-
2
-
-
84958264664
-
-
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv: 1603.04467, 2016.
-
(2016)
Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
-
3
-
-
84949671050
-
A cloud computing based network monitoring and threat detection system for critical infrastructures
-
Z. Chen, G. Xu, V. Mahalingam, L. Ge, J. Nguyen, W. Yu, and C. Lu. A cloud computing based network monitoring and threat detection system for critical infrastructures. Big Data Research, 3:10-23, 2016.
-
(2016)
Big Data Research
, vol.3
, pp. 10-23
-
-
Chen, Z.1
Xu, G.2
Mahalingam, V.3
Ge, L.4
Nguyen, J.5
Yu, W.6
Lu, C.7
-
5
-
-
85032434210
-
State-of-the-art deep learning: Evolving machine intelligence toward tomorrows intelligent network traffic control systems
-
Fourthquarter
-
Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani. State-of-the-art deep learning: Evolving machine intelligence toward tomorrows intelligent network traffic control systems. IEEE Communications Surveys and Tutorials, 19(4):2432-2455, Fourthquarter 2017.
-
(2017)
IEEE Communications Surveys and Tutorials
, vol.19
, Issue.4
, pp. 2432-2455
-
-
Fadlullah, Z.M.1
Tang, F.2
Mao, B.3
Kato, N.4
Akashi, O.5
Inoue, T.6
Mizutani, K.7
-
6
-
-
84930507568
-
Android security: A survey of issues, malware penetration, and defenses
-
Secondquarter
-
P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Rajarajan. Android security: A survey of issues, malware penetration, and defenses. IEEE Communications Surveys and Tutorials, 17(2):998-1022, Secondquarter 2015.
-
(2015)
IEEE Communications Surveys and Tutorials
, vol.17
, Issue.2
, pp. 998-1022
-
-
Faruki, P.1
Bharmal, A.2
Laxmi, V.3
Ganmoor, V.4
Gaur, M.S.5
Conti, M.6
Rajarajan, M.7
-
8
-
-
85046378997
-
A survey of deep learning: Platforms, applications and emerging research trends
-
W. G. Hatcher and W. Yu. A survey of deep learning: Platforms, applications and emerging research trends. IEEE Access, 2018.
-
(2018)
IEEE Access
-
-
Hatcher, W.G.1
Yu, W.2
-
9
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
10
-
-
85026378512
-
A survey on Internet of Things: Architecture, enabling technologies, security and privacy, and applications
-
Oct
-
J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao. A survey on Internet of Things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5):1125-1142, Oct 2017.
-
(2017)
IEEE Internet of Things Journal
, vol.4
, Issue.5
, pp. 1125-1142
-
-
Lin, J.1
Yu, W.2
Zhang, N.3
Yang, X.4
Zhang, H.5
Zhao, W.6
-
11
-
-
84968718794
-
Andrubis-1,000,000 apps later: A view on current android malware behaviors
-
IEEE
-
M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van Der Veen, and C. Platzer. Andrubis-1,000,000 apps later: A view on current android malware behaviors. In Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS), 2014 Third International Workshop on, pages 3-17. IEEE, 2014.
-
(2014)
Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS), 2014 Third International Workshop on
, pp. 3-17
-
-
Lindorfer, M.1
Neugschwandtner, M.2
Weichselbaum, L.3
Fratantonio, Y.4
Van Der Veen, V.5
Platzer, C.6
-
12
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
14
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85-117, 2015.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
16
-
-
85019760246
-
IEEE 802.11 network anomaly detection and attack classification: A deep learning approach
-
March
-
V. L. L. Thing. IEEE 802.11 network anomaly detection and attack classification: A deep learning approach. In 2017 IEEE Wireless Communications and Networking Conference (WCNC), pages 1-6, March 2017.
-
(2017)
2017 IEEE Wireless Communications and Networking Conference (WCNC
, pp. 1-6
-
-
Thing, V.L.L.1
-
17
-
-
84891476160
-
A threat monitoring system for smart mobiles in enterprise networks
-
New York, NY, USA ACM
-
W. Yu, Z. Chen, G. Xu, S. Wei, and N. Ekedebe. A threat monitoring system for smart mobiles in enterprise networks. In Proceedings of the 2013 Research in Adaptive and Convergent Systems, RACS '13, pages 300-305, New York, NY, USA, 2013. ACM.
-
(2013)
Proceedings of the 2013 Research in Adaptive and Convergent Systems, RACS '13
, pp. 300-305
-
-
Yu, W.1
Chen, Z.2
Xu, G.3
Wei, S.4
Ekedebe, N.5
-
18
-
-
84927636536
-
-
Springer International Publishing, Cham
-
W. Yu, L. Ge, G. Xu, and X. Fu. Towards Neural Network Based Malware Detection on Android Mobile Devices, pages 99-117. Springer International Publishing, Cham, 2014.
-
(2014)
Towards Neural Network Based Malware Detection on Android Mobile Devices
, pp. 99-117
-
-
Yu, W.1
Ge, L.2
Xu, G.3
Fu, X.4
-
19
-
-
85037656743
-
A survey on the edge computing for the Internet of Things
-
W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang. A survey on the edge computing for the Internet of Things. IEEE Access, 6:6900-6919, 2018.
-
(2018)
IEEE Access
, vol.6
, pp. 6900-6919
-
-
Yu, W.1
Liang, F.2
He, X.3
Hatcher, W.G.4
Lu, C.5
Lin, J.6
Yang, X.7
-
20
-
-
84893536420
-
A cloud computing based architecture for cyber security situation awareness
-
Oct
-
W. Yu, G. Xu, Z. Chen, and P. Moulema. A cloud computing based architecture for cyber security situation awareness. In 2013 IEEE Conference on Communications and Network Security (CNS), pages 488-492, Oct 2013.
-
(2013)
2013 IEEE Conference on Communications and Network Security (CNS
, pp. 488-492
-
-
Yu, W.1
Xu, G.2
Chen, Z.3
Moulema, P.4
-
21
-
-
84904122171
-
On behavior-based detection of malware on android platform
-
Dec
-
W. Yu, H. Zhang, L. Ge, and R. Hardy. On behavior-based detection of malware on android platform. In 2013 IEEE Global Communications Conference (GLOBECOM), pages 814-819, Dec 2013.
-
(2013)
2013 IEEE Global Communications Conference (GLOBECOM
, pp. 814-819
-
-
Yu, W.1
Zhang, H.2
Ge, L.3
Hardy, R.4
-
22
-
-
84907310376
-
Droid-Sec: Deep learning in android malware detection
-
ACM
-
Z. Yuan, Y. Lu, Z. Wang, and Y. Xue. Droid-Sec: Deep learning in android malware detection. In ACM SIGCOMM Computer Communication Review, volume 44, pages 371-372. ACM, 2014.
-
(2014)
ACM SIGCOMM Computer Communication Review
, vol.44
, pp. 371-372
-
-
Yuan, Z.1
Lu, Y.2
Wang, Z.3
Xue, Y.4
-
23
-
-
85030541939
-
DeepFlow: Deep learningbased malware detection by mining Android application for abnormal usage of sensitive data
-
July
-
D. Zhu, H. Jin, Y. Yang, D. Wu, and W. Chen. DeepFlow: Deep learningbased malware detection by mining Android application for abnormal usage of sensitive data. In 2017 IEEE Symposium on Computers and Communications (ISCC), pages 438-443, July 2017.
-
(2017)
2017 IEEE Symposium on Computers and Communications (ISCC
, pp. 438-443
-
-
Zhu, D.1
Jin, H.2
Yang, Y.3
Wu, D.4
Chen, W.5
|