메뉴 건너뛰기




Volumn 13, Issue 3, 2017, Pages 621-636

Deep abstraction and weighted feature selection for Wi-Fi impersonation detection

Author keywords

Deep learning; Feature extraction; Impersonation attack; Intrusion detection system; Large scale Wi Fi networks; Stacked autoencoder

Indexed keywords

CLUSTERING ALGORITHMS; DEEP LEARNING; EXTRACTION; INTRUSION DETECTION; LEARNING SYSTEMS; SUPPORT VECTOR MACHINES; WI-FI; WIRELESS LOCAL AREA NETWORKS (WLAN); WIRELESS NETWORKS;

EID: 85045420000     PISSN: 15566013     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIFS.2017.2762828     Document Type: Article
Times cited : (199)

References (71)
  • 1
    • 84901263621 scopus 로고    scopus 로고
    • Scenarios for 5G mobile and wireless communications: The vision of the metis project
    • May
    • A. Osseiran et al., "Scenarios for 5G mobile and wireless communications: The vision of the METIS project", IEEE Commun. Mag., vol. 52, no. 5, pp. 26-35, May 2014.
    • (2014) IEEE Commun. Mag. , vol.52 , Issue.5 , pp. 26-35
    • Osseiran, A.1
  • 2
    • 84962010405 scopus 로고    scopus 로고
    • Learning internet-of-things security 'hands-on'
    • Jan./Feb.
    • C. Kolias, A. Stavrou, J. Voas, I. Bojanova, and R. Kuhn, "Learning Internet-of-Things security 'hands-on'", IEEE Security Privacy, vol. 14, no. 1, pp. 37-46, Jan./Feb. 2016.
    • (2016) IEEE Security Privacy , vol.14 , Issue.1 , pp. 37-46
    • Kolias, C.1    Stavrou, A.2    Voas, J.3    Bojanova, I.4    Kuhn, R.5
  • 3
    • 80955142722 scopus 로고    scopus 로고
    • Swarm intelligence in intrusion detection: A survey
    • C. Kolias, G. Kambourakis, and M. Maragoudakis, "Swarm intelligence in intrusion detection: A survey", Comput. Secur., vol. 30, no. 8, pp. 625-642, 2011.
    • (2011) Comput. Secur. , vol.30 , Issue.8 , pp. 625-642
    • Kolias, C.1    Kambourakis, G.2    Maragoudakis, M.3
  • 4
    • 84921841977 scopus 로고    scopus 로고
    • Anomaly-based intrusion detection of jamming attacks, local versus collaborative detection
    • A. G. Fragkiadakis, V. A. Siris, N. E. Petroulakis, and A. P. Traganitis, "Anomaly-based intrusion detection of jamming attacks, local versus collaborative detection", Wireless Commun. Mobile Comput., vol. 15, no. 2, pp. 276-294, 2015.
    • (2015) Wireless Commun. Mobile Comput. , vol.15 , Issue.2 , pp. 276-294
    • Fragkiadakis, A.G.1    Siris, V.A.2    Petroulakis, N.E.3    Traganitis, A.P.4
  • 5
    • 77955209381 scopus 로고    scopus 로고
    • Outside the closed world: On using machine learning for network intrusion detection
    • Berkeley, CA, USA, May
    • R. Sommer and V. Paxson, "Outside the closed world: On using machine learning for network intrusion detection", in Proc. IEEE Symp. Secur. Privacy, Berkeley, CA, USA, May 2010, pp. 305-316.
    • (2010) Proc. IEEE Symp. Secur. Privacy , pp. 305-316
    • Sommer, R.1    Paxson, V.2
  • 6
    • 85015872485 scopus 로고    scopus 로고
    • Deep learning comes of age
    • G. Anthes, "Deep learning comes of age", Commun. ACM, vol. 56, no. 6, pp. 13-15, 2013.
    • (2013) Commun. ACM , vol.56 , Issue.6 , pp. 13-15
    • Anthes, G.1
  • 7
    • 73349090552 scopus 로고    scopus 로고
    • Intrusion detection systems for wireless sensor networks: A survey
    • Jeju Island, South Korea
    • A. H. Farooqi and F. A. Khan, "Intrusion detection systems for wireless sensor networks: A survey", in Proc. Future Generat. Inf. Technol. Conf., Jeju Island, South Korea, 2009, pp. 234-241.
    • (2009) Proc. Future Generat. Inf. Technol. Conf. , pp. 234-241
    • Farooqi, A.H.1    Khan, F.A.2
  • 8
    • 84894652457 scopus 로고    scopus 로고
    • A survey of intrusion detection systems in wireless sensor networks
    • 1st Quart.
    • I. Butun, S. D. Morgera, and R. Sankar, "A survey of intrusion detection systems in wireless sensor networks", IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 266-282, 1st Quart., 2014.
    • (2014) IEEE Commun. Surveys Tuts. , vol.16 , Issue.1 , pp. 266-282
    • Butun, I.1    Morgera, S.D.2    Sankar, R.3
  • 9
    • 84921327876 scopus 로고    scopus 로고
    • Behavior rule specification-based intrusion detection for safety critical medical cyber physical systems
    • Jan.
    • R. Mitchell and I.-R. Chen, "Behavior rule specification-based intrusion detection for safety critical medical cyber physical systems", IEEE Trans. Depend. Sec. Comput., vol. 12, no. 1, pp. 16-30, Jan. 2015.
    • (2015) IEEE Trans. Depend. Sec. Comput. , vol.12 , Issue.1 , pp. 16-30
    • Mitchell, R.1    Chen, I.-R.2
  • 10
    • 85020639807 scopus 로고    scopus 로고
    • Anomaly detection in industrial networks using machine learning: A roadmap
    • Karlsruhe, Germany: Springer
    • A. Meshram and C. Haas, "Anomaly detection in industrial networks using machine learning: A roadmap", in Machine Learning for Cyber Physical Systems, Karlsruhe, Germany: Springer, 2017, pp. 65-72.
    • (2017) Machine Learning for Cyber Physical Systems , pp. 65-72
    • Meshram, A.1    Haas, C.2
  • 11
  • 12
    • 84919918822 scopus 로고    scopus 로고
    • A hybrid feature selection approach by correlation-based filters and SVM-RFE
    • Stockholm, Sweden, Aug.
    • J. Zhang, X. Hu, P. Li, W. He, Y. Zhang, and H. Li, "A hybrid feature selection approach by correlation-based filters and SVM-RFE", in Proc. IEEE Pattern Recognit. (ICPR), Stockholm, Sweden, Aug. 2014, pp. 3684-3689.
    • (2014) Proc. IEEE Pattern Recognit. (ICPR) , pp. 3684-3689
    • Zhang, J.1    Hu, X.2    Li, P.3    He, W.4    Zhang, Y.5    Li, H.6
  • 13
    • 69749095234 scopus 로고    scopus 로고
    • Improvement in intrusion detection with advances in sensor fusion
    • Sep.
    • C. Thomas and N. Balakrishnan, "Improvement in intrusion detection with advances in sensor fusion", IEEE Trans. Inf. Forensics Security, vol. 4, no. 3, pp. 542-551, Sep. 2009.
    • (2009) IEEE Trans. Inf. Forensics Security , vol.4 , Issue.3 , pp. 542-551
    • Thomas, C.1    Balakrishnan, N.2
  • 14
    • 84908058224 scopus 로고    scopus 로고
    • Exploring permission-induced risk in android applications for malicious application detection
    • Nov.
    • W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, "Exploring permission-induced risk in Android applications for malicious application detection", IEEE Trans. Inf. Forensics Security, vol. 9, no. 11, pp. 1869-1882, Nov. 2014.
    • (2014) IEEE Trans. Inf. Forensics Security , vol.9 , Issue.11 , pp. 1869-1882
    • Wang, W.1    Wang, X.2    Feng, D.3    Liu, J.4    Han, Z.5    Zhang, X.6
  • 15
    • 84962359508 scopus 로고    scopus 로고
    • Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset
    • 1st Quart.
    • C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, "Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset", IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 184-208, 1st Quart., 2016.
    • (2016) IEEE Commun. Surveys Tuts. , vol.18 , Issue.1 , pp. 184-208
    • Kolias, C.1    Kambourakis, G.2    Stavrou, A.3    Gritzalis, S.4
  • 16
    • 85045435531 scopus 로고    scopus 로고
    • Enhancing performance of intrusion detection system against KDD99 dataset using evidence theory
    • V. Shah and A. K. Aggarwal, "Enhancing performance of intrusion detection system against KDD99 dataset using evidence theory", Int. J. Cyber-Secur. Digit. Forensics, vol. 5, no. 2, pp. 106-114, 2016.
    • (2016) Int. J. Cyber-secur. Digit. Forensics , vol.5 , Issue.2 , pp. 106-114
    • Shah, V.1    Aggarwal, A.K.2
  • 17
    • 84994896280 scopus 로고    scopus 로고
    • Modification of supervised OPF-based intrusion detection systems using unsupervised learning and social network concept
    • Feb.
    • H. Bostani and M. Sheikhan, "Modification of supervised OPF-based intrusion detection systems using unsupervised learning and social network concept", Pattern Recognit., vol. 62, pp. 56-72, Feb. 2017.
    • (2017) Pattern Recognit. , vol.62 , pp. 56-72
    • Bostani, H.1    Sheikhan, M.2
  • 18
    • 84975125267 scopus 로고    scopus 로고
    • TermID: A distributed swarm intelligence-based approach for wireless intrusion detection
    • C. Kolias, V. Kolias, and G. Kambourakis, "TermID: A distributed swarm intelligence-based approach for wireless intrusion detection", Int. J. Inf. Secur., vol. 16, no. 4, pp. 401-416, 2017.
    • (2017) Int. J. Inf. Secur. , vol.16 , Issue.4 , pp. 401-416
    • Kolias, C.1    Kolias, V.2    Kambourakis, G.3
  • 19
    • 84883271942 scopus 로고    scopus 로고
    • Selecting features for intrusion detection: A feature relevance analysis on KDD 99 intrusion detection datasets
    • St. Andrews, NB, Canada
    • H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, "Selecting features for intrusion detection: A feature relevance analysis on KDD 99 intrusion detection datasets", in Proc. Privacy, Secur. Trust, St. Andrews, NB, Canada, 2005, pp. 1-6.
    • (2005) Proc. Privacy, Secur. Trust , pp. 1-6
    • Kayacik, H.G.1    Zincir-Heywood, A.N.2    Heywood, M.I.3
  • 20
    • 84989886671 scopus 로고    scopus 로고
    • Intrusion detection using improved decision tree algorithm with binary and quad split
    • S. Puthran and K. Shah, "Intrusion detection using improved decision tree algorithm with binary and quad split", in Proc. Secur. Comput. Commun., 2016, pp. 427-438.
    • (2016) Proc. Secur. Comput. Commun. , pp. 427-438
    • Puthran, S.1    Shah, K.2
  • 21
    • 85045434915 scopus 로고    scopus 로고
    • Dimensionality reduction for intrusion detection systems in multi-data streams-A review and proposal of unsupervised feature selection scheme
    • Online
    • N. Y. Almusallam, Z. Tari, P. Bertok, and A. Y. Zomaya, "Dimensionality reduction for intrusion detection systems in multi-data streams-A review and proposal of unsupervised feature selection scheme", Emergent Comput., vol. 24, pp. 467-487, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-46376-6-22
    • (2017) Emergent Comput. , vol.24 , pp. 467-487
    • Almusallam, N.Y.1    Tari, Z.2    Bertok, P.3    Zomaya, A.Y.4
  • 22
    • 70849116937 scopus 로고    scopus 로고
    • Lightweight IDS based on features selection and IDS classification scheme
    • Aug.
    • S. Zaman and F. Karray, "Lightweight IDS based on features selection and IDS classification scheme", in Proc. IEEE Comput. Sci. Eng. (CSE), Aug. 2009, pp. 365-370.
    • (2009) Proc. IEEE Comput. Sci. Eng. (CSE) , pp. 365-370
    • Zaman, S.1    Karray, F.2
  • 23
    • 84884207884 scopus 로고    scopus 로고
    • Effects-based feature identification for network intrusion detection
    • Dec.
    • P. Louvieris, N. Clewley, and X. Liu, "Effects-based feature identification for network intrusion detection", Neurocomputing, vol. 121, pp. 265-273, Dec. 2013.
    • (2013) Neurocomputing , vol.121 , pp. 265-273
    • Louvieris, P.1    Clewley, N.2    Liu, X.3
  • 24
    • 85006241215 scopus 로고    scopus 로고
    • An improved NSGA-III algorithm for feature selection used in intrusion detection
    • Jan.
    • Y. Zhu, J. Liang, J. Chen, and Z. Ming, "An improved NSGA-III algorithm for feature selection used in intrusion detection", Knowl.-Based Syst., vol. 116, pp. 74-85, Jan. 2017.
    • (2017) Knowl.-Based Syst. , vol.116 , pp. 74-85
    • Zhu, Y.1    Liang, J.2    Chen, J.3    Ming, Z.4
  • 25
    • 84997469798 scopus 로고    scopus 로고
    • Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO)
    • V. Manekar and K. Waghmare, "Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO)", Int. J. Adv. Comput. Res., vol. 4, no. 3, pp. 808-812, 2014.
    • (2014) Int. J. Adv. Comput. Res. , vol.4 , Issue.3 , pp. 808-812
    • Manekar, V.1    Waghmare, K.2
  • 26
    • 85030130071 scopus 로고    scopus 로고
    • Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain
    • H. Saxena and V. Richariya, "Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain", Int. J. Comput. Appl., vol. 98, no. 6, pp. 25-29, 2014.
    • (2014) Int. J. Comput. Appl. , vol.98 , Issue.6 , pp. 25-29
    • Saxena, H.1    Richariya, V.2
  • 28
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines", Mach. Learn., vol. 46, nos. 1-3, pp. 389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 29
    • 85027715954 scopus 로고    scopus 로고
    • The applications of deep learning on traffic identification
    • Las Vegas, NV, USA
    • Z. Wang, "The applications of deep learning on traffic identification", in Proc. Conf. BlackHat, Las Vegas, NV, USA, 2015, pp. 1-10.
    • (2015) Proc. Conf. BlackHat , pp. 1-10
    • Wang, Z.1
  • 30
    • 85016025969 scopus 로고    scopus 로고
    • Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model
    • Mar, Online
    • S. Aljawarneh, M. Aldwairi, and M. B. Yassein, "Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model", J. Comput. Sci., Mar. 2017. [Online]. Available: http://dx.doi.org/10.1016/j.jocs.2017.03.006
    • (2017) J. Comput. Sci.
    • Aljawarneh, S.1    Aldwairi, M.2    Yassein, M.B.3
  • 31
    • 85018977186 scopus 로고    scopus 로고
    • Semi-supervised botnet detection using ant colony clustering
    • Kagoshima, Japan
    • K. Huseynov, K. Kim, and P. D. Yoo, "Semi-supervised botnet detection using ant colony clustering", in Proc. Symp. Cryptogr. Inf. Secur. (SCIS), Kagoshima, Japan, 2014, pp. 1-7.
    • (2014) Proc. Symp. Cryptogr. Inf. Secur. (SCIS) , pp. 1-7
    • Huseynov, K.1    Kim, K.2    Yoo, P.D.3
  • 32
    • 85008312861 scopus 로고    scopus 로고
    • Design of an intrusion detection system for unknown-attacks based on bio-inspired algorithms
    • Nagasaki, Japan
    • K.-M. Kim, H. Kim, and K. Kim, "Design of an intrusion detection system for unknown-attacks based on bio-inspired algorithms", in Proc. Comput. Secur. Symp. (CSS), Nagasaki, Japan, 2015, pp. 64-70.
    • (2015) Proc. Comput. Secur. Symp. (CSS) , pp. 64-70
    • Kim, K.-M.1    Kim, H.2    Kim, K.3
  • 34
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
    • Aug.
    • H.-C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data", IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1930-1943
    • Shin, H.-C.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5
  • 35
    • 84969850606 scopus 로고    scopus 로고
    • Anomaly based intrusion detection for 802.11 networks with optimal features using SVM classifier
    • M. Usha and P. Kavitha, "Anomaly based intrusion detection for 802.11 networks with optimal features using SVM classifier", Wireless Netw., vol. 22, no. 8, pp. 2431-2446, 2016.
    • (2016) Wireless Netw. , vol.22 , Issue.8 , pp. 2431-2446
    • Usha, M.1    Kavitha, P.2
  • 36
    • 85050770500 scopus 로고    scopus 로고
    • Detecting impersonation attack in WiFi networks using deep learning approach
    • Jeju Island, South Korea
    • M. E. Aminanto and K. Kim, "Detecting impersonation attack in WiFi networks using deep learning approach", in Proc. Workshop Inf. Secur. Appl. (WISA), Jeju Island, South Korea, 2016, pp. 136-147.
    • (2016) Proc. Workshop Inf. Secur. Appl. (WISA) , pp. 136-147
    • Aminanto, M.E.1    Kim, K.2
  • 37
    • 85045426729 scopus 로고    scopus 로고
    • Weighted feature selection techniques for detecting impersonation attack in Wi-Fi networks
    • Naha, Japan
    • M. E. Aminanto, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, "Weighted feature selection techniques for detecting impersonation attack in Wi-Fi networks", in Proc. Symp. Cryptogr. Inf. Secur. (SCIS), Naha, Japan, 2017, pp. 1-8.
    • (2017) Proc. Symp. Cryptogr. Inf. Secur. (SCIS) , pp. 1-8
    • Aminanto, M.E.1    Tanuwidjaja, H.C.2    Yoo, P.D.3    Kim, K.4
  • 38
    • 33748995703 scopus 로고    scopus 로고
    • Detecting impersonation attacks in future wireless and mobile networks
    • Singapore
    • M. Barbeau, J. Hall, and E. Kranakis, "Detecting impersonation attacks in future wireless and mobile networks", in Proc. Secure Mobile Ad-Hoc Netw. Sensors, Singapore, 2006, pp. 80-95.
    • (2006) Proc. Secure Mobile Ad-hoc Netw. Sensors , pp. 80-95
    • Barbeau, M.1    Hall, J.2    Kranakis, E.3
  • 39
    • 85007132230 scopus 로고    scopus 로고
    • Cafe latte with a free topping of cracked WEP retrieving WEP keys from road warriors
    • San Diego, CA, USA, 2007
    • M. S. Ahmad and V. Ramachandran, "Cafe latte with a free topping of cracked WEP retrieving WEP keys from road warriors", in Proc. Conf. ToorCon, San Diego, CA, USA, 2007.
    • Proc. Conf. ToorCon
    • Ahmad, M.S.1    Ramachandran, V.2
  • 40
    • 85045455972 scopus 로고    scopus 로고
    • Accessed: Dec. 12, 2016. Online
    • Aircrack-ng. (2010). Airbase-ng. Accessed: Dec. 12, 2016. [Online]. Available: http://www.aircrack-ng.org/doku.php?id=airbaseng#hirte-attack-in-acces% s-point-mode
    • (2010) Airbase-ng
  • 42
    • 84990032597 scopus 로고    scopus 로고
    • Mobile application impersonation detection using dynamic user interface extraction
    • Heraklion, Greece
    • L. Malisa, K. Kostiainen, M. Och, and S. Capkun, "Mobile application impersonation detection using dynamic user interface extraction", in Proc. Eur. Symp. Res. Comput. Secur. (ESORICS), Heraklion, Greece, 2016, pp. 217-237.
    • (2016) Proc. Eur. Symp. Res. Comput. Secur. (ESORICS) , pp. 217-237
    • Malisa, L.1    Kostiainen, K.2    Och, M.3    Capkun, S.4
  • 43
    • 84954106086 scopus 로고    scopus 로고
    • The doppelgänger bot Attack: Exploring identity impersonation in online social networks
    • Tokyo, Japan
    • O. Goga, G. Venkatadri, and K. P. Gummadi, "The doppelgänger bot Attack: Exploring identity impersonation in online social networks", in Proc. ACM Internet Meas. Conf. (IMC), Tokyo, Japan, 2015, pp. 141-153.
    • (2015) Proc. ACM Internet Meas. Conf. (IMC) , pp. 141-153
    • Goga, O.1    Venkatadri, G.2    Gummadi, K.P.3
  • 44
    • 84979247359 scopus 로고    scopus 로고
    • Identification and prevention of impersonation attack based on a new flag byte
    • Harbin, China, Dec.
    • T. Shang and L. Y. Gui, "Identification and prevention of impersonation attack based on a new flag byte", in Proc. IEEE Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT), vol. 1. Harbin, China, Dec. 2015, pp. 972-976.
    • (2015) Proc. IEEE Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT) , vol.1 , pp. 972-976
    • Shang, T.1    Gui, L.Y.2
  • 45
    • 84902972008 scopus 로고    scopus 로고
    • Impersonation attack identification for secure communication
    • Atlanta, GA, USA, Dec.
    • M. H. Yilmaz and H. Arslan, "Impersonation attack identification for secure communication", in Proc. IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, Dec. 2013, pp. 1275-1279.
    • (2013) Proc. IEEE Globecom Workshops (GC Wkshps) , pp. 1275-1279
    • Yilmaz, M.H.1    Arslan, H.2
  • 46
  • 47
    • 84896297829 scopus 로고    scopus 로고
    • A distributed approach to network anomaly detection based on independent component analysis
    • F. Palmieri, U. Fiore, and A. Castiglione, "A distributed approach to network anomaly detection based on independent component analysis", Concurrency Comput., Pract. Exper., vol. 26, no. 5, pp. 1113-1129, 2014.
    • (2014) Concurrency Comput., Pract. Exper. , vol.26 , Issue.5 , pp. 1113-1129
    • Palmieri, F.1    Fiore, U.2    Castiglione, A.3
  • 49
    • 58149237695 scopus 로고    scopus 로고
    • A comparison of support vector machine and decision tree classifications using satellite data of Langkawi Island
    • H. Shafri and F. S. H. Ramle, "A comparison of support vector machine and decision tree classifications using satellite data of Langkawi Island", Inf. Technol. J., vol. 8, no. 1, pp. 64-70, 2009.
    • (2009) Inf. Technol. J. , vol.8 , Issue.1 , pp. 64-70
    • Shafri, H.1    Ramle, F.S.H.2
  • 50
    • 78349301760 scopus 로고    scopus 로고
    • The backpropagation algorithm
    • Berlin, Germany: Springer
    • R. Rojas, "The backpropagation algorithm", in Neural Networks. Berlin, Germany: Springer, 1996, pp. 149-182.
    • (1996) Neural Networks , pp. 149-182
    • Rojas, R.1
  • 51
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • B. A. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?" Vis. Res., vol. 37, no. 23, pp. 3311-3325, 1997.
    • (1997) Vis. Res. , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 52
    • 0141797880 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
    • May
    • E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, "A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data", Appl. Data Mining Comput. Secur., vol. 6, pp. 77-101, May 2002.
    • (2002) Appl. Data Mining Comput. Secur. , vol.6 , pp. 77-101
    • Eskin, E.1    Arnold, A.2    Prerau, M.3    Portnoy, L.4    Stolfo, S.5
  • 54
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • Y. Bengio and Y. LeCun, "Scaling learning algorithms towards AI", Large-Scale Kernel Mach., vol. 34, no. 5, pp. 1-41, 2007.
    • (2007) Large-scale Kernel Mach. , vol.34 , Issue.5 , pp. 1-41
    • Bengio, Y.1    LeCun, Y.2
  • 55
    • 78650043633 scopus 로고    scopus 로고
    • Comparison between supervised and unsupervised classifications of neuronal cell types: A case study
    • L. Guerra, L. M. McGarry, V. Robles, C. Bielza, P. Larrañaga, and R. Yuste, "Comparison between supervised and unsupervised classifications of neuronal cell types: A case study", Develop. Neurobiol., vol. 71, no. 1, pp. 71-82, 2011.
    • (2011) Develop. Neurobiol. , vol.71 , Issue.1 , pp. 71-82
    • Guerra, L.1    McGarry, L.M.2    Robles, V.3    Bielza, C.4    Larrañaga, P.5    Yuste, R.6
  • 56
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Nov.
    • M. F. Møller, "A scaled conjugate gradient algorithm for fast supervised learning", Neural Netw., vol. 6, no. 4, pp. 525-533, Nov. 1993.
    • (1993) Neural Netw. , vol.6 , Issue.4 , pp. 525-533
    • Møller, M.F.1
  • 59
    • 85029240638 scopus 로고    scopus 로고
    • A review of KDD99 dataset usage in intrusion detection and machine learning between 2010 and 2015
    • Apr.
    • A. Özgür and H. Erdem, "A review of KDD99 dataset usage in intrusion detection and machine learning between 2010 and 2015", PeerJ PrePrints, vol. 4, p. e1954v1, Apr. 2016.
    • (2016) PeerJ PrePrints , vol.4 , pp. e1954v1
    • Özgür, A.1    Erdem, H.2
  • 61
    • 1642355954 scopus 로고    scopus 로고
    • Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context
    • Lax Vegas, NV, USA
    • M. Sabhnani and G. Serpen, "Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context", in Proc. Int. Conf. Mach. Learn., Models, Technol. Appl. (MLMTA), Lax Vegas, NV, USA, 2003, pp. 209-215.
    • (2003) Proc. Int. Conf. Mach. Learn., Models, Technol. Appl. (MLMTA) , pp. 209-215
    • Sabhnani, M.1    Serpen, G.2
  • 64
    • 84879987629 scopus 로고    scopus 로고
    • The role of balanced training and testing data sets for binary classifiers in bioinformatics
    • Q. Wei and R. L. Dunbrack, Jr., "The role of balanced training and testing data sets for binary classifiers in bioinformatics", PLoS ONE, vol. 8, no. 7, p. e67863, 2013.
    • (2013) PLoS ONE , vol.8 , Issue.7 , pp. e67863
    • Wei, Q.1    Dunbrack, R.L.2
  • 65
    • 84946083260 scopus 로고    scopus 로고
    • Data randomization and cluster-based partitioning for botnet intrusion detection
    • Aug.
    • O. Y. Al-Jarrah, O. Alhussein, P. D. Yoo, S. Muhaidat, K. Taha, and K. Kim, "Data randomization and cluster-based partitioning for botnet intrusion detection", IEEE Trans. Cybern., vol. 46, no. 8, pp. 1796-1806, Aug. 2015.
    • (2015) IEEE Trans. Cybern. , vol.46 , Issue.8 , pp. 1796-1806
    • Al-Jarrah, O.Y.1    Alhussein, O.2    Yoo, P.D.3    Muhaidat, S.4    Taha, K.5    Kim, K.6
  • 66
    • 51849156137 scopus 로고    scopus 로고
    • Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
    • Hobart, TAS, Australia
    • M. Sokolova, N. Japkowicz, and S. Szpakowicz, "Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation", in Proc. Austral. Joint Conf. Artif. Intell., Hobart, TAS, Australia, 2006, pp. 1015-1021.
    • (2006) Proc. Austral. Joint Conf. Artif. Intell. , pp. 1015-1021
    • Sokolova, M.1    Japkowicz, N.2    Szpakowicz, S.3
  • 67
    • 79958196766 scopus 로고    scopus 로고
    • Assessing and improving methods used in operational taxonomic unit-based approaches for 16s rRNA gene sequence analysis
    • P. D. Schloss and S. L. Westcott, "Assessing and improving methods used in operational taxonomic unit-based approaches for 16s rRNA gene sequence analysis", Appl. Environ. Microbiol., vol. 77, no. 10, pp. 3219-3226, 2011.
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.10 , pp. 3219-3226
    • Schloss, P.D.1    Westcott, S.L.2
  • 68
    • 0031359667 scopus 로고    scopus 로고
    • Knowledge extraction from artificial neural network models
    • Orlando, FL, USA, Oct.
    • Z. Boger and H. Guterman, "Knowledge extraction from artificial neural network models", in Proc. IEEE Int. Conf. Syst., Man, Cybern., vol. 4. Orlando, FL, USA, Oct. 1997, pp. 3030-3035.
    • (1997) Proc. IEEE Int. Conf. Syst., Man, Cybern. , vol.4 , pp. 3030-3035
    • Boger, Z.1    Guterman, H.2
  • 70
    • 0000916783 scopus 로고    scopus 로고
    • Practical feature subset selection for machine learning
    • Perth, WA, Australia
    • M. A. Hall and L. A. Smith, "Practical feature subset selection for machine learning", in Proc. Austral. Comput. Sci. Conf. (ACSC), Perth, WA, Australia, 1998, pp. 181-191.
    • (1998) Proc. Austral. Comput. Sci. Conf. (ACSC) , pp. 181-191
    • Hall, M.A.1    Smith, L.A.2
  • 71
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection", Artif. Intell., vol. 97, nos. 1-2, pp. 273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.