-
1
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning, " Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84940426185
-
Multimodal data fusion: An overview of methods, challenges, and prospects
-
D. Lahat, T. Adali, and C. Jutten, "Multimodal data fusion: An overview of methods, challenges, and prospects, " Proc. IEEE, vol. 103, no. 9, pp. 1449-1477, 2015.
-
(2015)
Proc. IEEE
, vol.103
, Issue.9
, pp. 1449-1477
-
-
Lahat, D.1
Adali, T.2
Jutten, C.3
-
3
-
-
78049469733
-
Multimodal fusion for multimedia analysis: A survey
-
P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli, "Multimodal fusion for multimedia analysis: A survey, " Multimedia Systems, vol. 16, no. 6, pp. 345-379, 2010.
-
(2010)
Multimedia Systems
, vol.16
, Issue.6
, pp. 345-379
-
-
Atrey, P.K.1
Hossain, M.A.2
El Saddik, A.3
Kankanhalli, M.S.4
-
4
-
-
84867336190
-
Multisensor data fusion: A review of the state-of-the-art
-
B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, "Multisensor data fusion: A review of the state-of-the-art, " Inform. Fusion, vol. 14, no. 1, pp. 28-44, 2013.
-
(2013)
Inform. Fusion
, vol.14
, Issue.1
, pp. 28-44
-
-
Khaleghi, B.1
Khamis, A.2
Karray, F.O.3
Razavi, S.N.4
-
6
-
-
80053437179
-
Multimodal deep learning
-
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, "Multimodal deep learning, " in Proc. 28th Int. Conf. Machine Learning (ICML-11), 2011, pp. 689-696.
-
(2011)
Proc. 28th Int. Conf. Machine Learning (ICML-11)
, pp. 689-696
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
8
-
-
84978743208
-
ModDrop: Adaptive multi-modal gesture recognition
-
N. Neverova, C. Wolf, G. Taylor, and F. Nebout, "ModDrop: Adaptive multi-modal gesture recognition, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 8, pp. 1692-1706, 2016.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.8
, pp. 1692-1706
-
-
Neverova, N.1
Wolf, C.2
Taylor, G.3
Nebout, F.4
-
9
-
-
84946574616
-
Deep head pose: Gaze-direction estimation in multimodal video
-
S. S. Mukherjee and N. M. Robertson, "Deep head pose: Gaze-direction estimation in multimodal video, " IEEE Trans. Multimedia, vol. 17, no. 11, pp. 2094-2107, 2015.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, Issue.11
, pp. 2094-2107
-
-
Mukherjee, S.S.1
Robertson, N.M.2
-
10
-
-
84946716984
-
Robust face recognition via multimodal deep face representation
-
C. Ding and D. Tao, "Robust face recognition via multimodal deep face representation, " IEEE Trans. Multimedia, vol. 17, no. 11, pp. 2049-2058, 2015.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, Issue.11
, pp. 2049-2058
-
-
Ding, C.1
Tao, D.2
-
11
-
-
84939621633
-
EmoNets: Multimodal deep learning approaches for emotion recognition in video
-
S. E. Kahou, X. Bouthillier, P. Lamblin, C. Gulcehre, V. Michalski, K. Konda, S. Jean, P. Froumenty, et al., "EmoNets: Multimodal deep learning approaches for emotion recognition in video, " J. Multimedia User Interfaces, vol. 10, no. 2, pp. 99-111, 2015.
-
(2015)
J. Multimedia User Interfaces
, vol.10
, Issue.2
, pp. 99-111
-
-
Kahou, S.E.1
Bouthillier, X.2
Lamblin, P.3
Gulcehre, C.4
Michalski, V.5
Konda, K.6
Jean, S.7
Froumenty, P.8
-
12
-
-
84963959085
-
HMOG: New behavioral biometric features for continuous authentication of smartphone users
-
Z. Sitová, J. Šedenka, Q. Yang, G. Peng, G. Zhou, P. Gasti, and K. S. Balagani, "HMOG: New behavioral biometric features for continuous authentication of smartphone users, " IEEE Trans. Inf. Forensics Security, vol. 11, no. 5, pp. 877-892, 2016.
-
(2016)
IEEE Trans. Inf. Forensics Security
, vol.11
, Issue.5
, pp. 877-892
-
-
Sitová, Z.1
Šedenka, J.2
Yang, Q.3
Peng, G.4
Zhou, G.5
Gasti, P.6
Balagani, K.S.7
-
13
-
-
84991051993
-
Toward multimodal deep learning for activity recognition on mobile devices
-
V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K. Marina, and F. Kawsar, "Toward multimodal deep learning for activity recognition on mobile devices, " in Proc. ACM Int. Joint Conf. Pervasive and Ubiquitous Computing: Adjunct, 2016, pp. 185-188.
-
(2016)
Proc. ACM Int. Joint Conf. Pervasive and Ubiquitous Computing: Adjunct
, pp. 185-188
-
-
Radu, V.1
Lane, N.D.2
Bhattacharya, S.3
Mascolo, C.4
Marina, M.K.5
Kawsar, F.6
-
14
-
-
84945972584
-
Modeep: A deep learning framework using motion features for human pose estimation
-
A. Jain, J. Tompson, Y. LeCun, and C. Bregler, "Modeep: A deep learning framework using motion features for human pose estimation, " in Proc. Asian Conf. Computer Vision, 2014, pp. 302-315.
-
(2014)
Proc. Asian Conf. Computer Vision
, pp. 302-315
-
-
Jain, A.1
Tompson, J.2
LeCun, Y.3
Bregler, C.4
-
15
-
-
85107068170
-
Deep multispectral semantic scene understanding of forested environments using multimodal fusion
-
A. Valada, G. L. Oliveira, T. Brox, and W. Burgard, "Deep multispectral semantic scene understanding of forested environments using multimodal fusion, " in Proc. Int. Symp. Experimental Robotics (ISER 2016), 2016, pp. 465-477.
-
(2016)
Proc. Int. Symp. Experimental Robotics (ISER 2016)
, pp. 465-477
-
-
Valada, A.1
Oliveira, G.L.2
Brox, T.3
Burgard, W.4
-
16
-
-
85021145223
-
Deep learning in medical image analysis
-
D. Shen, G. Wu, and H.-I. Suk, "Deep learning in medical image analysis, " Annu. Review Biomedical Eng., vol. 19, pp. 221-248, 2017.
-
(2017)
Annu. Review Biomedical Eng.
, vol.19
, pp. 221-248
-
-
Shen, D.1
Wu, G.2
Suk, H.-I.3
-
17
-
-
84921819440
-
Stacked multiscale feature learning for domain independent medical image segmentation
-
R. Kiros, K. Popuri, D. Cobzas, and M. Jagersand, "Stacked multiscale feature learning for domain independent medical image segmentation, " in Proc. Int. Workshop on Mach. Learning in Medical Imaging, 2014, pp. 25-32.
-
(2014)
Proc. Int. Workshop on Mach. Learning in Medical Imaging
, pp. 25-32
-
-
Kiros, R.1
Popuri, K.2
Cobzas, D.3
Jagersand, M.4
-
18
-
-
84887419657
-
Online multimodal deep similarity learning with application to image retrieval
-
P. Wu, S. C. Hoi, H. Xia, P. Zhao, D. Wang, and C. Miao, "Online multimodal deep similarity learning with application to image retrieval, " in Proc. 21st ACM Int. Conf. Multimedia. 2013, pp. 153-162.
-
(2013)
Proc. 21st ACM Int. Conf. Multimedia.
, pp. 153-162
-
-
Wu, P.1
Hoi, S.C.2
Xia, H.3
Zhao, P.4
Wang, D.5
Miao, C.6
-
19
-
-
84996598572
-
A deep metric for multimodal registration
-
M. Simonovsky, B. Gutiérrez-Becker, D. Mateus, N. Navab, and N. Komodakis, "A deep metric for multimodal registration, " in Proc. Int. Conf. Medical Image Computer and Computer-Assisted Intervention, 2016, pp. 10-18.
-
(2016)
Proc. Int. Conf. Medical Image Computer and Computer-Assisted Intervention
, pp. 10-18
-
-
Simonovsky, M.1
Gutiérrez-Becker, B.2
Mateus, D.3
Navab, N.4
Komodakis, N.5
-
20
-
-
84925851214
-
Multimodal neuroimaging neature learning for multiclass diagnosis of Alzheimer's disease
-
S. Liu, S. Liu, W. Cai, H. Che, S. Pujol, R. Kikinis, D. Feng, M. J. Fulham, et al., "Multimodal neuroimaging neature learning for multiclass diagnosis of Alzheimer's disease, " IEEE Trans. Biomed. Eng., vol. 62, no. 4, pp. 1132-1140, 2015.
-
(2015)
IEEE Trans. Biomed. Eng.
, vol.62
, Issue.4
, pp. 1132-1140
-
-
Liu, S.1
Liu, S.2
Cai, W.3
Che, H.4
Pujol, S.5
Kikinis, R.6
Feng, D.7
Fulham, M.J.8
-
21
-
-
84968861400
-
Applications of deep learning in biomedicine
-
P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov, "Applications of deep learning in biomedicine, " Molecular Pharmaceutics, vol. 13, no. 5, pp. 1445-1454, 2016.
-
(2016)
Molecular Pharmaceutics
, vol.13
, Issue.5
, pp. 1445-1454
-
-
Mamoshina, P.1
Vieira, A.2
Putin, E.3
Zhavoronkov, A.4
-
22
-
-
84906980652
-
Segmenting hippocampus from infant brains by sparse patch matching with deeplearned features
-
Y. Guo, G. Wu, L. A. Commander, S. Szary, V. Jewells, W. Lin, and D. Shen, "Segmenting hippocampus from infant brains by sparse patch matching with deeplearned features, " in Proc. Int. Conf. Medical Image Computer and Computer-Assisted Intervention, 2014, p. 308.
-
(2014)
Proc. Int. Conf. Medical Image Computer and Computer-Assisted Intervention
, pp. 308
-
-
Guo, Y.1
Wu, G.2
Commander, L.A.3
Szary, S.4
Jewells, V.5
Lin, W.6
Shen, D.7
-
23
-
-
84968649810
-
Convolutional neural networks for medical image analysis: Full training or fine tuning
-
N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang, "Convolutional neural networks for medical image analysis: Full training or fine tuning" IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1299-1312, 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1299-1312
-
-
Tajbakhsh, N.1
Shin, J.Y.2
Gurudu, S.R.3
Hurst, R.T.4
Kendall, C.B.5
Gotway, M.B.6
Liang, J.7
-
24
-
-
84993965279
-
Interpretable deep neural networks for single-trial EEG classification
-
Dec.
-
I. Sturm, S. Lapuschkin, W. Samek, and K.-R. Müller, "Interpretable deep neural networks for single-trial eeg classification, " J. Neuroscience Methods, vol. 274, pp. 141-145, Dec. 2016.
-
(2016)
J. Neuroscience Methods
, vol.274
, pp. 141-145
-
-
Sturm, I.1
Lapuschkin, S.2
Samek, W.3
Müller, K.-R.4
-
25
-
-
84979675872
-
Opening up the blackbox: An interpretable deep neural network-based classifier for cell-type specific enhancer predictions
-
S. G. Kim, N. Theera-Ampornpunt, C.-H. Fang, M. Harwani, A. Grama, and S. Chaterji, "Opening up the blackbox: An interpretable deep neural network-based classifier for cell-type specific enhancer predictions, " BMC Syst. Biology, vol. 10, no. 2, p. 54, 2016.
-
(2016)
BMC Syst. Biology
, vol.10
, Issue.2
, pp. 54
-
-
Kim, S.G.1
Theera-Ampornpunt, N.2
Fang, C.-H.3
Harwani, M.4
Grama, A.5
Chaterji, S.6
-
26
-
-
84973888858
-
Deepdriving: Learning affordance for direct perception in autonomous driving
-
C. Chen, A. Seff, A. Kornhauser, and J. Xiao, "Deepdriving: Learning affordance for direct perception in autonomous driving, " in Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 2722-2730.
-
(2015)
Proc. IEEE Int. Conf. Computer Vision
, pp. 2722-2730
-
-
Chen, C.1
Seff, A.2
Kornhauser, A.3
Xiao, J.4
-
27
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
28
-
-
84928013181
-
Deep learning for detecting robotic grasps
-
I. Lenz, H. Lee, and A. Saxena, "Deep learning for detecting robotic grasps, " Int. J. Robotics Res., vol. 34, no. 4-5, pp. 705-724, 2015.
-
(2015)
Int. J. Robotics Res.
, vol.34
, Issue.4-5
, pp. 705-724
-
-
Lenz, I.1
Lee, H.2
Saxena, A.3
-
31
-
-
84981714705
-
Medical image retrieval: A multimodal approach
-
Y. Cao, S. Steffey, J. He, D. Xiao, C. Tao, P. Chen, and H. Müller, "Medical image retrieval: A multimodal approach, " Cancer Informatics, vol. 13, no. Suppl 3, p. 125, 2014.
-
(2014)
Cancer Informatics
, vol.13
, pp. 125
-
-
Cao, Y.1
Steffey, S.2
He, J.3
Xiao, D.4
Tao, C.5
Chen, P.6
Müller, H.7
-
32
-
-
84939178155
-
Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach
-
M. Liang, Z. Li, T. Chen, and J. Zeng, "Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach, " IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 12, no. 4, pp. 928-937, 2015.
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.12
, Issue.4
, pp. 928-937
-
-
Liang, M.1
Li, Z.2
Chen, T.3
Zeng, J.4
-
34
-
-
84943617823
-
Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis
-
S. Poria, E. Cambria, and A. Gelbukh, "Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis, " in Proc. Conf. Empirical Methods on Natural Language Processing, 2015, pp. 2539-2544.
-
(2015)
Proc. Conf. Empirical Methods on Natural Language Processing
, pp. 2539-2544
-
-
Poria, S.1
Cambria, E.2
Gelbukh, A.3
-
35
-
-
84977476000
-
Recurrent neural networks for driver activity anticipation via sensory-fusion architecture
-
A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena, "Recurrent neural networks for driver activity anticipation via sensory-fusion architecture, " in Proc. 2016 IEEE Int. Conf. Robotics and Automation (ICRA), 2016, pp. 3118-3125.
-
(2016)
Proc. 2016 IEEE Int. Conf. Robotics and Automation (ICRA)
, pp. 3118-3125
-
-
Jain, A.1
Singh, A.2
Koppula, H.S.3
Soh, S.4
Saxena, A.5
-
36
-
-
84973890960
-
VQA: Visual question answering
-
S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh, "VQA: Visual question answering, " in Proc. Int. Conf. Computer Vision (ICCV), 2015, pp. 2425-2433.
-
(2015)
Proc. Int. Conf. Computer Vision (ICCV)
, pp. 2425-2433
-
-
Antol, S.1
Agrawal, A.2
Lu, J.3
Mitchell, M.4
Batra, D.5
Zitnick, C.L.6
Parikh, D.7
-
37
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell, "Long-term recurrent convolutional networks for visual recognition and description, " in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 2625-2634.
-
(2015)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 2625-2634
-
-
Donahue, J.1
Anne Hendricks, L.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
38
-
-
84937843643
-
Deep fragment embeddings for bidirectional image sentence mapping
-
A. Karpathy, A. Joulin, and F. F. F. Li, "Deep fragment embeddings for bidirectional image sentence mapping, " in Proc. Advances in Neural Information Processing Systems, 2014, pp. 1889-1897.
-
(2014)
Proc. Advances in Neural Information Processing Systems
, pp. 1889-1897
-
-
Karpathy, A.1
Joulin, A.2
Li, F.F.F.3
-
39
-
-
84946747440
-
Show and tell: A neural image caption generator
-
O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, "Show and tell: A neural image caption generator, " in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 3156-3164.
-
(2015)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 3156-3164
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
40
-
-
84965170394
-
Exploring models and data for image question answering
-
M. Ren, R. Kiros, and R. Zemel, "Exploring models and data for image question answering, " in Proc. Advances in Neural Information Processing Systems, 2015, pp. 2953-2961.
-
(2015)
Proc. Advances in Neural Information Processing Systems
, pp. 2953-2961
-
-
Ren, M.1
Kiros, R.2
Zemel, R.3
-
41
-
-
85020657410
-
-
J.-H. Kim, S.-W. Lee, D.-H. Kwak, M.-O. Heo, J. Kim, J.-W. Ha, and B.-T. Zhang. (2016). Multimodal residual learning for visual QA. ArXiv. [Online]. Available: https:// arxiv. org/abs/1606. 01455
-
(2016)
Multimodal Residual Learning for Visual QA
-
-
Kim, J.-H.1
Lee, S.-W.2
Kwak, D.-H.3
Heo, M.-O.4
Kim, J.5
Ha, J.-W.6
Zhang, B.-T.7
-
42
-
-
84955143444
-
Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
-
F. J. Ordónez and D. Roggen, "Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition, " Sensors, vol. 16, no. 1, p. 115, 2016.
-
(2016)
Sensors
, vol.16
, Issue.1
, pp. 115
-
-
Ordónez, F.J.1
Roggen, D.2
-
43
-
-
84978655918
-
Deep dynamic neural networks for multimodal gesture segmentation and recognition
-
D. Wu, L. Pigou, P.-J. Kindermans, N. D.-H. Le, L. Shao, J. Dambre, and J.-M. Odobez, "Deep dynamic neural networks for multimodal gesture segmentation and recognition, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 8, pp. 1583-1597, 2016.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.8
, pp. 1583-1597
-
-
Wu, D.1
Pigou, L.2
Kindermans, P.-J.3
Le, N.D.-H.4
Shao, L.5
Dambre, J.6
Odobez, J.-M.7
-
44
-
-
56449110012
-
Classification using discriminative restricted Boltzmann machines
-
H. Larochelle and Y. Bengio, "Classification using discriminative restricted Boltzmann machines, " in Proc. 25th Int. Conf. Machine Learning, 2008, pp. 536-543.
-
(2008)
Proc. 25th Int. Conf. Machine Learning
, pp. 536-543
-
-
Larochelle, H.1
Bengio, Y.2
-
45
-
-
84946734767
-
Unconstrained multimodal multi-label learning
-
Y. Huang, W. Wang, and L. Wang, "Unconstrained multimodal multi-label learning, " IEEE Trans. Multimedia, vol. 17, no. 11, pp. 1923-1935, 2015.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, Issue.11
, pp. 1923-1935
-
-
Huang, Y.1
Wang, W.2
Wang, L.3
-
46
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets, " in Proc. Advances in Neural Information Processing Systems, 2014, pp. 2672-2680.
-
(2014)
Proc. Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
48
-
-
84998636515
-
Generative adversarial text to image synthesis
-
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, "Generative adversarial text to image synthesis, " in Proc. 33rd Int. Conf. Machine Learning (ICML), 2016, pp. 1060-1069.
-
(2016)
Proc. 33rd Int. Conf. Machine Learning (ICML)
, pp. 1060-1069
-
-
Reed, S.1
Akata, Z.2
Yan, X.3
Logeswaran, L.4
Schiele, B.5
Lee, H.6
-
51
-
-
84956802323
-
A tutorial survey of architectures, algorithms, and applications for deep learning
-
L. Deng, "A tutorial survey of architectures, algorithms, and applications for deep learning, " APSIPA Trans. Signal and Inform. Processing, vol. 3, pp. 1-29, 2014.
-
(2014)
APSIPA Trans. Signal and Inform. Processing
, vol.3
, pp. 1-29
-
-
Deng, L.1
-
52
-
-
85013076904
-
Deep multimodal fusion: A hybrid approach
-
M. R. Amer, T. Shields, B. Siddiquie, A. Tamrakar, A. Divakaran, and S. Chai, "Deep multimodal fusion: A hybrid approach, " Int. J. Comput. Vision, pp. 1-17, 2017. DOI: 10. 1007/s11263-017-0997-7.
-
(2017)
Int. J. Comput. Vision
, pp. 1-17
-
-
Amer, M.R.1
Shields, T.2
Siddiquie, B.3
Tamrakar, A.4
Divakaran, A.5
Chai, S.6
-
53
-
-
84904680320
-
Multimodal fusion using dynamic hybrid models
-
M. R. Amer, B. Siddiquie, S. Khan, A. Divakaran, and H. Sawhney, "Multimodal fusion using dynamic hybrid models, " in Proc. IEEE 2014 Applications of Computer Vision Winter Conf., 2014, pp. 556-563.
-
(2014)
Proc. IEEE 2014 Applications of Computer Vision Winter Conf.
, pp. 556-563
-
-
Amer, M.R.1
Siddiquie, B.2
Khan, S.3
Divakaran, A.4
Sawhney, H.5
-
54
-
-
84898846309
-
Sports video classification from multimodal information using deep neural networks
-
D. S. Sachan, U. Tekwani, and A. Sethi, "Sports video classification from multimodal information using deep neural networks, " in Proc. 2013 Association for the Advancement of Artificial Intelligence Fall Symp., 2013, pp. 102-107.
-
(2013)
Proc. 2013 Association for the Advancement of Artificial Intelligence Fall Symp.
, pp. 102-107
-
-
Sachan, D.S.1
Tekwani, U.2
Sethi, A.3
-
55
-
-
84923050897
-
Multimodal video classification with stacked contractive autoencoders
-
Mar.
-
Y. Liu, X. Feng, and Z. Zhou, "Multimodal video classification with stacked contractive autoencoders, " Signal Processing, vol. 120, pp. 761-766, Mar. 2016.
-
(2016)
Signal Processing
, vol.120
, pp. 761-766
-
-
Liu, Y.1
Feng, X.2
Zhou, Z.3
-
57
-
-
84990036901
-
-
Cham, Switzerland: Springer International Publishing
-
A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba, Ambient Sound Provides Supervision for Visual Learning. Cham, Switzerland: Springer International Publishing, 2016, pp. 801-816.
-
(2016)
Ambient Sound Provides Supervision for Visual Learning
, pp. 801-816
-
-
Owens, A.1
Wu, J.2
McDermott, J.H.3
Freeman, W.T.4
Torralba, A.5
-
58
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
59
-
-
84939232131
-
Learning compact hash codes for multimodal representations using orthogonal deep structure
-
D. Wang, P. Cui, M. Ou, and W. Zhu, "Learning compact hash codes for multimodal representations using orthogonal deep structure, " IEEE Trans. Multimedia, vol. 17, no. 9, pp. 1404-1416, 2015.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, Issue.9
, pp. 1404-1416
-
-
Wang, D.1
Cui, P.2
Ou, M.3
Zhu, W.4
-
60
-
-
84897493967
-
Multimodal similarity-preserving hashing
-
J. Masci, M. M. Bronstein, A. M. Bronstein, and J. Schmidhuber, "Multimodal similarity-preserving hashing, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 824-830, 2014.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, Issue.4
, pp. 824-830
-
-
Masci, J.1
Bronstein, M.M.2
Bronstein, A.M.3
Schmidhuber, J.4
-
62
-
-
84892582758
-
Combining modality specific deep neural networks for emotion recognition in video
-
S. E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, Ç. Gülçehre, R. Memisevic, P. Vincent, A. Courville, et al., "Combining modality specific deep neural networks for emotion recognition in video, " in Proc. 15th ACM Int. Conf. Multimodal Interaction, 2013, pp. 543-550.
-
(2013)
Proc. 15th ACM Int. Conf. Multimodal Interaction
, pp. 543-550
-
-
Kahou, S.E.1
Pal, C.2
Bouthillier, X.3
Froumenty, P.4
Gülçehre, Ç.5
Memisevic, R.6
Vincent, P.7
Courville, A.8
-
63
-
-
84944930951
-
Shared representation learning for heterogenous face recognition
-
D. Yi, Z. Lei, and S. Z. Li, "Shared representation learning for heterogenous face recognition, " in Proc. Automatic Face and Gesture Recognition 11th IEEE Int. Conf. Workshops, 2015, pp. 1-7.
-
(2015)
Proc. Automatic Face and Gesture Recognition 11th IEEE Int. Conf. Workshops
, pp. 1-7
-
-
Yi, D.1
Lei, Z.2
Li, S.Z.3
-
64
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, "Large-scale video classification with convolutional neural networks, " in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014, pp. 1725-1732.
-
(2014)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
65
-
-
84906567304
-
Structured regularizers for high-dimensional problems: Statistical and computational issues
-
Apr.
-
M. J. Wainwright, "Structured regularizers for high-dimensional problems: Statistical and computational issues, " Annu. Rev. Statistics Application, vol. 1, pp. 233-253, Apr. 2014.
-
(2014)
Annu. Rev. Statistics Application
, vol.1
, pp. 233-253
-
-
Wainwright, M.J.1
-
66
-
-
84937873395
-
Improved multimodal deep learning with variation of information
-
K. Sohn, W. Shang, and H. Lee, "Improved multimodal deep learning with variation of information, " in Proc. Advances in Neural Information Processing Systems., 2014, pp. 2141-2149.
-
(2014)
Proc. Advances in Neural Information Processing Systems.
, pp. 2141-2149
-
-
Sohn, K.1
Shang, W.2
Lee, H.3
-
67
-
-
84910656722
-
Maximum mutual information regularized classification
-
Jan.
-
J. J.-Y. Wang, Y. Wang, S. Zhao, and X. Gao, "Maximum mutual information regularized classification, " Eng. Applicat. Artificial Intell., vol. 37, pp. 1-8, Jan. 2015.
-
(2015)
Eng. Applicat. Artificial Intell.
, vol.37
, pp. 1-8
-
-
Wang, J.J.-Y.1
Wang, Y.2
Zhao, S.3
Gao, X.4
-
68
-
-
84930703517
-
Multimodal deep network learning-based image annotation
-
S. Zhu, X. Li, and S. Shen, "Multimodal deep network learning-based image annotation, " IET Electron. Lett., vol. 51, no. 12, pp. 905-906, 2015.
-
(2015)
IET Electron. Lett.
, vol.51
, Issue.12
, pp. 905-906
-
-
Zhu, S.1
Li, X.2
Shen, S.3
-
69
-
-
84876033996
-
Structured feature selection and task relationship inference for multi-task learning
-
H. Fei and J. Huan, "Structured feature selection and task relationship inference for multi-task learning, " Knowledge and Inform. Syst., vol. 35, no. 2, pp. 345-364, 2013.
-
(2013)
Knowledge and Inform. Syst.
, vol.35
, Issue.2
, pp. 345-364
-
-
Fei, H.1
Huan, J.2
-
70
-
-
84913586072
-
Exploring inter-feature and interclass relationships with deep neural networks for video classification
-
Z. Wu, Y.-G. Jiang, J. Wang, J. Pu, and X. Xue, "Exploring inter-feature and interclass relationships with deep neural networks for video classification, " in Proc. ACM Int. Conf. Multimedia, 2014, pp. 167-176.
-
(2014)
Proc. ACM Int. Conf. Multimedia
, pp. 167-176
-
-
Wu, Z.1
Jiang, Y.-G.2
Wang, J.3
Pu, J.4
Xue, X.5
-
71
-
-
84946215753
-
Large-margin multi-modal deep learning for RGB-D object recognition
-
Nov.
-
A. Wang, J. Lu, J. Cai, T. J. Cham, and G. Wang, "Large-margin multi-modal deep learning for RGB-D object recognition, " IEEE Trans. Multimedia, vol. 17, no. 11, pp. 1887-1898, Nov. 2015.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, Issue.11
, pp. 1887-1898
-
-
Wang, A.1
Lu, J.2
Cai, J.3
Cham, T.J.4
Wang, G.5
-
72
-
-
84973866198
-
MMSS: Multi-modal sharable and specific feature learning for RGB-D object recognition
-
A. Wang, J. Cai, J. Lu, and T.-J. Cham, "MMSS: Multi-modal sharable and specific feature learning for RGB-D object recognition, " in Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 1125-1133.
-
(2015)
Proc. IEEE Int. Conf. Computer Vision
, pp. 1125-1133
-
-
Wang, A.1
Cai, J.2
Lu, J.3
Cham, T.-J.4
-
73
-
-
0027636611
-
Learning and development in neural networks: The importance of starting small
-
J. Elman, "Learning and development in neural networks: The importance of starting small, " Cognition, vol. 48, no. 1, pp. 71-99, 1993.
-
(1993)
Cognition
, vol.48
, Issue.1
, pp. 71-99
-
-
Elman, J.1
-
75
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions, " in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 1-9.
-
(2015)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
76
-
-
0027662338
-
Pruning algorithms-A survey
-
R. Reed, "Pruning algorithms-A survey, " IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 740-747, 1993.
-
(1993)
IEEE Trans. Neural Netw.
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
77
-
-
84973901098
-
Learning the structure of deep convolutional networks
-
J. Feng and T. Darrel, "Learning the structure of deep convolutional networks, " in Proc. Int. Conf. Computer Vision, 2015, pp. 2749-2757.
-
(2015)
Proc. Int. Conf. Computer Vision
, pp. 2749-2757
-
-
Feng, J.1
Darrel, T.2
-
78
-
-
84912533215
-
A structure optimization algorithm of neural networks for large-scale data sets
-
J. Yang, J. Ma, M. Berryman, and P. Perez, "A structure optimization algorithm of neural networks for large-scale data sets, " in Proc. 2014 IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), 2014, pp. 956-961.
-
(2014)
Proc. 2014 IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE)
, pp. 956-961
-
-
Yang, J.1
Ma, J.2
Berryman, M.3
Perez, P.4
-
79
-
-
0025477595
-
Genetic algorithms and neural networks: Optimizing connections and connectivity
-
D. Whitley, T. Starkweather, and C. Bogart, "Genetic algorithms and neural networks: Optimizing connections and connectivity, " Parallel Comput., vol. 14, no. 3, pp. 347-361, 1990.
-
(1990)
Parallel Comput.
, vol.14
, Issue.3
, pp. 347-361
-
-
Whitley, D.1
Starkweather, T.2
Bogart, C.3
-
82
-
-
84949985138
-
Taking the human out of the loop: A review of Bayesian optimization
-
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, "Taking the human out of the loop: A review of Bayesian optimization, " Proc. IEEE, vol. 104, no. 1, pp. 148-175, 2016.
-
(2016)
Proc. IEEE
, vol.104
, Issue.1
, pp. 148-175
-
-
Shahriari, B.1
Swersky, K.2
Wang, Z.3
Adams, R.P.4
De Freitas, N.5
-
83
-
-
85040311350
-
Structure optimization for deep multimodal fusion networks using graph-induced kernels
-
Bruges, Belgium
-
D. Ramachandram, M. Lisicki, T. Shields, M. Amer, and G. Taylor, "Structure optimization for deep multimodal fusion networks using graph-induced kernels, " in Proc. 25th European Symp. Artificial Neural Networks, Computational Intelligence, and Machine Learning (ESANN), Bruges, Belgium, 2017, pp. 11-16.
-
(2017)
Proc. 25th European Symp. Artificial Neural Networks, Computational Intelligence, and Machine Learning (ESANN)
, pp. 11-16
-
-
Ramachandram, D.1
Lisicki, M.2
Shields, T.3
Amer, M.4
Taylor, G.5
-
86
-
-
85020487868
-
Learning the structure of deep architectures using L1 regularization
-
P. Kulkarni, J. Zepeda, F. Jurie, P. Pérez, and L. Chevallier, "Learning the structure of deep architectures using L1 regularization, " in Proc. British Machine Vision Conf., 2015, pp. 23. 1-23. 11.
-
(2015)
Proc. British Machine Vision Conf.
, pp. 231-2311
-
-
Kulkarni, P.1
Zepeda, J.2
Jurie, F.3
Pérez, P.4
Chevallier, L.5
-
87
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
1 Jan.
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting, " J. Mach. Learning Res., vol. 15, no. 1, pp. 1929-1958, 1 Jan. 2014.
-
(2014)
J. Mach. Learning Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
88
-
-
84986277838
-
Blockout: Dynamic model selection for hierarchical deep networks
-
C. Murdock, Z. Li, H. Zhou, and T. Duerig, "Blockout: Dynamic model selection for hierarchical deep networks, " in Proc. Int. Conf. Computer Vision and Pattern Recognition, 2016, pp. 2583-2591.
-
(2016)
Proc. Int. Conf. Computer Vision and Pattern Recognition
, pp. 2583-2591
-
-
Murdock, C.1
Li, Z.2
Zhou, H.3
Duerig, T.4
-
89
-
-
85026298866
-
Modout: Learning multi-modal architectures by stochastic regularization
-
F. Li, N. Neverova, C. Wolf, and G. Taylor, "Modout: Learning multi-modal architectures by stochastic regularization, " in Proc. 2017 IEEE Conf. Automatic Face and Gesture Recognition, 2017, pp. 422-429.
-
(2017)
Proc. 2017 IEEE Conf. Automatic Face and Gesture Recognition
, pp. 422-429
-
-
Li, F.1
Neverova, N.2
Wolf, C.3
Taylor, G.4
-
90
-
-
85010222411
-
RGBD data sets: Past, present and future
-
M. Firman, "RGBD data sets: Past, present and future, " in Proc. CVPR Workshop on Large Scale 3D Data: Acquisition, Modelling, and Analysis, 2016.
-
(2016)
Proc. CVPR Workshop on Large Scale 3D Data: Acquisition, Modelling, and Analysis
-
-
Firman, M.1
-
91
-
-
84884231503
-
Vision meets robotics: The Kitti data set
-
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The Kitti data set, " Int. J. Robotics Res., vol. 32, no. 11, pp. 1231-1237, 2013.
-
(2013)
Int. J. Robotics Res.
, vol.32
, Issue.11
, pp. 1231-1237
-
-
Geiger, A.1
Lenz, P.2
Stiller, C.3
Urtasun, R.4
-
92
-
-
85011586428
-
1 Year, 1000km: The Oxford RobotCar data set
-
W. Maddern, G. Pascoe, C. Linegar, and P. Newman, "1 Year, 1000km: The Oxford RobotCar data set, " Int. J. Robotics Res., vol. 36, no. 1, pp. 3-15, 2017.
-
(2017)
Int. J. Robotics Res.
, vol.36
, Issue.1
, pp. 3-15
-
-
Maddern, W.1
Pascoe, G.2
Linegar, C.3
Newman, P.4
-
93
-
-
84956626439
-
UTD-MHAD: A multimodal data set for human action recognition utilizing a depth camera and a wearable inertial sensor
-
C. Chen, R. Jafari, and N. Kehtarnavaz, "UTD-MHAD: A multimodal data set for human action recognition utilizing a depth camera and a wearable inertial sensor, " in Proc. 2015 IEEE Int. Conf Image Processing (ICIP), 2015, pp. 168-172.
-
(2015)
Proc. 2015 IEEE Int. Conf Image Processing (ICIP)
, pp. 168-172
-
-
Chen, C.1
Jafari, R.2
Kehtarnavaz, N.3
-
94
-
-
84925310875
-
Chalearn looking at people challenge 2014: Data set and results
-
S. Escalera, X. Baró, J. Gonzalez, M. A. Bautista, M. Madadi, M. Reyes, V. Ponce-López, H. J. Escalante, et al., "Chalearn looking at people challenge 2014: Data set and results, " in Proc. Workshop at the European Conf. Computer Vision, 2014, pp. 459-473.
-
(2014)
Proc. Workshop at the European Conf. Computer Vision
, pp. 459-473
-
-
Escalera, S.1
Baró, X.2
Gonzalez, J.3
Bautista, M.A.4
Madadi, M.5
Reyes, M.6
Ponce-López, V.7
Escalante, H.J.8
-
95
-
-
84875595728
-
Berkeley MHAD: A comprehensive multimodal human action database
-
F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, "Berkeley MHAD: A comprehensive multimodal human action database, " in Proc. 2013 IEEE Workshop on Applications of Computer Vision, 2013, pp. 53-60.
-
(2013)
Proc. 2013 IEEE Workshop on Applications of Computer Vision
, pp. 53-60
-
-
Ofli, F.1
Chaudhry, R.2
Kurillo, G.3
Vidal, R.4
Bajcsy, R.5
-
96
-
-
85040311816
-
A multimodal human-robot interaction data set
-
A. Pablo, Y. Mollard, F. Golemo, A. C. Murillo, M. Lopes, and J. Civera, "A multimodal human-robot interaction data set, " in Proc. Neural Information Processing Systems, 2016, pp. 1-5.
-
(2016)
Proc. Neural Information Processing Systems
, pp. 1-5
-
-
Pablo, A.1
Mollard, Y.2
Golemo, F.3
Murillo, A.C.4
Lopes, M.5
Civera, J.6
-
97
-
-
84881512394
-
Introducing the Recola multimodal corpus of remote collaborative and affective interactions
-
F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, "Introducing the Recola multimodal corpus of remote collaborative and affective interactions, " in Proc. Automatic Face and Gesture Recognition 10th IEEE Int. Conf. Workshops, 2013, pp. 1-8.
-
(2013)
Proc. Automatic Face and Gesture Recognition 10th IEEE Int. Conf. Workshops
, pp. 1-8
-
-
Ringeval, F.1
Sonderegger, A.2
Sauer, J.3
Lalanne, D.4
-
98
-
-
84952649086
-
Design, implementation and validation of a novel open framework for agile development of mobile health applications
-
O. Banos, C. Villalonga, R. Garcia, A. Saez, M. Damas, J. A. Holgado-Terriza, S. Lee, H. Pomares, and I. Rojas, "Design, implementation and validation of a novel open framework for agile development of mobile health applications, " Biomedical Eng. Online, vol. 14, no. 2, p. S6, 2015. [Online]. Available: https://doi. org/10. 1186/1475-925X-14-S2-S6
-
(2015)
Biomedical Eng
, vol.14
, Issue.2
, pp. S6
-
-
Banos, O.1
Villalonga, C.2
Garcia, R.3
Saez, A.4
Damas, M.5
Holgado-Terriza, J.A.6
Lee, S.7
Pomares, H.8
Rojas, I.9
-
99
-
-
85019227172
-
Training and evaluating multimodal word embeddings with large-scale web annotated images
-
J. Mao, J. Xu, K. Jing, and A. L. Yuille, "Training and evaluating multimodal word embeddings with large-scale web annotated images, " in Proc. Advances in Neural Information Processing Systems, 2016, pp. 442-450.
-
(2016)
Proc. Advances in Neural Information Processing Systems
, pp. 442-450
-
-
Mao, J.1
Xu, J.2
Jing, K.3
Yuille, A.L.4
-
101
-
-
85040639683
-
Exploiting feature and class relationships in video categorization with regularized deep neural networks
-
Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang, "Exploiting feature and class relationships in video categorization with regularized deep neural networks, " IEEE Trans. Pattern Anal. Mach. Intell., 2017. doi: https://doi. org/10. 1109/ TPAMI. 2017. 2670560
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell.
-
-
Jiang, Y.-G.1
Wu, Z.2
Wang, J.3
Xue, X.4
Chang, S.-F.5
-
102
-
-
84908121477
-
KinectFaceDB: A kinect database for face recognition
-
Nov.
-
R. Min, N. Kose, and J.-L. Dugelay, "KinectFaceDB: A kinect database for face recognition, " IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 11, pp. 1534-1548, Nov. 2014.
-
(2014)
IEEE Trans. Syst., Man, Cybern., Syst.
, vol.44
, Issue.11
, pp. 1534-1548
-
-
Min, R.1
Kose, N.2
Dugelay, J.-L.3
-
103
-
-
84949210409
-
The multimodal brain tumor image segmentation benchmark (BRATS)
-
B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, et al., "The multimodal brain tumor image segmentation benchmark (BRATS), " IEEE Trans. Med. Imag., vol. 34, no. 10, pp. 1993-2024, 2015.
-
(2015)
IEEE Trans. Med. Imag.
, vol.34
, Issue.10
, pp. 1993-2024
-
-
Menze, B.H.1
Jakab, A.2
Bauer, S.3
Kalpathy-Cramer, J.4
Farahani, K.5
Kirby, J.6
Burren, Y.7
Porz, N.8
|