메뉴 건너뛰기




Volumn 0, Issue , 2016, Pages 499-508

Traffic speed prediction and congestion source exploration: A deep learning method

Author keywords

Convolutional neural network; Deep learning; Intelligent transportation systems; Spatio Temporal; Time series prediction

Indexed keywords

CONVOLUTION; DATA MINING; DEEP LEARNING; DEEP NEURAL NETWORKS; ERRORS; FORECASTING; HIGHWAY TRAFFIC CONTROL; INTELLIGENT SYSTEMS; INTELLIGENT VEHICLE HIGHWAY SYSTEMS; RECURRENT NEURAL NETWORKS; SPEED;

EID: 85014568631     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2016.0061     Document Type: Conference Paper
Times cited : (263)

References (25)
  • 4
    • 84907500988 scopus 로고    scopus 로고
    • Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
    • W. Huang, G. Song, H. Hong, and K. Xie, "Deep architecture for traffic flow prediction: deep belief networks with multitask learning, " Intelligent Transportation Systems, IEEE Transactions on, vol. 15, no. 5, pp. 2191-2201, 2014.
    • (2014) Intelligent Transportation Systems, IEEE Transactions on , vol.15 , Issue.5 , pp. 2191-2201
    • Huang, W.1    Song, G.2    Hong, H.3    Xie, K.4
  • 7
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradientbased learning applied to document recognition, " Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 9
    • 85027949097 scopus 로고    scopus 로고
    • Understanding taxi drivers routing choices from spatial and social traces
    • S. Liu, S. Wang, C. Liu, and R. Krishnan, "Understanding taxi drivers routing choices from spatial and social traces, " Frontiers of Computer Science, vol. 9, no. 2, pp. 200-209, 2015.
    • (2015) Frontiers of Computer Science , vol.9 , Issue.2 , pp. 200-209
    • Liu, S.1    Wang, S.2    Liu, C.3    Krishnan, R.4
  • 10
    • 84938202558 scopus 로고    scopus 로고
    • A balanced decomposition approach to real-Time visualization of large vector maps in cybergis
    • M. Guo, Y. Huang, and Z. Xie, "A balanced decomposition approach to real-Time visualization of large vector maps in cybergis, " Frontiers of Computer Science, vol. 9, no. 3, pp. 442-455, 2015.
    • (2015) Frontiers of Computer Science , vol.9 , Issue.3 , pp. 442-455
    • Guo, M.1    Huang, Y.2    Xie, Z.3
  • 12
    • 0343274484 scopus 로고
    • On forecasting freeway occupancies and volumes (abridgment)
    • M. Levin and Y.-D. Tsao, "On forecasting freeway occupancies and volumes (abridgment), " Transportation Research Record, no. 773, 1980.
    • (1980) Transportation Research Record , Issue.773
    • Levin, M.1    Tsao, Y.-D.2
  • 14
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results
    • B. M. Williams and L. A. Hoel, "Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results, " Journal of transportation engineering, vol. 129, no. 6, pp. 664-672, 2003.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.6 , pp. 664-672
    • Williams, B.M.1    Hoel, L.A.2
  • 16
    • 33746610646 scopus 로고    scopus 로고
    • Pop-Traffic: A novel fuzzy neural approach to road traffic analysis and prediction
    • C. Quek, M. Pasquier, and B. B. S. Lim, "Pop-Traffic: A novel fuzzy neural approach to road traffic analysis and prediction, " Intelligent Transportation Systems, IEEE Transactions on, vol. 7, no. 2, pp. 133-146, 2006.
    • (2006) Intelligent Transportation Systems, IEEE Transactions on , vol.7 , Issue.2 , pp. 133-146
    • Quek, C.1    Pasquier, M.2    Lim, B.B.S.3
  • 20
    • 84928914380 scopus 로고    scopus 로고
    • Predictability of road traffic and congestion in urban areas
    • J. Wang, Y. Mao, J. Li, Z. Xiong, and W.-X. Wang, "Predictability of road traffic and congestion in urban areas, " PloS one, vol. 10, no. 4, 2015.
    • (2015) PloS One , vol.10 , Issue.4
    • Wang, J.1    Mao, Y.2    Li, J.3    Xiong, Z.4    Wang, W.-X.5
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 22
    • 84925014499 scopus 로고    scopus 로고
    • Large-scale transportation network congestion evolution prediction using deep learning theory
    • X. Ma, H. Yu, Y. Wang, and Y. Wang, "Large-scale transportation network congestion evolution prediction using deep learning theory, " PloS one, vol. 10, no. 3, p. e0119044, 2015.
    • (2015) PloS One , vol.10 , Issue.3 , pp. e0119044
    • Ma, X.1    Yu, H.2    Wang, Y.3    Wang, Y.4
  • 24
    • 84985029815 scopus 로고    scopus 로고
    • Latent space model for road networks to predict timevarying traffic
    • D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu, "Latent space model for road networks to predict timevarying traffic, " in KDD 2016, 2016.
    • (2016) KDD 2016
    • Deng, D.1    Shahabi, C.2    Demiryurek, U.3    Zhu, L.4    Yu, R.5    Liu, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.