • In-vehicle obstacles detection and characterization by stereovision
    • Proceedings of the 1st International Workshop on In-Vehicle Cognitive Computer Vision Systems, Graz, Austria.
    • R. Labayrade, D. Aubert, In-vehicle obstacles detection and characterization by stereovision, in: Proceedings of the 1st International Workshop on In-Vehicle Cognitive Computer Vision Systems, Graz, Austria, 2003.
    • (2003)
    • Labayrade, R.1    Aubert, D.2
  • 28
    • 84992311617 scopus 로고    scopus 로고
    • High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
    • Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C., High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 58 (2016), 121–134.
    • (2016) Pattern Recognit. , vol.58 , pp. 121-134
    • Erfani, S.M.1    Rajasegarar, S.2    Karunasekera, S.3    Leckie, C.4
  • 29
    • 85085272778 scopus 로고    scopus 로고
    • An overview of deep generative models
    • Xu, J., Li, H., Zhou, S., An overview of deep generative models. IETE Tech. Rev. 32:2 (2015), 131–139.
    • (2015) IETE Tech. Rev. , vol.32 , Issue.2 , pp. 131-139
    • Xu, J.1    Li, H.2    Zhou, S.3
  • 31
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11:Dec (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , Issue.Dec , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 32
    • 84887042736 scopus 로고    scopus 로고
    • Using very deep autoencoders for content-based image retrieval
    • Krizhevsky, A., Hinton, G.E., Using very deep autoencoders for content-based image retrieval. ESANN, 2011.
    • (2011) ESANN
    • Krizhevsky, A.1    Hinton, G.E.2
  • 33
    • 85041310341 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory; cu-cs-321-86.
    • P. Smolensky, Information processing in dynamical systems: Foundations of harmony theory; cu-cs-321-86, 1986.
    • (1986)
    • Smolensky, P.1
  • 34
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 37
  • 38
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Bengio Y. Schuurmans D. Lafferty J.D. Williams C.K.I. Culotta A. Curran Associates
    • Lee, H., Pham, P., Largman, Y., Ng, A.Y., Unsupervised feature learning for audio classification using convolutional deep belief networks. Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A., (eds.) Advances in Neural Information Processing Systems 22, 2009, Curran Associates, 1096–1104 http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf.
    • (2009) Advances in Neural Information Processing Systems 22 , pp. 1096-1104
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.Y.4
  • 40
    • 84911384987 scopus 로고    scopus 로고
    • Facial expression recognition via a boosted deep belief network
    • Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1805–1812.
    • (2014) , pp. 1805-1812
    • Liu, P.1    Han, S.2    Meng, Z.3    Tong, Y.4
  • 41
    • 51949105316 scopus 로고    scopus 로고
    • Learning a nonlinear embedding by preserving class neighbourhood structure
    • Salakhutdinov, R., Hinton, G.E., Learning a nonlinear embedding by preserving class neighbourhood structure. AISTATs, Vol.11, 2007.
    • (2007) AISTATs, Vol.11
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 42
    • 84919489106 scopus 로고    scopus 로고
    • A 3D model recognition mechanism based on deep Boltzmann machines
    • Leng, B., Zhang, X., Yao, M., Xiong, Z., A 3D model recognition mechanism based on deep Boltzmann machines. Neurocomputing 151 (2015), 593–602.
    • (2015) Neurocomputing , vol.151 , pp. 593-602
    • Leng, B.1    Zhang, X.2    Yao, M.3    Xiong, Z.4
  • 44
    • 84862291504 scopus 로고    scopus 로고
    • Efficient learning of deep Boltzmann machines
    • Salakhutdinov, R., Larochelle, H., Efficient learning of deep Boltzmann machines. AISTATs, Vol. 9, 2010, 693–700.
    • (2010) AISTATs, Vol. 9 , pp. 693-700
    • Salakhutdinov, R.1    Larochelle, H.2
  • 46
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D.M., Duin, R.P., Support vector data description. Mach. Learn. 54:1 (2004), 45–66.
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.1    Duin, R.P.2
  • 49
    • 84938222889 scopus 로고    scopus 로고
    • The Mlaga Urban Dataset: High-rate stereo and lidars in a realistic urban scenario
    • Blanco, J.-L., Moreno, F.-A., Gonzlez-Jimnez, J., The Mlaga Urban Dataset: High-rate stereo and lidars in a realistic urban scenario. Int. J. Robot. Res. 33:2 (2014), 207–214 http://www.mrpt.org/MalagaUrbanDataset.
    • (2014) Int. J. Robot. Res. , vol.33 , Issue.2 , pp. 207-214
    • Blanco, J.-L.1    Moreno, F.-A.2    Gonzlez-Jimnez, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.