메뉴 건너뛰기




Volumn 18, Issue 2, 2016, Pages 1153-1176

A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection

Author keywords

Cyber Analytics; Data Mining; Machine Learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; INTRUSION DETECTION; MERCURY (METAL); SURVEYS;

EID: 84971516631     PISSN: None     EISSN: 1553877X     Source Type: Journal    
DOI: 10.1109/COMST.2015.2494502     Document Type: Article
Times cited : (2259)

References (113)
  • 1
    • 84971552523 scopus 로고    scopus 로고
    • Cyber security challenges: Designing efficient intrusion detection systems and antivirus tools
    • V. R. Vemuri, Ed. New York, NY, USA: Auerbach
    • A. Mukkamala, A. Sung, and A. Abraham, "Cyber security challenges: Designing efficient intrusion detection systems and antivirus tools, " in Enhancing Computer Security with Smart Technology, V. R. Vemuri, Ed. New York, NY, USA: Auerbach, 2005, pp. 125-163.
    • (2005) Enhancing Computer Security with Smart Technology , pp. 125-163
    • Mukkamala, A.1    Sung, A.2    Abraham, A.3
  • 2
    • 84894646147 scopus 로고    scopus 로고
    • Network anomaly detection: Methods, systems and tools
    • First Quart.
    • M. Bhuyan, D. Bhattacharyya, and J. Kalita, "Network anomaly detection: Methods, systems and tools, " IEEE Commun. Surv. Tuts., vol. 16, no. 1, pp. 303-336, First Quart. 2014.
    • (2014) IEEE Commun. Surv. Tuts. , vol.16 , Issue.1 , pp. 303-336
    • Bhuyan, M.1    Bhattacharyya, D.2    Kalita, J.3
  • 3
    • 62849120844 scopus 로고    scopus 로고
    • A survey of techniques for internet traffic classification using machine learning
    • Fourth Quart.
    • T. T. T. Nguyen and G. Armitage, "A survey of techniques for internet traffic classification using machine learning, " IEEE Commun. Surv. Tuts., vol. 10, no. 4, pp. 56-76, Fourth Quart. 2008.
    • (2008) IEEE Commun. Surv. Tuts. , vol.10 , Issue.4 , pp. 56-76
    • Nguyen, T.T.T.1    Armitage, G.2
  • 4
    • 57849130705 scopus 로고    scopus 로고
    • Anomaly-based network intrusion detection: Techniques, systems and challenges
    • P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, "Anomaly-based network intrusion detection: Techniques, systems and challenges, " Comput. Secur., vol. 28, no. 1, pp. 18-28, 2009.
    • (2009) Comput. Secur. , vol.28 , Issue.1 , pp. 18-28
    • Garcia-Teodoro, P.1    Diaz-Verdejo, J.2    Maciá-Fernández, G.3    Vázquez, E.4
  • 6
    • 70350134739 scopus 로고    scopus 로고
    • The use of computational intelligence in intrusion detection systems: A review
    • S. X. Wu and W. Banzhaf, "The use of computational intelligence in intrusion detection systems: A review, " Appl. Soft Comput., vol. 10, no. 1, pp. 1-35, 2010.
    • (2010) Appl. Soft Comput. , vol.10 , Issue.1 , pp. 1-35
    • Wu, S.X.1    Banzhaf, W.2
  • 7
    • 0041473688 scopus 로고    scopus 로고
    • Intrusion detection techniques for mobile wireless networks
    • Y. Zhang, L. Wenke, and Y.-A. Huang, "Intrusion detection techniques for mobile wireless networks, " Wireless Netw., vol. 9, no. 5, pp. 545-556, 2003.
    • (2003) Wireless Netw. , vol.9 , Issue.5 , pp. 545-556
    • Zhang, Y.1    Wenke, L.2    Huang, Y.-A.3
  • 8
    • 0030285403 scopus 로고    scopus 로고
    • The KDD process for extracting useful knowledge from volumes of data
    • U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "The KDD process for extracting useful knowledge from volumes of data, " Commun. ACM, vol. 39, no. 11, pp. 27-34, 1996.
    • (1996) Commun. ACM , vol.39 , Issue.11 , pp. 27-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 9
    • 7444228338 scopus 로고    scopus 로고
    • The CRISP-DM model: The new blueprint for data mining
    • C. Shearer, "The CRISP-DM model: The new blueprint for data mining, " J. Data Warehouse., vol. 5, pp. 13-22, 2000.
    • (2000) J. Data Warehouse. , vol.5 , pp. 13-22
    • Shearer, C.1
  • 10
    • 77958528769 scopus 로고    scopus 로고
    • PMML an open standard for sharing models
    • May
    • A. Guazzelli, M. Zeller, W. Chen, and G. Williams, "PMML an open standard for sharing models, " R J., vol. 1, no. 1, pp. 60-65, May 2009.
    • (2009) R J. , vol.1 , Issue.1 , pp. 60-65
    • Guazzelli, A.1    Zeller, M.2    Chen, W.3    Williams, G.4
  • 12
    • 84946564866 scopus 로고    scopus 로고
    • R Core Team [Online] accessed on Nov. 2015
    • R Language Definition. (2000). R Core Team [Online]. Available: ftp://155.232.191.133/cran/doc/manuals/r-devel/R-lang.pdf, accessed on Nov. 2015.
    • (2000) R Language Definition
  • 15
    • 84971569313 scopus 로고    scopus 로고
    • accessed on Jun. 2014
    • G. Combs. Wireshark [Online]. Available: http://www.wireshark.org, accessed on Jun. 2014.
    • Wireshark [Online]
    • Combs, G.1
  • 16
    • 84971576798 scopus 로고    scopus 로고
    • Snort 2.0. Sourcefire [Online] accessed on Jun. 2014
    • Snort 2.0. Sourcefire [Online]. Available: http://www.sourcefire.com/technology/whitepapers.htm, accessed on Jun. 2014.
  • 18
    • 0034301517 scopus 로고    scopus 로고
    • The 1999 DARPA offline intrusion detection evaluation
    • R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, "The 1999 DARPA offline intrusion detection evaluation, " Comput. Netw., vol. 34, pp. 579-595, 2000.
    • (2000) Comput. Netw. , vol.34 , pp. 579-595
    • Lippmann, R.1    Haines, J.2    Fried, D.3    Korba, J.4    Das, K.5
  • 19
    • 84962260018 scopus 로고    scopus 로고
    • Evaluating intrusion detection systems: The 1998 DARPA offline intrusion detection evaluation
    • R. Lippmann et al., "Evaluating intrusion detection systems: The 1998 DARPA offline intrusion detection evaluation, " in Proc. IEEE DARPA Inf. Surviv. Conf. Expo., 2000, pp. 12-26.
    • (2000) Proc. IEEE DARPA Inf. Surviv. Conf. Expo. , pp. 12-26
    • Lippmann, R.1
  • 20
    • 50249160574 scopus 로고    scopus 로고
    • University of California Irvine, KDD repository [Online] accessed on Jun. 2014
    • S. J. Stolfo, KDD Cup 1999 Data Set, University of California Irvine, KDD repository [Online]. Available: http://kdd.ics.uci.edu, accessed on Jun. 2014.
    • KDD Cup 1999 Data Set
    • Stolfo, S.J.1
  • 22
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators, " Neural Netw., vol. 2, pp. 359-366, 1989.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain, " Psychol. Rev., vol. 65, no. 6, pp. 386-408, 1958.
    • (1958) Psychol. Rev. , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 25
    • 84971498081 scopus 로고    scopus 로고
    • Internet Security Scanner (ISS). IBM [Online] accessed on Feb. 2015
    • Internet Security Scanner (ISS). IBM [Online]. Available: http://www.iss.net, accessed on Feb. 2015.
  • 26
    • 80955157944 scopus 로고    scopus 로고
    • Artificial intelligence and the future of cybersecurity
    • B. Morel, "Artificial intelligence and the future of cybersecurity, " in Proc. 4th ACM Workshop Secur. Artif. Intell., 2011. pp. 93-98.
    • (2011) Proc. 4th ACM Workshop Secur. Artif. Intell. , pp. 93-98
    • Morel, B.1
  • 27
    • 0034300835 scopus 로고    scopus 로고
    • Improving intrusion detection performance using keyword selection and neural networks
    • R. P. Lippmann and R. K. Cunningham, "Improving intrusion detection performance using keyword selection and neural networks, " Comput. Netw., vol. 34, pp. 597-603, 2000.
    • (2000) Comput. Netw. , vol.34 , pp. 597-603
    • Lippmann, R.P.1    Cunningham, R.K.2
  • 30
    • 0348132918 scopus 로고    scopus 로고
    • Mining fuzzy association rules in databases
    • C. M. Kuok, A. Fu, and M. H. Wong, "Mining fuzzy association rules in databases, " ACM SIGMOD Rec., vol. 27, no. 1, pp. 41-46, 1998.
    • (1998) ACM SIGMOD Rec. , vol.27 , Issue.1 , pp. 41-46
    • Kuok, C.M.1    Fu, A.2    Wong, M.H.3
  • 31
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L. Zadeh, "Fuzzy sets, " Inf. Control, vol. 8, no. 3, pp. 338-35, 1965.
    • (1965) Inf. Control , vol.8 , Issue.3 , pp. 338-435
    • Zadeh, L.1
  • 32
    • 84861446593 scopus 로고    scopus 로고
    • OMC-IDS: At the cross-roads of OLAP mining and intrusion detection
    • New York, NY, USA: Springer
    • H. Brahmi, B. Imen, and B. Sadok, "OMC-IDS: At the cross-roads of OLAP mining and intrusion detection, " in Advances in Knowledge Discovery and Data Mining. New York, NY, USA: Springer, 2012, pp. 13-24.
    • (2012) Advances in Knowledge Discovery and Data Mining , pp. 13-24
    • Brahmi, H.1    Imen, B.2    Sadok, B.3
  • 34
    • 79957565933 scopus 로고    scopus 로고
    • Using data mining to discover signatures in network-based intrusion detection
    • H. Han, X. Lu, and L. Ren, "Using data mining to discover signatures in network-based intrusion detection, " in Proc. IEEE Comput. Graph. Appl., 2002, pp. 212-217.
    • (2002) Proc. IEEE Comput. Graph. Appl. , pp. 212-217
    • Han, H.1    Lu, X.2    Ren, L.3
  • 35
    • 61749086468 scopus 로고    scopus 로고
    • Characterizing network traffic by means of the NetMine framework
    • Apr.
    • D. Apiletti, E. Baralis, T. Cerquitelli, and V. D'Elia, "Characterizing network traffic by means of the NetMine framework, " Comput. Netw., vol. 53, no. 6, pp. 774-789, Apr. 2009.
    • (2009) Comput. Netw. , vol.53 , Issue.6 , pp. 774-789
    • Apiletti, D.1    Baralis, E.2    Cerquitelli, T.3    D'Elia, V.4
  • 36
    • 84971575791 scopus 로고    scopus 로고
    • NetGroup Politecnico di Torino Analyzer 3.0 [Online] accessed on Jun. 2014
    • NetGroup, Politecnico di Torino, Analyzer 3.0 [Online]. Available: http://analyzer.polito.it, accessed on Jun. 2014.
  • 38
    • 58549089680 scopus 로고    scopus 로고
    • Intrusion detection using fuzzy association rules
    • A. Tajbakhsh, M. Rahmati, and A. Mirzaei, "Intrusion detection using fuzzy association rules, " Appl. Soft Comput., vol. 9, pp. 462-469, 2009.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 462-469
    • Tajbakhsh, A.1    Rahmati, M.2    Mirzaei, A.3
  • 39
    • 0034247240 scopus 로고    scopus 로고
    • Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection
    • J. Luo and S. Bridges, "Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection, " Int. J. Intell. Syst., vol. 15, no. 8, pp. 687-703, 2000.
    • (2000) Int. J. Intell. Syst. , vol.15 , Issue.8 , pp. 687-703
    • Luo, J.1    Bridges, S.2
  • 43
    • 34748870795 scopus 로고    scopus 로고
    • A framework for an adaptive intrusion detection system using Bayesian network
    • F. Jemili, M. Zaghdoud, and A. Ben, "A framework for an adaptive intrusion detection system using Bayesian network, " in Proc. IEEE Intell. Secur. Informat., 2007, pp. 66-70.
    • (2007) Proc. IEEE Intell. Secur. Informat. , pp. 66-70
    • Jemili, F.1    Zaghdoud, M.2    Ben, A.3
  • 47
    • 84868695480 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • K. Leung and C. Leckie, "Unsupervised anomaly detection in network intrusion detection using clusters, " in Proc. 28th Australas. Conf. Comput. Sci., vol. 38, 2005, pp. 333-342.
    • (2005) Proc. 28th Australas. Conf. Comput. Sci. , vol.38 , pp. 333-342
    • Leung, K.1    Leckie, C.2
  • 48
    • 84970096342 scopus 로고
    • Transitivity in structural models of small groups
    • P. W. Holland and S. Leinhardt, "Transitivity in structural models of small groups, " Comp. Group Stud., vol. 2, pp. 107-124, 1971.
    • (1971) Comp. Group Stud. , vol.2 , pp. 107-124
    • Holland, P.W.1    Leinhardt, S.2
  • 49
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Jun.
    • J. Watts and S. Strogatz, "Collective dynamics of 'small-world' networks, " Nature, vol. 393, pp. 440-442, Jun. 1998.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, J.1    Strogatz, S.2
  • 51
    • 84927652776 scopus 로고    scopus 로고
    • Machine learning applied to cyber operations
    • New York, NY, USA: Springer
    • M. Blowers and J. Williams, "Machine learning applied to cyber operations, " in Network Science and Cybersecurity. New York, NY, USA: Springer, 2014, pp. 55-175.
    • (2014) Network Science and Cybersecurity , pp. 55-175
    • Blowers, M.1    Williams, J.2
  • 53
    • 33744584654 scopus 로고
    • Induction of decision trees
    • R. Quinlan, "Induction of decision trees, " Mach. Learn., vol. 1, no. 1, pp. 81-106, 1986.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, R.1
  • 57
    • 84900328882 scopus 로고    scopus 로고
    • 2014 Exposure: A passive DNS analysis service to detect and report malicious domains
    • Apr.
    • L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, "2014 Exposure: A passive DNS analysis service to detect and report malicious domains, " ACM Trans. Inf. Syst. Secur., vol. 16, no. 4, Apr. 2014.
    • (2014) ACM Trans. Inf. Syst. Secur. , vol.16 , Issue.4
    • Bilge, L.1    Sen, S.2    Balzarotti, D.3    Kirda, E.4    Kruegel, C.5
  • 58
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Third Quart.
    • R. Polikar, "Ensemble based systems in decision making, " IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, Third Quart. 2006.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 61
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests, " Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 62
  • 63
    • 34548359129 scopus 로고    scopus 로고
    • Comparative study of supervised machine learning techniques for intrusion detection
    • F. Gharibian and A. Ghorbani, "Comparative study of supervised machine learning techniques for intrusion detection, " in Proc. 5th Annu. Conf. Commun. Netw. Serv. Res., 2007, pp. 350-358.
    • (2007) Proc. 5th Annu. Conf. Commun. Netw. Serv. Res. , pp. 350-358
    • Gharibian, F.1    Ghorbani, A.2
  • 64
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J. H. Friedman, "Multivariate adaptive regression splines, " Anal. Statist., vol. 19, pp. 1-141, 1991.
    • (1991) Anal. Statist. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 65
    • 10844230994 scopus 로고    scopus 로고
    • Intrusion detection using an ensemble of intelligent paradigms
    • S. Mukkamala, A. Sunga, and A. Abraham, "Intrusion detection using an ensemble of intelligent paradigms, " J. Netw. Comput. Appl., vol. 28, no. 2, pp. 167-182, 2004.
    • (2004) J. Netw. Comput. Appl. , vol.28 , Issue.2 , pp. 167-182
    • Mukkamala, S.1    Sunga, A.2    Abraham, A.3
  • 67
    • 34250092221 scopus 로고
    • Genetic algorithms and machine learning
    • D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning, " Mach. Learn., vol. 3, no. 2, pp. 95-99, 1988.
    • (1988) Mach. Learn. , vol.3 , Issue.2 , pp. 95-99
    • Goldberg, D.E.1    Holland, J.H.2
  • 69
    • 0037592480 scopus 로고    scopus 로고
    • Evolution strategies: A comprehensive introduction
    • H. G. Beyer and H. P. Schwefel, "Evolution strategies: A comprehensive introduction, " J. Nat. Comput., vol. 1, no. 1, pp. 3-52, 2002.
    • (2002) J. Nat. Comput. , vol.1 , Issue.1 , pp. 3-52
    • Beyer, H.G.1    Schwefel, H.P.2
  • 71
    • 0031122887 scopus 로고    scopus 로고
    • Ant colony system: A cooperative learning approach to the traveling salesman problem
    • Apr.
    • M. Dorigo and L. M. Gambardella, "Ant colony system: A cooperative learning approach to the traveling salesman problem, " IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53-66, Apr. 1997.
    • (1997) IEEE Trans. Evol. Comput. , vol.1 , Issue.1 , pp. 53-66
    • Dorigo, M.1    Gambardella, L.M.2
  • 72
    • 46149127936 scopus 로고
    • The immune system, adaptation and machine learning
    • J. Farmer, N. Packard, and A. Perelson, "The immune system, adaptation and machine learning, " Phys. D: Nonlinear Phenom., vol. 2, pp. 187-204, 1986.
    • (1986) Phys. D: Nonlinear Phenom. , vol.2 , pp. 187-204
    • Farmer, J.1    Packard, N.2    Perelson, A.3
  • 74
    • 39049157381 scopus 로고    scopus 로고
    • Evolutionary design of intrusion detection programs
    • A. Abraham, C. Grosan, and C. Martin-Vide, "Evolutionary design of intrusion detection programs, " Int. J. Netw. Secur., vol. 4, no. 3, pp. 328-339, 2007.
    • (2007) Int. J. Netw. Secur. , vol.4 , Issue.3 , pp. 328-339
    • Abraham, A.1    Grosan, C.2    Martin-Vide, C.3
  • 75
    • 34547798962 scopus 로고    scopus 로고
    • Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection
    • Aug.
    • J. Hansen, P. Lowry, D. Meservy, and D. McDonald, "Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection, " Decis. Support Syst., vol. 43, no. 4, pp. 1362-1374, Aug. 2007.
    • (2007) Decis. Support Syst. , vol.43 , Issue.4 , pp. 1362-1374
    • Hansen, J.1    Lowry, P.2    Meservy, D.3    McDonald, D.4
  • 76
    • 84871879955 scopus 로고    scopus 로고
    • Rule-based network intrusion detection using genetic algorithms
    • Mar.
    • S. Khan, "Rule-based network intrusion detection using genetic algorithms, " Int. J. Comput. Appl., vol. 18, no. 8, pp. 26-29, Mar. 2011.
    • (2011) Int. J. Comput. Appl. , vol.18 , Issue.8 , pp. 26-29
    • Khan, S.1
  • 78
    • 4344588856 scopus 로고    scopus 로고
    • Detecting new forms of network intrusion using genetic programming
    • W. Lu and I. Traore, "Detecting new forms of network intrusion using genetic programming, " Comput. Intell., vol. 20, pp. 470-489, 2004.
    • (2004) Comput. Intell. , vol.20 , pp. 470-489
    • Lu, W.1    Traore, I.2
  • 79
    • 2942516558 scopus 로고
    • Extension of the limit theorems of probability theory to a sum of variables connected in a chain
    • R. Howard. Hoboken, NJ, USA: Wiley (Reprinted in Appendix B
    • A. Markov, "Extension of the limit theorems of probability theory to a sum of variables connected in a chain, " Dynamic Probabilistic Systems, vol. 1, R. Howard. Hoboken, NJ, USA: Wiley, 1971 (Reprinted in Appendix B).
    • (1971) Dynamic Probabilistic Systems , vol.1
    • Markov, A.1
  • 80
    • 84965063004 scopus 로고
    • An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology
    • L. E. Baum and J. A. Eagon, "An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology, " Bull. Amer. Math. Soc., vol. 73, no. 3, p. 360, 1967.
    • (1967) Bull. Amer. Math. Soc. , vol.73 , Issue.3 , pp. 360
    • Baum, L.E.1    Eagon, J.A.2
  • 81
    • 33750337673 scopus 로고    scopus 로고
    • Using Hidden markov models to evaluate the risks of intrusions: System architecture and model validation
    • A. Arnes, F. Valeur, G. Vigna, and R. A. Kemmerer, "Using Hidden markov models to evaluate the risks of intrusions: System architecture and model validation, " Lect. Notes Comput. Sci., pp. 145-164, 2006.
    • (2006) Lect. Notes Comput. Sci. , pp. 145-164
    • Arnes, A.1    Valeur, F.2    Vigna, G.3    Kemmerer, R.A.4
  • 82
    • 79955482186 scopus 로고    scopus 로고
    • HMMPayl: An intrusion detection system based on hidden Markov models
    • D. Ariu, R. Tronci, and G. Giacinto, "HMMPayl: An intrusion detection system based on hidden Markov models, " Comput. Secur., vol. 30, no. 4, pp. 221-241, 2011.
    • (2011) Comput. Secur. , vol.30 , Issue.4 , pp. 221-241
    • Ariu, D.1    Tronci, R.2    Giacinto, G.3
  • 83
    • 77953783421 scopus 로고    scopus 로고
    • Investigating hidden Markov models capabilities in anomaly detection
    • S. S. Joshi and V. V. Phoha, "Investigating hidden Markov models capabilities in anomaly detection, " in Proc. ACM 43rd Annu. Southeast Reg. Conf., 2005, vol. 1, pp. 98-103.
    • (2005) Proc ACM 43rd Annu. Southeast Reg. Conf. , vol.1 , pp. 98-103
    • Joshi, S.S.1    Phoha, V.V.2
  • 86
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R. Michalski, "A theory and methodology of inductive learning, " Mach. Learn., vol. 1, pp. 83-134, 1983.
    • (1983) Mach. Learn. , vol.1 , pp. 83-134
    • Michalski, R.1
  • 87
    • 84940104123 scopus 로고    scopus 로고
    • A data mining framework for building intrusion detection models
    • W. Lee, S. Stolfo, and K. Mok, "A data mining framework for building intrusion detection models, " in Proc. IEEE Symp. Secur. Privacy, 1999, pp. 120-132.
    • (1999) Proc. IEEE Symp. Secur. Privacy , pp. 120-132
    • Lee, W.1    Stolfo, S.2    Mok, K.3
  • 88
    • 77954790951 scopus 로고    scopus 로고
    • Using artificial anomalies to detect unknown and known network intrusions
    • W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan, "Using artificial anomalies to detect unknown and known network intrusions, " Knowl. Inf. Syst., vol. 6, no. 5, pp. 507-527, 2004.
    • (2004) Knowl. Inf. Syst. , vol.6 , Issue.5 , pp. 507-527
    • Fan, W.1    Miller, M.2    Stolfo, S.3    Lee, W.4    Chan, P.5
  • 90
    • 51949119149 scopus 로고    scopus 로고
    • Network intrusion detection using Naive Bayes
    • M. Panda and M. R. Patra, "Network intrusion detection using Naive Bayes, " Int. J. Comput. Sci. Netw. Secur., vol. 7, no. 12, pp. 258-263, 2007.
    • (2007) Int. J. Comput. Sci. Netw. Secur. , vol.7 , Issue.12 , pp. 258-263
    • Panda, M.1    Patra, M.R.2
  • 91
    • 2442424268 scopus 로고    scopus 로고
    • Naïve Bayes vs. Decision trees in intrusion detection systems
    • N. B. Amor, S. Benferhat, and Z. Elouedi, "Naïve Bayes vs. decision trees in intrusion detection systems, " in Proc ACM Symp. Appl. Comput., 2004, pp. 420-424.
    • (2004) Proc ACM Symp. Appl. Comput. , pp. 420-424
    • Amor, N.B.1    Benferhat, S.2    Elouedi, Z.3
  • 93
    • 2442430540 scopus 로고    scopus 로고
    • A data mining approach for database intrusion detection
    • Y. Hu and B. Panda, "A data mining approach for database intrusion detection, " in Proc. ACM Symp. Appl. Comput., 2004, pp. 711-716.
    • (2004) Proc. ACM Symp. Appl. Comput. , pp. 711-716
    • Hu, Y.1    Panda, B.2
  • 96
    • 81855197007 scopus 로고    scopus 로고
    • An efficient intrusion detection system based on support vector machines and gradually feature removal method
    • Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, "An efficient intrusion detection system based on support vector machines and gradually feature removal method, " Expert Syst. Appl., vol. 39, no. 1, pp. 424-430, 2012.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.1 , pp. 424-430
    • Li, Y.1    Xia, J.2    Zhang, S.3    Yan, J.4    Ai, X.5    Dai, K.6
  • 98
    • 24944563451 scopus 로고    scopus 로고
    • Robust support vector machines for anomaly detection in computer security
    • W. J. Hu, Y. H. Liao, and V. R. Vemuri, "Robust support vector machines for anomaly detection in computer security, " in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 282-289.
    • (2003) Proc. 20th Int. Conf. Mach. Learn. , pp. 282-289
    • Hu, W.J.1    Liao, Y.H.2    Vemuri, V.R.3
  • 99
    • 79956058361 scopus 로고    scopus 로고
    • Machine learning approach for IP-flow record anomaly detection
    • New York, NY, USA: Springer
    • C. Wagner, F. Jérôme, and E. Thomas, "Machine learning approach for IP-flow record anomaly detection, " in Networking 2011. New York, NY, USA: Springer, 2011, pp. 28-39.
    • (2011) Networking 2011 , pp. 28-39
    • Wagner, C.1    Jérôme, F.2    Thomas, E.3
  • 101
    • 34250801472 scopus 로고    scopus 로고
    • A hybrid machine learning approach to network anomaly detection
    • Sep.
    • T. Shon and J. Moon, "A hybrid machine learning approach to network anomaly detection, " Inf. Sci., vol. 177, no. 18, pp. 3799-3821, Sep. 2007.
    • (2007) Inf. Sci. , vol.177 , Issue.18 , pp. 3799-3821
    • Shon, T.1    Moon, J.2
  • 103
    • 84971541642 scopus 로고    scopus 로고
    • accessed on Jun. 2014
    • V. Paxson. (2004). Bro 0.9 [Online]. Available: http://bro-ids.org, accessed on Jun. 2014.
    • (2004) Bro 0.9 [Online]
    • Paxson, V.1
  • 105
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters, " Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 106
  • 107
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • K. Jain, J. Mao, and K. M. Mohiuddin, "Artificial neural networks: A tutorial, " Computer, vol. 29, no. 3, pp. 31-44, 1996.
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, K.1    Mao, J.2    Mohiuddin, K.M.3
  • 109
    • 45749146270 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H. P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise, " Knowl. Discov. Data Min., vol. 96, pp. 226-231, 1996.
    • (1996) Knowl. Discov. Data Min. , vol.96 , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 110
    • 34547427292 scopus 로고    scopus 로고
    • Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results
    • P. S. Oliveto, J. He, and X. Yao, "Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results, " Int. J. Autom. Comput., vol. 4, no. 3, pp. 281-293, 2007.
    • (2007) Int. J. Autom. Comput. , vol.4 , Issue.3 , pp. 281-293
    • Oliveto, P.S.1    He, J.2    Yao, X.3
  • 111
    • 0015600423 scopus 로고
    • The Viterbi algorithm
    • Mar.
    • G. D. Forney, "The Viterbi algorithm, " Proc. IEEE, vol. 61, no. 3, pp. 268-278, Mar. 1973.
    • (1973) Proc. IEEE , vol.61 , Issue.3 , pp. 268-278
    • Forney, G.D.1
  • 112
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • J. C. Burges, "A tutorial on support vector machines for pattern recognition, " Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998.
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 121-167
    • Burges, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.