-
1
-
-
84901263621
-
Scenarios for 5G mobile and wireless communications: The vision of the metis project
-
May
-
A. Osseiran et al., "Scenarios for 5G mobile and wireless communications: The vision of the METIS project", IEEE Commun. Mag., vol. 52, no. 5, pp. 26-35, May 2014.
-
(2014)
IEEE Commun. Mag.
, vol.52
, Issue.5
, pp. 26-35
-
-
Osseiran, A.1
-
2
-
-
84962010405
-
Learning internet-of-things security 'hands-on'
-
Jan./Feb.
-
C. Kolias, A. Stavrou, J. Voas, I. Bojanova, and R. Kuhn, "Learning Internet-of-Things security 'hands-on'", IEEE Security Privacy, vol. 14, no. 1, pp. 37-46, Jan./Feb. 2016.
-
(2016)
IEEE Security Privacy
, vol.14
, Issue.1
, pp. 37-46
-
-
Kolias, C.1
Stavrou, A.2
Voas, J.3
Bojanova, I.4
Kuhn, R.5
-
3
-
-
80955142722
-
Swarm intelligence in intrusion detection: A survey
-
C. Kolias, G. Kambourakis, and M. Maragoudakis, "Swarm intelligence in intrusion detection: A survey", Comput. Secur., vol. 30, no. 8, pp. 625-642, 2011.
-
(2011)
Comput. Secur.
, vol.30
, Issue.8
, pp. 625-642
-
-
Kolias, C.1
Kambourakis, G.2
Maragoudakis, M.3
-
4
-
-
84921841977
-
Anomaly-based intrusion detection of jamming attacks, local versus collaborative detection
-
A. G. Fragkiadakis, V. A. Siris, N. E. Petroulakis, and A. P. Traganitis, "Anomaly-based intrusion detection of jamming attacks, local versus collaborative detection", Wireless Commun. Mobile Comput., vol. 15, no. 2, pp. 276-294, 2015.
-
(2015)
Wireless Commun. Mobile Comput.
, vol.15
, Issue.2
, pp. 276-294
-
-
Fragkiadakis, A.G.1
Siris, V.A.2
Petroulakis, N.E.3
Traganitis, A.P.4
-
5
-
-
77955209381
-
Outside the closed world: On using machine learning for network intrusion detection
-
Berkeley, CA, USA, May
-
R. Sommer and V. Paxson, "Outside the closed world: On using machine learning for network intrusion detection", in Proc. IEEE Symp. Secur. Privacy, Berkeley, CA, USA, May 2010, pp. 305-316.
-
(2010)
Proc. IEEE Symp. Secur. Privacy
, pp. 305-316
-
-
Sommer, R.1
Paxson, V.2
-
6
-
-
85015872485
-
Deep learning comes of age
-
G. Anthes, "Deep learning comes of age", Commun. ACM, vol. 56, no. 6, pp. 13-15, 2013.
-
(2013)
Commun. ACM
, vol.56
, Issue.6
, pp. 13-15
-
-
Anthes, G.1
-
7
-
-
73349090552
-
Intrusion detection systems for wireless sensor networks: A survey
-
Jeju Island, South Korea
-
A. H. Farooqi and F. A. Khan, "Intrusion detection systems for wireless sensor networks: A survey", in Proc. Future Generat. Inf. Technol. Conf., Jeju Island, South Korea, 2009, pp. 234-241.
-
(2009)
Proc. Future Generat. Inf. Technol. Conf.
, pp. 234-241
-
-
Farooqi, A.H.1
Khan, F.A.2
-
8
-
-
84894652457
-
A survey of intrusion detection systems in wireless sensor networks
-
1st Quart.
-
I. Butun, S. D. Morgera, and R. Sankar, "A survey of intrusion detection systems in wireless sensor networks", IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 266-282, 1st Quart., 2014.
-
(2014)
IEEE Commun. Surveys Tuts.
, vol.16
, Issue.1
, pp. 266-282
-
-
Butun, I.1
Morgera, S.D.2
Sankar, R.3
-
9
-
-
84921327876
-
Behavior rule specification-based intrusion detection for safety critical medical cyber physical systems
-
Jan.
-
R. Mitchell and I.-R. Chen, "Behavior rule specification-based intrusion detection for safety critical medical cyber physical systems", IEEE Trans. Depend. Sec. Comput., vol. 12, no. 1, pp. 16-30, Jan. 2015.
-
(2015)
IEEE Trans. Depend. Sec. Comput.
, vol.12
, Issue.1
, pp. 16-30
-
-
Mitchell, R.1
Chen, I.-R.2
-
10
-
-
85020639807
-
Anomaly detection in industrial networks using machine learning: A roadmap
-
Karlsruhe, Germany: Springer
-
A. Meshram and C. Haas, "Anomaly detection in industrial networks using machine learning: A roadmap", in Machine Learning for Cyber Physical Systems, Karlsruhe, Germany: Springer, 2017, pp. 65-72.
-
(2017)
Machine Learning for Cyber Physical Systems
, pp. 65-72
-
-
Meshram, A.1
Haas, C.2
-
11
-
-
0042934661
-
Feature selection, extraction and construction
-
H. Motoda and H. Liu, "Feature selection, extraction and construction", in Proc. Inst. Inf. Comput. Commun. (IICM), vol. 5. 2002, pp. 67-72.
-
(2002)
Proc. Inst. Inf. Comput. Commun. (IICM)
, vol.5
, pp. 67-72
-
-
Motoda, H.1
Liu, H.2
-
12
-
-
84919918822
-
A hybrid feature selection approach by correlation-based filters and SVM-RFE
-
Stockholm, Sweden, Aug.
-
J. Zhang, X. Hu, P. Li, W. He, Y. Zhang, and H. Li, "A hybrid feature selection approach by correlation-based filters and SVM-RFE", in Proc. IEEE Pattern Recognit. (ICPR), Stockholm, Sweden, Aug. 2014, pp. 3684-3689.
-
(2014)
Proc. IEEE Pattern Recognit. (ICPR)
, pp. 3684-3689
-
-
Zhang, J.1
Hu, X.2
Li, P.3
He, W.4
Zhang, Y.5
Li, H.6
-
13
-
-
69749095234
-
Improvement in intrusion detection with advances in sensor fusion
-
Sep.
-
C. Thomas and N. Balakrishnan, "Improvement in intrusion detection with advances in sensor fusion", IEEE Trans. Inf. Forensics Security, vol. 4, no. 3, pp. 542-551, Sep. 2009.
-
(2009)
IEEE Trans. Inf. Forensics Security
, vol.4
, Issue.3
, pp. 542-551
-
-
Thomas, C.1
Balakrishnan, N.2
-
14
-
-
84908058224
-
Exploring permission-induced risk in android applications for malicious application detection
-
Nov.
-
W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, "Exploring permission-induced risk in Android applications for malicious application detection", IEEE Trans. Inf. Forensics Security, vol. 9, no. 11, pp. 1869-1882, Nov. 2014.
-
(2014)
IEEE Trans. Inf. Forensics Security
, vol.9
, Issue.11
, pp. 1869-1882
-
-
Wang, W.1
Wang, X.2
Feng, D.3
Liu, J.4
Han, Z.5
Zhang, X.6
-
15
-
-
84962359508
-
Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset
-
1st Quart.
-
C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, "Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset", IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 184-208, 1st Quart., 2016.
-
(2016)
IEEE Commun. Surveys Tuts.
, vol.18
, Issue.1
, pp. 184-208
-
-
Kolias, C.1
Kambourakis, G.2
Stavrou, A.3
Gritzalis, S.4
-
16
-
-
85045435531
-
Enhancing performance of intrusion detection system against KDD99 dataset using evidence theory
-
V. Shah and A. K. Aggarwal, "Enhancing performance of intrusion detection system against KDD99 dataset using evidence theory", Int. J. Cyber-Secur. Digit. Forensics, vol. 5, no. 2, pp. 106-114, 2016.
-
(2016)
Int. J. Cyber-secur. Digit. Forensics
, vol.5
, Issue.2
, pp. 106-114
-
-
Shah, V.1
Aggarwal, A.K.2
-
17
-
-
84994896280
-
Modification of supervised OPF-based intrusion detection systems using unsupervised learning and social network concept
-
Feb.
-
H. Bostani and M. Sheikhan, "Modification of supervised OPF-based intrusion detection systems using unsupervised learning and social network concept", Pattern Recognit., vol. 62, pp. 56-72, Feb. 2017.
-
(2017)
Pattern Recognit.
, vol.62
, pp. 56-72
-
-
Bostani, H.1
Sheikhan, M.2
-
18
-
-
84975125267
-
TermID: A distributed swarm intelligence-based approach for wireless intrusion detection
-
C. Kolias, V. Kolias, and G. Kambourakis, "TermID: A distributed swarm intelligence-based approach for wireless intrusion detection", Int. J. Inf. Secur., vol. 16, no. 4, pp. 401-416, 2017.
-
(2017)
Int. J. Inf. Secur.
, vol.16
, Issue.4
, pp. 401-416
-
-
Kolias, C.1
Kolias, V.2
Kambourakis, G.3
-
19
-
-
84883271942
-
Selecting features for intrusion detection: A feature relevance analysis on KDD 99 intrusion detection datasets
-
St. Andrews, NB, Canada
-
H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, "Selecting features for intrusion detection: A feature relevance analysis on KDD 99 intrusion detection datasets", in Proc. Privacy, Secur. Trust, St. Andrews, NB, Canada, 2005, pp. 1-6.
-
(2005)
Proc. Privacy, Secur. Trust
, pp. 1-6
-
-
Kayacik, H.G.1
Zincir-Heywood, A.N.2
Heywood, M.I.3
-
20
-
-
84989886671
-
Intrusion detection using improved decision tree algorithm with binary and quad split
-
S. Puthran and K. Shah, "Intrusion detection using improved decision tree algorithm with binary and quad split", in Proc. Secur. Comput. Commun., 2016, pp. 427-438.
-
(2016)
Proc. Secur. Comput. Commun.
, pp. 427-438
-
-
Puthran, S.1
Shah, K.2
-
21
-
-
85045434915
-
Dimensionality reduction for intrusion detection systems in multi-data streams-A review and proposal of unsupervised feature selection scheme
-
Online
-
N. Y. Almusallam, Z. Tari, P. Bertok, and A. Y. Zomaya, "Dimensionality reduction for intrusion detection systems in multi-data streams-A review and proposal of unsupervised feature selection scheme", Emergent Comput., vol. 24, pp. 467-487, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-46376-6-22
-
(2017)
Emergent Comput.
, vol.24
, pp. 467-487
-
-
Almusallam, N.Y.1
Tari, Z.2
Bertok, P.3
Zomaya, A.Y.4
-
22
-
-
70849116937
-
Lightweight IDS based on features selection and IDS classification scheme
-
Aug.
-
S. Zaman and F. Karray, "Lightweight IDS based on features selection and IDS classification scheme", in Proc. IEEE Comput. Sci. Eng. (CSE), Aug. 2009, pp. 365-370.
-
(2009)
Proc. IEEE Comput. Sci. Eng. (CSE)
, pp. 365-370
-
-
Zaman, S.1
Karray, F.2
-
23
-
-
84884207884
-
Effects-based feature identification for network intrusion detection
-
Dec.
-
P. Louvieris, N. Clewley, and X. Liu, "Effects-based feature identification for network intrusion detection", Neurocomputing, vol. 121, pp. 265-273, Dec. 2013.
-
(2013)
Neurocomputing
, vol.121
, pp. 265-273
-
-
Louvieris, P.1
Clewley, N.2
Liu, X.3
-
24
-
-
85006241215
-
An improved NSGA-III algorithm for feature selection used in intrusion detection
-
Jan.
-
Y. Zhu, J. Liang, J. Chen, and Z. Ming, "An improved NSGA-III algorithm for feature selection used in intrusion detection", Knowl.-Based Syst., vol. 116, pp. 74-85, Jan. 2017.
-
(2017)
Knowl.-Based Syst.
, vol.116
, pp. 74-85
-
-
Zhu, Y.1
Liang, J.2
Chen, J.3
Ming, Z.4
-
25
-
-
84997469798
-
Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO)
-
V. Manekar and K. Waghmare, "Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO)", Int. J. Adv. Comput. Res., vol. 4, no. 3, pp. 808-812, 2014.
-
(2014)
Int. J. Adv. Comput. Res.
, vol.4
, Issue.3
, pp. 808-812
-
-
Manekar, V.1
Waghmare, K.2
-
26
-
-
85030130071
-
Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain
-
H. Saxena and V. Richariya, "Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain", Int. J. Comput. Appl., vol. 98, no. 6, pp. 25-29, 2014.
-
(2014)
Int. J. Comput. Appl.
, vol.98
, Issue.6
, pp. 25-29
-
-
Saxena, H.1
Richariya, V.2
-
28
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines", Mach. Learn., vol. 46, nos. 1-3, pp. 389-422, 2002.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
29
-
-
85027715954
-
The applications of deep learning on traffic identification
-
Las Vegas, NV, USA
-
Z. Wang, "The applications of deep learning on traffic identification", in Proc. Conf. BlackHat, Las Vegas, NV, USA, 2015, pp. 1-10.
-
(2015)
Proc. Conf. BlackHat
, pp. 1-10
-
-
Wang, Z.1
-
30
-
-
85016025969
-
Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model
-
Mar, Online
-
S. Aljawarneh, M. Aldwairi, and M. B. Yassein, "Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model", J. Comput. Sci., Mar. 2017. [Online]. Available: http://dx.doi.org/10.1016/j.jocs.2017.03.006
-
(2017)
J. Comput. Sci.
-
-
Aljawarneh, S.1
Aldwairi, M.2
Yassein, M.B.3
-
31
-
-
85018977186
-
Semi-supervised botnet detection using ant colony clustering
-
Kagoshima, Japan
-
K. Huseynov, K. Kim, and P. D. Yoo, "Semi-supervised botnet detection using ant colony clustering", in Proc. Symp. Cryptogr. Inf. Secur. (SCIS), Kagoshima, Japan, 2014, pp. 1-7.
-
(2014)
Proc. Symp. Cryptogr. Inf. Secur. (SCIS)
, pp. 1-7
-
-
Huseynov, K.1
Kim, K.2
Yoo, P.D.3
-
32
-
-
85008312861
-
Design of an intrusion detection system for unknown-attacks based on bio-inspired algorithms
-
Nagasaki, Japan
-
K.-M. Kim, H. Kim, and K. Kim, "Design of an intrusion detection system for unknown-attacks based on bio-inspired algorithms", in Proc. Comput. Secur. Symp. (CSS), Nagasaki, Japan, 2015, pp. 64-70.
-
(2015)
Proc. Comput. Secur. Symp. (CSS)
, pp. 64-70
-
-
Kim, K.-M.1
Kim, H.2
Kim, K.3
-
33
-
-
85008343612
-
Another fuzzy anomaly detection system based on ant clustering algorithm
-
M. E. Aminanto, H. Kim, K.-M. Kim, and K. Kim, "Another fuzzy anomaly detection system based on ant clustering algorithm", IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. E100. A, no. 1, pp. 176-183, 2017.
-
(2017)
IEICE Trans. Fundam. Electron., Commun. Comput. Sci.
, vol.E100. A
, Issue.1
, pp. 176-183
-
-
Aminanto, M.E.1
Kim, H.2
Kim, K.-M.3
Kim, K.4
-
34
-
-
84879853539
-
Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
-
Aug.
-
H.-C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data", IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1930-1943
-
-
Shin, H.-C.1
Orton, M.R.2
Collins, D.J.3
Doran, S.J.4
Leach, M.O.5
-
35
-
-
84969850606
-
Anomaly based intrusion detection for 802.11 networks with optimal features using SVM classifier
-
M. Usha and P. Kavitha, "Anomaly based intrusion detection for 802.11 networks with optimal features using SVM classifier", Wireless Netw., vol. 22, no. 8, pp. 2431-2446, 2016.
-
(2016)
Wireless Netw.
, vol.22
, Issue.8
, pp. 2431-2446
-
-
Usha, M.1
Kavitha, P.2
-
36
-
-
85050770500
-
Detecting impersonation attack in WiFi networks using deep learning approach
-
Jeju Island, South Korea
-
M. E. Aminanto and K. Kim, "Detecting impersonation attack in WiFi networks using deep learning approach", in Proc. Workshop Inf. Secur. Appl. (WISA), Jeju Island, South Korea, 2016, pp. 136-147.
-
(2016)
Proc. Workshop Inf. Secur. Appl. (WISA)
, pp. 136-147
-
-
Aminanto, M.E.1
Kim, K.2
-
37
-
-
85045426729
-
Weighted feature selection techniques for detecting impersonation attack in Wi-Fi networks
-
Naha, Japan
-
M. E. Aminanto, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, "Weighted feature selection techniques for detecting impersonation attack in Wi-Fi networks", in Proc. Symp. Cryptogr. Inf. Secur. (SCIS), Naha, Japan, 2017, pp. 1-8.
-
(2017)
Proc. Symp. Cryptogr. Inf. Secur. (SCIS)
, pp. 1-8
-
-
Aminanto, M.E.1
Tanuwidjaja, H.C.2
Yoo, P.D.3
Kim, K.4
-
38
-
-
33748995703
-
Detecting impersonation attacks in future wireless and mobile networks
-
Singapore
-
M. Barbeau, J. Hall, and E. Kranakis, "Detecting impersonation attacks in future wireless and mobile networks", in Proc. Secure Mobile Ad-Hoc Netw. Sensors, Singapore, 2006, pp. 80-95.
-
(2006)
Proc. Secure Mobile Ad-hoc Netw. Sensors
, pp. 80-95
-
-
Barbeau, M.1
Hall, J.2
Kranakis, E.3
-
39
-
-
85007132230
-
Cafe latte with a free topping of cracked WEP retrieving WEP keys from road warriors
-
San Diego, CA, USA, 2007
-
M. S. Ahmad and V. Ramachandran, "Cafe latte with a free topping of cracked WEP retrieving WEP keys from road warriors", in Proc. Conf. ToorCon, San Diego, CA, USA, 2007.
-
Proc. Conf. ToorCon
-
-
Ahmad, M.S.1
Ramachandran, V.2
-
40
-
-
85045455972
-
-
Accessed: Dec. 12, 2016. Online
-
Aircrack-ng. (2010). Airbase-ng. Accessed: Dec. 12, 2016. [Online]. Available: http://www.aircrack-ng.org/doku.php?id=airbaseng#hirte-attack-in-acces% s-point-mode
-
(2010)
Airbase-ng
-
-
-
41
-
-
18144401989
-
Rogue access point detection using temporal traffic characteristics
-
Dallas, TX, USA, Nov./Dec.
-
R. Beyah, S. Kangude, G. Yu, B. Strickland, and J. Copeland, "Rogue access point detection using temporal traffic characteristics", in Proc. IEEE Conf. Global Telecommun. (GLOBECOM), vol. 4. Dallas, TX, USA, Nov./Dec. 2004, pp. 2271-2275.
-
(2004)
Proc. IEEE Conf. Global Telecommun. (GLOBECOM)
, vol.4
, pp. 2271-2275
-
-
Beyah, R.1
Kangude, S.2
Yu, G.3
Strickland, B.4
Copeland, J.5
-
42
-
-
84990032597
-
Mobile application impersonation detection using dynamic user interface extraction
-
Heraklion, Greece
-
L. Malisa, K. Kostiainen, M. Och, and S. Capkun, "Mobile application impersonation detection using dynamic user interface extraction", in Proc. Eur. Symp. Res. Comput. Secur. (ESORICS), Heraklion, Greece, 2016, pp. 217-237.
-
(2016)
Proc. Eur. Symp. Res. Comput. Secur. (ESORICS)
, pp. 217-237
-
-
Malisa, L.1
Kostiainen, K.2
Och, M.3
Capkun, S.4
-
43
-
-
84954106086
-
The doppelgänger bot Attack: Exploring identity impersonation in online social networks
-
Tokyo, Japan
-
O. Goga, G. Venkatadri, and K. P. Gummadi, "The doppelgänger bot Attack: Exploring identity impersonation in online social networks", in Proc. ACM Internet Meas. Conf. (IMC), Tokyo, Japan, 2015, pp. 141-153.
-
(2015)
Proc. ACM Internet Meas. Conf. (IMC)
, pp. 141-153
-
-
Goga, O.1
Venkatadri, G.2
Gummadi, K.P.3
-
44
-
-
84979247359
-
Identification and prevention of impersonation attack based on a new flag byte
-
Harbin, China, Dec.
-
T. Shang and L. Y. Gui, "Identification and prevention of impersonation attack based on a new flag byte", in Proc. IEEE Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT), vol. 1. Harbin, China, Dec. 2015, pp. 972-976.
-
(2015)
Proc. IEEE Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT)
, vol.1
, pp. 972-976
-
-
Shang, T.1
Gui, L.Y.2
-
45
-
-
84902972008
-
Impersonation attack identification for secure communication
-
Atlanta, GA, USA, Dec.
-
M. H. Yilmaz and H. Arslan, "Impersonation attack identification for secure communication", in Proc. IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, Dec. 2013, pp. 1275-1279.
-
(2013)
Proc. IEEE Globecom Workshops (GC Wkshps)
, pp. 1275-1279
-
-
Yilmaz, M.H.1
Arslan, H.2
-
46
-
-
84979267691
-
Detection and prevention of impersonation attack in wireless networks
-
I. B. Lakshmi, B. S. Lakshmi, and R. Karthikeyan, "Detection and prevention of impersonation attack in wireless networks", Int. J. Adv. Res. Comput. Sci. Technol., vol. 2, no. 1, pp. 267-270, 2014.
-
(2014)
Int. J. Adv. Res. Comput. Sci. Technol.
, vol.2
, Issue.1
, pp. 267-270
-
-
Lakshmi, I.B.1
Lakshmi, B.S.2
Karthikeyan, R.3
-
47
-
-
84896297829
-
A distributed approach to network anomaly detection based on independent component analysis
-
F. Palmieri, U. Fiore, and A. Castiglione, "A distributed approach to network anomaly detection based on independent component analysis", Concurrency Comput., Pract. Exper., vol. 26, no. 5, pp. 1113-1129, 2014.
-
(2014)
Concurrency Comput., Pract. Exper.
, vol.26
, Issue.5
, pp. 1113-1129
-
-
Palmieri, F.1
Fiore, U.2
Castiglione, A.3
-
48
-
-
85010432806
-
The learning effect of different hidden layers stacked autoencoder
-
Zhejiang, China, Aug.
-
Q. Xu, C. Zhang, L. Zhang, and Y. Song, "The learning effect of different hidden layers stacked autoencoder", in Proc. IEEE Int. Con. Intell. Hum.-Mach. Syst. Cybern. (IHMSC), vol. 2. Zhejiang, China, Aug. 2016, pp. 148-151.
-
(2016)
Proc. IEEE Int. Con. Intell. Hum.-Mach. Syst. Cybern. (IHMSC)
, vol.2
, pp. 148-151
-
-
Xu, Q.1
Zhang, C.2
Zhang, L.3
Song, Y.4
-
49
-
-
58149237695
-
A comparison of support vector machine and decision tree classifications using satellite data of Langkawi Island
-
H. Shafri and F. S. H. Ramle, "A comparison of support vector machine and decision tree classifications using satellite data of Langkawi Island", Inf. Technol. J., vol. 8, no. 1, pp. 64-70, 2009.
-
(2009)
Inf. Technol. J.
, vol.8
, Issue.1
, pp. 64-70
-
-
Shafri, H.1
Ramle, F.S.H.2
-
50
-
-
78349301760
-
The backpropagation algorithm
-
Berlin, Germany: Springer
-
R. Rojas, "The backpropagation algorithm", in Neural Networks. Berlin, Germany: Springer, 1996, pp. 149-182.
-
(1996)
Neural Networks
, pp. 149-182
-
-
Rojas, R.1
-
51
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by V1?
-
B. A. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?" Vis. Res., vol. 37, no. 23, pp. 3311-3325, 1997.
-
(1997)
Vis. Res.
, vol.37
, Issue.23
, pp. 3311-3325
-
-
Olshausen, B.A.1
Field, D.J.2
-
52
-
-
0141797880
-
A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
-
May
-
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, "A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data", Appl. Data Mining Comput. Secur., vol. 6, pp. 77-101, May 2002.
-
(2002)
Appl. Data Mining Comput. Secur.
, vol.6
, pp. 77-101
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
53
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Sep.
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks", Adv. Neural Inf. Process. Syst., vol. 19, pp. 153-160, Sep. 2007.
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
54
-
-
34547975052
-
Scaling learning algorithms towards AI
-
Y. Bengio and Y. LeCun, "Scaling learning algorithms towards AI", Large-Scale Kernel Mach., vol. 34, no. 5, pp. 1-41, 2007.
-
(2007)
Large-scale Kernel Mach.
, vol.34
, Issue.5
, pp. 1-41
-
-
Bengio, Y.1
LeCun, Y.2
-
55
-
-
78650043633
-
Comparison between supervised and unsupervised classifications of neuronal cell types: A case study
-
L. Guerra, L. M. McGarry, V. Robles, C. Bielza, P. Larrañaga, and R. Yuste, "Comparison between supervised and unsupervised classifications of neuronal cell types: A case study", Develop. Neurobiol., vol. 71, no. 1, pp. 71-82, 2011.
-
(2011)
Develop. Neurobiol.
, vol.71
, Issue.1
, pp. 71-82
-
-
Guerra, L.1
McGarry, L.M.2
Robles, V.3
Bielza, C.4
Larrañaga, P.5
Yuste, R.6
-
56
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Nov.
-
M. F. Møller, "A scaled conjugate gradient algorithm for fast supervised learning", Neural Netw., vol. 6, no. 4, pp. 525-533, Nov. 1993.
-
(1993)
Neural Netw.
, vol.6
, Issue.4
, pp. 525-533
-
-
Møller, M.F.1
-
57
-
-
73649098264
-
Feature selection using recursive feature elimination for handwritten digit recognition
-
Kyoto, Japan, Sep.
-
X. Zeng, Y.-W. Chen, C. Tao, and D. van Alphen, "Feature selection using recursive feature elimination for handwritten digit recognition", in Proc. IEEE Intell. Inf. Hiding Multimedia Signal Process. (IIH-MSP), Kyoto, Japan, Sep. 2009, pp. 1205-1208.
-
(2009)
Proc. IEEE Intell. Inf. Hiding Multimedia Signal Process. (IIH-MSP)
, pp. 1205-1208
-
-
Zeng, X.1
Chen, Y.-W.2
Tao, C.3
Van Alphen, D.4
-
58
-
-
78650099338
-
Scaling up the naive Bayesian classifier: Using decision trees for feature selection
-
Maebashi, Japan, Dec.
-
C. A. Ratanamahatana and D. Gunopulos, "Scaling up the naive Bayesian classifier: Using decision trees for feature selection", in Proc. IEEE Workshop Data Cleaning Preprocess. (DCAP), IEEE Int. Conf. Data Mining (ICDM), Maebashi, Japan, Dec. 2002.
-
(2002)
Proc. IEEE Workshop Data Cleaning Preprocess. (DCAP), IEEE Int. Conf. Data Mining (ICDM)
-
-
Ratanamahatana, C.A.1
Gunopulos, D.2
-
59
-
-
85029240638
-
A review of KDD99 dataset usage in intrusion detection and machine learning between 2010 and 2015
-
Apr.
-
A. Özgür and H. Erdem, "A review of KDD99 dataset usage in intrusion detection and machine learning between 2010 and 2015", PeerJ PrePrints, vol. 4, p. e1954v1, Apr. 2016.
-
(2016)
PeerJ PrePrints
, vol.4
, pp. e1954v1
-
-
Özgür, A.1
Erdem, H.2
-
60
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The WEKA data mining software: An update", ACM SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10-18, 2009.
-
(2009)
ACM SIGKDD Explorations Newslett.
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
61
-
-
1642355954
-
Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context
-
Lax Vegas, NV, USA
-
M. Sabhnani and G. Serpen, "Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context", in Proc. Int. Conf. Mach. Learn., Models, Technol. Appl. (MLMTA), Lax Vegas, NV, USA, 2003, pp. 209-215.
-
(2003)
Proc. Int. Conf. Mach. Learn., Models, Technol. Appl. (MLMTA)
, pp. 209-215
-
-
Sabhnani, M.1
Serpen, G.2
-
63
-
-
77949788147
-
Attribute normalization in network intrusion detection
-
Kaohsiung, Taiwan, Dec.
-
W. Wang, X. Zhang, S. Gombault, and S. J. Knapskog, "Attribute normalization in network intrusion detection", in Proc. IEEE Int. Symp. Pervasive Syst., Algorithms, Netw. (ISPAN), Kaohsiung, Taiwan, Dec. 2009, pp. 448-453.
-
(2009)
Proc. IEEE Int. Symp. Pervasive Syst., Algorithms, Netw. (ISPAN)
, pp. 448-453
-
-
Wang, W.1
Zhang, X.2
Gombault, S.3
Knapskog, S.J.4
-
64
-
-
84879987629
-
The role of balanced training and testing data sets for binary classifiers in bioinformatics
-
Q. Wei and R. L. Dunbrack, Jr., "The role of balanced training and testing data sets for binary classifiers in bioinformatics", PLoS ONE, vol. 8, no. 7, p. e67863, 2013.
-
(2013)
PLoS ONE
, vol.8
, Issue.7
, pp. e67863
-
-
Wei, Q.1
Dunbrack, R.L.2
-
65
-
-
84946083260
-
Data randomization and cluster-based partitioning for botnet intrusion detection
-
Aug.
-
O. Y. Al-Jarrah, O. Alhussein, P. D. Yoo, S. Muhaidat, K. Taha, and K. Kim, "Data randomization and cluster-based partitioning for botnet intrusion detection", IEEE Trans. Cybern., vol. 46, no. 8, pp. 1796-1806, Aug. 2015.
-
(2015)
IEEE Trans. Cybern.
, vol.46
, Issue.8
, pp. 1796-1806
-
-
Al-Jarrah, O.Y.1
Alhussein, O.2
Yoo, P.D.3
Muhaidat, S.4
Taha, K.5
Kim, K.6
-
66
-
-
51849156137
-
Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
-
Hobart, TAS, Australia
-
M. Sokolova, N. Japkowicz, and S. Szpakowicz, "Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation", in Proc. Austral. Joint Conf. Artif. Intell., Hobart, TAS, Australia, 2006, pp. 1015-1021.
-
(2006)
Proc. Austral. Joint Conf. Artif. Intell.
, pp. 1015-1021
-
-
Sokolova, M.1
Japkowicz, N.2
Szpakowicz, S.3
-
67
-
-
79958196766
-
Assessing and improving methods used in operational taxonomic unit-based approaches for 16s rRNA gene sequence analysis
-
P. D. Schloss and S. L. Westcott, "Assessing and improving methods used in operational taxonomic unit-based approaches for 16s rRNA gene sequence analysis", Appl. Environ. Microbiol., vol. 77, no. 10, pp. 3219-3226, 2011.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.10
, pp. 3219-3226
-
-
Schloss, P.D.1
Westcott, S.L.2
-
68
-
-
0031359667
-
Knowledge extraction from artificial neural network models
-
Orlando, FL, USA, Oct.
-
Z. Boger and H. Guterman, "Knowledge extraction from artificial neural network models", in Proc. IEEE Int. Conf. Syst., Man, Cybern., vol. 4. Orlando, FL, USA, Oct. 1997, pp. 3030-3035.
-
(1997)
Proc. IEEE Int. Conf. Syst., Man, Cybern.
, vol.4
, pp. 3030-3035
-
-
Boger, Z.1
Guterman, H.2
-
69
-
-
0003790115
-
-
Dept. Comput. Sci., Rutgers Univ., Piscataway, NJ, USA, Tech. Rep
-
G. M. Weiss and F. Provost, "The effect of class distribution on classifier learning: An empirical study", Dept. Comput. Sci., Rutgers Univ., Piscataway, NJ, USA, Tech. Rep. ML-TR-44, 2001.
-
(2001)
The Effect of Class Distribution on Classifier Learning: An Empirical Study
-
-
Weiss, G.M.1
Provost, F.2
-
70
-
-
0000916783
-
Practical feature subset selection for machine learning
-
Perth, WA, Australia
-
M. A. Hall and L. A. Smith, "Practical feature subset selection for machine learning", in Proc. Austral. Comput. Sci. Conf. (ACSC), Perth, WA, Australia, 1998, pp. 181-191.
-
(1998)
Proc. Austral. Comput. Sci. Conf. (ACSC)
, pp. 181-191
-
-
Hall, M.A.1
Smith, L.A.2
-
71
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John, "Wrappers for feature subset selection", Artif. Intell., vol. 97, nos. 1-2, pp. 273-324, 1997.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
|