메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Long Short Term Memory Recurrent Neural Network Classifier for Intrusion Detection

Author keywords

Intrusion detection system; Long short term memory; Recurrent neural network

Indexed keywords

BRAIN; COMPUTER CRIME; MERCURY (METAL); RECURRENT NEURAL NETWORKS;

EID: 84968624500     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PlatCon.2016.7456805     Document Type: Conference Paper
Times cited : (573)

References (22)
  • 2
    • 25844491810 scopus 로고    scopus 로고
    • An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
    • Depren, Ozgur, et al., An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks, Expert systems with Applications 29.4, pp.713-722, 2005
    • (2005) Expert Systems with Applications , vol.29 , Issue.4 , pp. 713-722
    • Depren, O.1
  • 3
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • Liao, Yihua, and V. Rao Vemuri, Use of k-nearest neighbor classifier for intrusion detection, Computers & Security 21.5, pp.439-448, 2002
    • (2002) Computers & Security , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Rao Vemuri, V.2
  • 4
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • Sung, Andrew H., Srinivas Mukkamala, Identifying important features for intrusion detection using support vector machines and neural networks, Applications and the Internet, 2003
    • (2003) Applications and the Internet
    • Sung, A.H.1    Mukkamala, S.2
  • 5
    • 1642355954 scopus 로고    scopus 로고
    • Application of machine learning algorithms to kdd intrusion detection dataset within misuse detection context
    • Sabhnani, Maheshkumar, and Grsel Serpen., Application of Machine Learning Algorithms to KDD Intrusion Detection Dataset within Misuse Detection Context, MLMTA, 2003
    • (2003) MLMTA
    • Sabhnani, M.1    Serpen, G.2
  • 7
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • LukoEviIus, Mantas, and Herbert Jaeger, Reservoir computing approaches to recurrent neural network training, Computer Science Review 3.3 pp.127-149, 2009
    • (2009) Computer Science Review , vol.3 , Issue.3 , pp. 127-149
    • Luko, E.1    Mantas, I.2    Jaeger, H.3
  • 8
    • 84968662652 scopus 로고    scopus 로고
    • A hybrid machine learning approach to network anomaly detection
    • S. Taeshik, M. Jongsub, A hybrid machine learning approach to network anomaly detection, ScienceDirect, Information Sciences 177, pp.37993821, 2007
    • (2007) ScienceDirect, Information Sciences , vol.177 , pp. 37993821
    • Taeshik, S.1    Jongsub, M.2
  • 9
    • 33947581868 scopus 로고    scopus 로고
    • Hybrid flexible neural-tree-based intrusion detection systems
    • April
    • C. Yehui, A. Ajith, Y. Bo, Hybrid flexible neural-tree-based intrusion detection systems, International Journal of Intelligent Systems, Volume 22 Issues 4, pp.337-352, April 2007
    • (2007) International Journal of Intelligent Systems , vol.22 , Issue.4 , pp. 337-352
    • Yehui, C.1    Ajith, A.2    Bo, Y.3
  • 15
    • 84968531618 scopus 로고    scopus 로고
    • Applying recurrent neural network to intrusion detection with hessian free optimization
    • K. Jihyun, K. Howon, Applying Recurrent Neural Network to Intrusion Detection with Hessian Free Optimization, In Proc. WISA, 2015
    • (2015) Proc. WISA
    • Jihyun, K.1    Howon, K.2
  • 16
    • 0025503558 scopus 로고
    • Backpropagation through Time: What it does and how to do it
    • Werbos, Paul J., Backpropagation through time: what it does and how to do it, Proceedings of the IEEE 78.10, pp.1550-1560, 1990
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos Paul, J.1
  • 17
    • 0028392483 scopus 로고
    • Learning Long-Term dependencies with gradient descent is difficult, Neural Networks
    • Bengio, Yoshua, S. Patrice, and F.Paolo, Learning long-term dependencies with gradient descent is difficult, Neural Networks, IEEE Transactions on 5.2, pp.157-166, 1994
    • (1994) IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Yoshua, B.1    Patrice, S.2    Paolo, F.3
  • 19
    • 84941131871 scopus 로고    scopus 로고
    • Performance comparison for intrusion detection system using neural network with KDD dataset
    • Devaraju, S., S. Ramakrishnan, Performance comparison for intrusion detection system using neural network with KDD dataset, ICTACT Journal on Soft Computing. l 4.3, 2014
    • (2014) ICTACT Journal on Soft Computing , vol.14 , pp. 3
    • Devaraju, S.1    Ramakrishnan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.