-
1
-
-
84971552523
-
Cyber security challenges: Designing efficient intrusion detection systems and antivirus tools
-
V. R. Vemuri, Ed. New York, NY, USA: Auerbach
-
A. Mukkamala, A. Sung, and A. Abraham, "Cyber security challenges: Designing efficient intrusion detection systems and antivirus tools, " in Enhancing Computer Security with Smart Technology, V. R. Vemuri, Ed. New York, NY, USA: Auerbach, 2005, pp. 125-163.
-
(2005)
Enhancing Computer Security with Smart Technology
, pp. 125-163
-
-
Mukkamala, A.1
Sung, A.2
Abraham, A.3
-
2
-
-
84894646147
-
Network anomaly detection: Methods, systems and tools
-
First Quart.
-
M. Bhuyan, D. Bhattacharyya, and J. Kalita, "Network anomaly detection: Methods, systems and tools, " IEEE Commun. Surv. Tuts., vol. 16, no. 1, pp. 303-336, First Quart. 2014.
-
(2014)
IEEE Commun. Surv. Tuts.
, vol.16
, Issue.1
, pp. 303-336
-
-
Bhuyan, M.1
Bhattacharyya, D.2
Kalita, J.3
-
3
-
-
62849120844
-
A survey of techniques for internet traffic classification using machine learning
-
Fourth Quart.
-
T. T. T. Nguyen and G. Armitage, "A survey of techniques for internet traffic classification using machine learning, " IEEE Commun. Surv. Tuts., vol. 10, no. 4, pp. 56-76, Fourth Quart. 2008.
-
(2008)
IEEE Commun. Surv. Tuts.
, vol.10
, Issue.4
, pp. 56-76
-
-
Nguyen, T.T.T.1
Armitage, G.2
-
4
-
-
57849130705
-
Anomaly-based network intrusion detection: Techniques, systems and challenges
-
P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, "Anomaly-based network intrusion detection: Techniques, systems and challenges, " Comput. Secur., vol. 28, no. 1, pp. 18-28, 2009.
-
(2009)
Comput. Secur.
, vol.28
, Issue.1
, pp. 18-28
-
-
Garcia-Teodoro, P.1
Diaz-Verdejo, J.2
Maciá-Fernández, G.3
Vázquez, E.4
-
5
-
-
77955469676
-
An overview of IP flow-based intrusion detection
-
Third Quart.
-
A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, "An overview of IP flow-based intrusion detection, " IEEE Commun. Surv. Tuts., vol. 12, no. 3, pp. 343-356, Third Quart. 2010.
-
(2010)
IEEE Commun. Surv. Tuts.
, vol.12
, Issue.3
, pp. 343-356
-
-
Sperotto, A.1
Schaffrath, G.2
Sadre, R.3
Morariu, C.4
Pras, A.5
Stiller, B.6
-
6
-
-
70350134739
-
The use of computational intelligence in intrusion detection systems: A review
-
S. X. Wu and W. Banzhaf, "The use of computational intelligence in intrusion detection systems: A review, " Appl. Soft Comput., vol. 10, no. 1, pp. 1-35, 2010.
-
(2010)
Appl. Soft Comput.
, vol.10
, Issue.1
, pp. 1-35
-
-
Wu, S.X.1
Banzhaf, W.2
-
7
-
-
0041473688
-
Intrusion detection techniques for mobile wireless networks
-
Y. Zhang, L. Wenke, and Y.-A. Huang, "Intrusion detection techniques for mobile wireless networks, " Wireless Netw., vol. 9, no. 5, pp. 545-556, 2003.
-
(2003)
Wireless Netw.
, vol.9
, Issue.5
, pp. 545-556
-
-
Zhang, Y.1
Wenke, L.2
Huang, Y.-A.3
-
8
-
-
0030285403
-
The KDD process for extracting useful knowledge from volumes of data
-
U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "The KDD process for extracting useful knowledge from volumes of data, " Commun. ACM, vol. 39, no. 11, pp. 27-34, 1996.
-
(1996)
Commun. ACM
, vol.39
, Issue.11
, pp. 27-34
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
9
-
-
7444228338
-
The CRISP-DM model: The new blueprint for data mining
-
C. Shearer, "The CRISP-DM model: The new blueprint for data mining, " J. Data Warehouse., vol. 5, pp. 13-22, 2000.
-
(2000)
J. Data Warehouse.
, vol.5
, pp. 13-22
-
-
Shearer, C.1
-
10
-
-
77958528769
-
PMML an open standard for sharing models
-
May
-
A. Guazzelli, M. Zeller, W. Chen, and G. Williams, "PMML an open standard for sharing models, " R J., vol. 1, no. 1, pp. 60-65, May 2009.
-
(2009)
R J.
, vol.1
, Issue.1
, pp. 60-65
-
-
Guazzelli, A.1
Zeller, M.2
Chen, W.3
Williams, G.4
-
11
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, J. Holmes, B. Pfahringer, P. Reutemann, and I. Witten, "The WEKA data mining software: An update, " ACM SIGKDD Explor. Newslett., vol. 11, no. 1, pp. 10-18, 2009.
-
(2009)
ACM SIGKDD Explor. Newslett.
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, J.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.6
-
12
-
-
84946564866
-
-
R Core Team [Online] accessed on Nov. 2015
-
R Language Definition. (2000). R Core Team [Online]. Available: ftp://155.232.191.133/cran/doc/manuals/r-devel/R-lang.pdf, accessed on Nov. 2015.
-
(2000)
R Language Definition
-
-
-
13
-
-
70450213781
-
Comparative analysis of premises valuation models using KEEL, RapidMiner, and WEKA
-
New York, NY, USA: Springer
-
M. Graczyk, T. Lasota, and B. Trawinski, "Comparative analysis of premises valuation models using KEEL, RapidMiner, and WEKA, " Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. New York, NY, USA: Springer, 2009, pp. 800-812.
-
(2009)
Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems
, pp. 800-812
-
-
Graczyk, M.1
Lasota, T.2
Trawinski, B.3
-
14
-
-
2642550427
-
-
Berkeley, CA, USA: Lawrence Berkeley Laboratory
-
V. Jacobson, C. Leres, and S. McCanne, The Tcpdump Manual Page. Berkeley, CA, USA: Lawrence Berkeley Laboratory, 1989.
-
(1989)
The Tcpdump Manual Page
-
-
Jacobson, V.1
Leres, C.2
McCanne, S.3
-
15
-
-
84971569313
-
-
accessed on Jun. 2014
-
G. Combs. Wireshark [Online]. Available: http://www.wireshark.org, accessed on Jun. 2014.
-
Wireshark [Online]
-
-
Combs, G.1
-
16
-
-
84971576798
-
-
Snort 2.0. Sourcefire [Online] accessed on Jun. 2014
-
Snort 2.0. Sourcefire [Online]. Available: http://www.sourcefire.com/technology/whitepapers.htm, accessed on Jun. 2014.
-
-
-
-
18
-
-
0034301517
-
The 1999 DARPA offline intrusion detection evaluation
-
R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, "The 1999 DARPA offline intrusion detection evaluation, " Comput. Netw., vol. 34, pp. 579-595, 2000.
-
(2000)
Comput. Netw.
, vol.34
, pp. 579-595
-
-
Lippmann, R.1
Haines, J.2
Fried, D.3
Korba, J.4
Das, K.5
-
19
-
-
84962260018
-
Evaluating intrusion detection systems: The 1998 DARPA offline intrusion detection evaluation
-
R. Lippmann et al., "Evaluating intrusion detection systems: The 1998 DARPA offline intrusion detection evaluation, " in Proc. IEEE DARPA Inf. Surviv. Conf. Expo., 2000, pp. 12-26.
-
(2000)
Proc. IEEE DARPA Inf. Surviv. Conf. Expo.
, pp. 12-26
-
-
Lippmann, R.1
-
20
-
-
50249160574
-
-
University of California Irvine, KDD repository [Online] accessed on Jun. 2014
-
S. J. Stolfo, KDD Cup 1999 Data Set, University of California Irvine, KDD repository [Online]. Available: http://kdd.ics.uci.edu, accessed on Jun. 2014.
-
KDD Cup 1999 Data Set
-
-
Stolfo, S.J.1
-
21
-
-
77950575061
-
A detailed analysis of the KDD Cup 1999 data set
-
M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, "A detailed analysis of the KDD Cup 1999 data set, " in Proc. 2nd IEEE Symp. Comput. Intell. Secur. Defense Appl., 2009, pp. 1-6.
-
(2009)
Proc. 2nd IEEE Symp. Comput. Intell. Secur. Defense Appl.
, pp. 1-6
-
-
Tavallaee, M.1
Bagheri, E.2
Lu, W.3
Ghorbani, A.4
-
22
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators, " Neural Netw., vol. 2, pp. 359-366, 1989.
-
(1989)
Neural Netw.
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
23
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain, " Psychol. Rev., vol. 65, no. 6, pp. 386-408, 1958.
-
(1958)
Psychol. Rev.
, vol.65
, Issue.6
, pp. 386-408
-
-
Rosenblatt, F.1
-
24
-
-
0000231655
-
Artificial neural networks for misuse detection
-
J. Cannady, "Artificial neural networks for misuse detection, " in Proc. 1998 Nat. Inf. Syst. Secur. Conf., Arlington, VA, USA, 1998, pp. 443-456.
-
(1998)
Proc. 1998 Nat. Inf. Syst. Secur. Conf., Arlington, VA, USA
, pp. 443-456
-
-
Cannady, J.1
-
25
-
-
84971498081
-
-
Internet Security Scanner (ISS). IBM [Online] accessed on Feb. 2015
-
Internet Security Scanner (ISS). IBM [Online]. Available: http://www.iss.net, accessed on Feb. 2015.
-
-
-
-
26
-
-
80955157944
-
Artificial intelligence and the future of cybersecurity
-
B. Morel, "Artificial intelligence and the future of cybersecurity, " in Proc. 4th ACM Workshop Secur. Artif. Intell., 2011. pp. 93-98.
-
(2011)
Proc. 4th ACM Workshop Secur. Artif. Intell.
, pp. 93-98
-
-
Morel, B.1
-
27
-
-
0034300835
-
Improving intrusion detection performance using keyword selection and neural networks
-
R. P. Lippmann and R. K. Cunningham, "Improving intrusion detection performance using keyword selection and neural networks, " Comput. Netw., vol. 34, pp. 597-603, 2000.
-
(2000)
Comput. Netw.
, vol.34
, pp. 597-603
-
-
Lippmann, R.P.1
Cunningham, R.K.2
-
28
-
-
0037004647
-
Network-based intrusion detection using neural networks
-
A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and M. Embrechts, "Network-based intrusion detection using neural networks, " Intell. Eng. Syst. Artif. Neural Netw., vol. 12, no. 1, pp. 579-584, 2002.
-
(2002)
Intell. Eng. Syst. Artif. Neural Netw.
, vol.12
, Issue.1
, pp. 579-584
-
-
Bivens, A.1
Palagiri, C.2
Smith, R.3
Szymanski, B.4
Embrechts, M.5
-
29
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases, " in Proc. Int. Conf. Manage. Data Assoc. Comput. Mach. (ACM), 1993, pp. 207-216.
-
(1993)
Proc. Int. Conf. Manage. Data Assoc. Comput. Mach. (ACM)
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
30
-
-
0348132918
-
Mining fuzzy association rules in databases
-
C. M. Kuok, A. Fu, and M. H. Wong, "Mining fuzzy association rules in databases, " ACM SIGMOD Rec., vol. 27, no. 1, pp. 41-46, 1998.
-
(1998)
ACM SIGMOD Rec.
, vol.27
, Issue.1
, pp. 41-46
-
-
Kuok, C.M.1
Fu, A.2
Wong, M.H.3
-
31
-
-
34248666540
-
Fuzzy sets
-
L. Zadeh, "Fuzzy sets, " Inf. Control, vol. 8, no. 3, pp. 338-35, 1965.
-
(1965)
Inf. Control
, vol.8
, Issue.3
, pp. 338-435
-
-
Zadeh, L.1
-
32
-
-
84861446593
-
OMC-IDS: At the cross-roads of OLAP mining and intrusion detection
-
New York, NY, USA: Springer
-
H. Brahmi, B. Imen, and B. Sadok, "OMC-IDS: At the cross-roads of OLAP mining and intrusion detection, " in Advances in Knowledge Discovery and Data Mining. New York, NY, USA: Springer, 2012, pp. 13-24.
-
(2012)
Advances in Knowledge Discovery and Data Mining
, pp. 13-24
-
-
Brahmi, H.1
Imen, B.2
Sadok, B.3
-
33
-
-
50949111080
-
A novel network intrusion detection system (NIDS) based on signatures search of data mining
-
H. Zhengbing, L. Zhitang, and W. Junqi, "A novel network intrusion detection system (NIDS) based on signatures search of data mining, " in Proc. 1st Int. Conf. Forensic Appl. Techn. Telecommun. Inf. Multimedia Workshop (e-Forensics '08), 2008, pp. 10-16.
-
(2008)
Proc. 1st Int. Conf. Forensic Appl. Techn. Telecommun. Inf. Multimedia Workshop (E-Forensics '08)
, pp. 10-16
-
-
Zhengbing, H.1
Zhitang, L.2
Junqi, W.3
-
34
-
-
79957565933
-
Using data mining to discover signatures in network-based intrusion detection
-
H. Han, X. Lu, and L. Ren, "Using data mining to discover signatures in network-based intrusion detection, " in Proc. IEEE Comput. Graph. Appl., 2002, pp. 212-217.
-
(2002)
Proc. IEEE Comput. Graph. Appl.
, pp. 212-217
-
-
Han, H.1
Lu, X.2
Ren, L.3
-
35
-
-
61749086468
-
Characterizing network traffic by means of the NetMine framework
-
Apr.
-
D. Apiletti, E. Baralis, T. Cerquitelli, and V. D'Elia, "Characterizing network traffic by means of the NetMine framework, " Comput. Netw., vol. 53, no. 6, pp. 774-789, Apr. 2009.
-
(2009)
Comput. Netw.
, vol.53
, Issue.6
, pp. 774-789
-
-
Apiletti, D.1
Baralis, E.2
Cerquitelli, T.3
D'Elia, V.4
-
36
-
-
84971575791
-
-
NetGroup Politecnico di Torino Analyzer 3.0 [Online] accessed on Jun. 2014
-
NetGroup, Politecnico di Torino, Analyzer 3.0 [Online]. Available: http://analyzer.polito.it, accessed on Jun. 2014.
-
-
-
-
38
-
-
58549089680
-
Intrusion detection using fuzzy association rules
-
A. Tajbakhsh, M. Rahmati, and A. Mirzaei, "Intrusion detection using fuzzy association rules, " Appl. Soft Comput., vol. 9, pp. 462-469, 2009.
-
(2009)
Appl. Soft Comput.
, vol.9
, pp. 462-469
-
-
Tajbakhsh, A.1
Rahmati, M.2
Mirzaei, A.3
-
39
-
-
0034247240
-
Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection
-
J. Luo and S. Bridges, "Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection, " Int. J. Intell. Syst., vol. 15, no. 8, pp. 687-703, 2000.
-
(2000)
Int. J. Intell. Syst.
, vol.15
, Issue.8
, pp. 687-703
-
-
Luo, J.1
Bridges, S.2
-
42
-
-
46149123241
-
Using machine learning techniques to identify botnet traffic
-
C. Livadas, R. Walsh, D. Lapsley, and W. Strayer, "Using machine learning techniques to identify botnet traffic, " in Proc 31st IEEE Conf. Local Comput. Netw., 2006, pp. 967-974.
-
(2006)
Proc 31st IEEE Conf. Local Comput. Netw.
, pp. 967-974
-
-
Livadas, C.1
Walsh, R.2
Lapsley, D.3
Strayer, W.4
-
43
-
-
34748870795
-
A framework for an adaptive intrusion detection system using Bayesian network
-
F. Jemili, M. Zaghdoud, and A. Ben, "A framework for an adaptive intrusion detection system using Bayesian network, " in Proc. IEEE Intell. Secur. Informat., 2007, pp. 66-70.
-
(2007)
Proc. IEEE Intell. Secur. Informat.
, pp. 66-70
-
-
Jemili, F.1
Zaghdoud, M.2
Ben, A.3
-
44
-
-
84944737204
-
Bayesian event classification for intrusion detection
-
C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, "Bayesian event classification for intrusion detection, " in Proc. IEEE 19th Annu. Comput. Secur. Appl. Conf., 2003, pp. 14-23.
-
(2003)
Proc. IEEE 19th Annu. Comput. Secur. Appl. Conf.
, pp. 14-23
-
-
Kruegel, C.1
Mutz, D.2
Robertson, W.3
Valeur, F.4
-
45
-
-
51949090598
-
A Naïve Bayes approach for detecting coordinated attacks
-
S. Benferhat, T. Kenaza, and A. Mokhtari, "A Naïve Bayes approach for detecting coordinated attacks, " in Proc. 32nd Annu. IEEE Int. Comput. Software Appl. Conf., 2008, pp. 704-709.
-
(2008)
Proc. 32nd Annu. IEEE Int. Comput. Software Appl. Conf.
, pp. 704-709
-
-
Benferhat, S.1
Kenaza, T.2
Mokhtari, A.3
-
47
-
-
84868695480
-
Unsupervised anomaly detection in network intrusion detection using clusters
-
K. Leung and C. Leckie, "Unsupervised anomaly detection in network intrusion detection using clusters, " in Proc. 28th Australas. Conf. Comput. Sci., vol. 38, 2005, pp. 333-342.
-
(2005)
Proc. 28th Australas. Conf. Comput. Sci.
, vol.38
, pp. 333-342
-
-
Leung, K.1
Leckie, C.2
-
48
-
-
84970096342
-
Transitivity in structural models of small groups
-
P. W. Holland and S. Leinhardt, "Transitivity in structural models of small groups, " Comp. Group Stud., vol. 2, pp. 107-124, 1971.
-
(1971)
Comp. Group Stud.
, vol.2
, pp. 107-124
-
-
Holland, P.W.1
Leinhardt, S.2
-
49
-
-
0032482432
-
Collective dynamics of 'small-world' networks
-
Jun.
-
J. Watts and S. Strogatz, "Collective dynamics of 'small-world' networks, " Nature, vol. 393, pp. 440-442, Jun. 1998.
-
(1998)
Nature
, vol.393
, pp. 440-442
-
-
Watts, J.1
Strogatz, S.2
-
51
-
-
84927652776
-
Machine learning applied to cyber operations
-
New York, NY, USA: Springer
-
M. Blowers and J. Williams, "Machine learning applied to cyber operations, " in Network Science and Cybersecurity. New York, NY, USA: Springer, 2014, pp. 55-175.
-
(2014)
Network Science and Cybersecurity
, pp. 55-175
-
-
Blowers, M.1
Williams, J.2
-
53
-
-
33744584654
-
Induction of decision trees
-
R. Quinlan, "Induction of decision trees, " Mach. Learn., vol. 1, no. 1, pp. 81-106, 1986.
-
(1986)
Mach. Learn.
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, R.1
-
55
-
-
35248819234
-
Using decision trees to improve signature-based intrusion detection
-
C. Kruegel and T. Toth, "Using decision trees to improve signature-based intrusion detection, " in Proc. 6th Int. Workshop Recent Adv. Intrusion Detect., West Lafayette, IN, USA, 2003, pp. 173-191.
-
(2003)
Proc. 6th Int. Workshop Recent Adv. Intrusion Detect., West Lafayette, IN, USA
, pp. 173-191
-
-
Kruegel, C.1
Toth, T.2
-
56
-
-
84879219725
-
EXPOSURE: Finding malicious domains using passive DNS analysis
-
L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, "EXPOSURE: Finding malicious domains using passive DNS analysis, " presented at the 18th Annu. Netw. Distrib. Syst. Secur. Conf., 2011.
-
(2011)
Presented at the 18th Annu. Netw. Distrib. Syst. Secur. Conf.
-
-
Bilge, L.1
Kirda, E.2
Kruegel, C.3
Balduzzi, M.4
-
57
-
-
84900328882
-
2014 Exposure: A passive DNS analysis service to detect and report malicious domains
-
Apr.
-
L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, "2014 Exposure: A passive DNS analysis service to detect and report malicious domains, " ACM Trans. Inf. Syst. Secur., vol. 16, no. 4, Apr. 2014.
-
(2014)
ACM Trans. Inf. Syst. Secur.
, vol.16
, Issue.4
-
-
Bilge, L.1
Sen, S.2
Balzarotti, D.3
Kirda, E.4
Kruegel, C.5
-
58
-
-
33748611921
-
Ensemble based systems in decision making
-
Third Quart.
-
R. Polikar, "Ensemble based systems in decision making, " IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, Third Quart. 2006.
-
(2006)
IEEE Circuits Syst. Mag.
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
61
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
62
-
-
50649094035
-
Random-forests-based network intrusion detection systems
-
Sep.
-
J. Zhang, M. Zulkernine, and A. Haque, "Random-forests-based network intrusion detection systems, " IEEE Trans. Syst. Man Cybern. C: Appl. Rev., vol. 38, no. 5, pp. 649-659, Sep. 2008.
-
(2008)
IEEE Trans. Syst. Man Cybern. C: Appl. Rev.
, vol.38
, Issue.5
, pp. 649-659
-
-
Zhang, J.1
Zulkernine, M.2
Haque, A.3
-
63
-
-
34548359129
-
Comparative study of supervised machine learning techniques for intrusion detection
-
F. Gharibian and A. Ghorbani, "Comparative study of supervised machine learning techniques for intrusion detection, " in Proc. 5th Annu. Conf. Commun. Netw. Serv. Res., 2007, pp. 350-358.
-
(2007)
Proc. 5th Annu. Conf. Commun. Netw. Serv. Res.
, pp. 350-358
-
-
Gharibian, F.1
Ghorbani, A.2
-
64
-
-
0002432565
-
Multivariate adaptive regression splines
-
J. H. Friedman, "Multivariate adaptive regression splines, " Anal. Statist., vol. 19, pp. 1-141, 1991.
-
(1991)
Anal. Statist.
, vol.19
, pp. 1-141
-
-
Friedman, J.H.1
-
65
-
-
10844230994
-
Intrusion detection using an ensemble of intelligent paradigms
-
S. Mukkamala, A. Sunga, and A. Abraham, "Intrusion detection using an ensemble of intelligent paradigms, " J. Netw. Comput. Appl., vol. 28, no. 2, pp. 167-182, 2004.
-
(2004)
J. Netw. Comput. Appl.
, vol.28
, Issue.2
, pp. 167-182
-
-
Mukkamala, S.1
Sunga, A.2
Abraham, A.3
-
66
-
-
84872102390
-
Disclosure: Detecting botnet command and control servers through large-scale netflow analysis
-
Dec. 3-7
-
L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, "Disclosure: Detecting botnet command and control servers through large-scale netflow analysis, " in Proc. 28th Annu. Comput. Secur. Appl. Conf. (ACSAC'12), Orlando, FL, USA, Dec. 3-7, 2012, pp. 129-138.
-
(2012)
Proc. 28th Annu. Comput. Secur. Appl. Conf. (ACSAC'12), Orlando, FL, USA
, pp. 129-138
-
-
Bilge, L.1
Balzarotti, D.2
Robertson, W.3
Kirda, E.4
Kruegel, C.5
-
67
-
-
34250092221
-
Genetic algorithms and machine learning
-
D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning, " Mach. Learn., vol. 3, no. 2, pp. 95-99, 1988.
-
(1988)
Mach. Learn.
, vol.3
, Issue.2
, pp. 95-99
-
-
Goldberg, D.E.1
Holland, J.H.2
-
69
-
-
0037592480
-
Evolution strategies: A comprehensive introduction
-
H. G. Beyer and H. P. Schwefel, "Evolution strategies: A comprehensive introduction, " J. Nat. Comput., vol. 1, no. 1, pp. 3-52, 2002.
-
(2002)
J. Nat. Comput.
, vol.1
, Issue.1
, pp. 3-52
-
-
Beyer, H.G.1
Schwefel, H.P.2
-
71
-
-
0031122887
-
Ant colony system: A cooperative learning approach to the traveling salesman problem
-
Apr.
-
M. Dorigo and L. M. Gambardella, "Ant colony system: A cooperative learning approach to the traveling salesman problem, " IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53-66, Apr. 1997.
-
(1997)
IEEE Trans. Evol. Comput.
, vol.1
, Issue.1
, pp. 53-66
-
-
Dorigo, M.1
Gambardella, L.M.2
-
72
-
-
46149127936
-
The immune system, adaptation and machine learning
-
J. Farmer, N. Packard, and A. Perelson, "The immune system, adaptation and machine learning, " Phys. D: Nonlinear Phenom., vol. 2, pp. 187-204, 1986.
-
(1986)
Phys. D: Nonlinear Phenom.
, vol.2
, pp. 187-204
-
-
Farmer, J.1
Packard, N.2
Perelson, A.3
-
74
-
-
39049157381
-
Evolutionary design of intrusion detection programs
-
A. Abraham, C. Grosan, and C. Martin-Vide, "Evolutionary design of intrusion detection programs, " Int. J. Netw. Secur., vol. 4, no. 3, pp. 328-339, 2007.
-
(2007)
Int. J. Netw. Secur.
, vol.4
, Issue.3
, pp. 328-339
-
-
Abraham, A.1
Grosan, C.2
Martin-Vide, C.3
-
75
-
-
34547798962
-
Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection
-
Aug.
-
J. Hansen, P. Lowry, D. Meservy, and D. McDonald, "Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection, " Decis. Support Syst., vol. 43, no. 4, pp. 1362-1374, Aug. 2007.
-
(2007)
Decis. Support Syst.
, vol.43
, Issue.4
, pp. 1362-1374
-
-
Hansen, J.1
Lowry, P.2
Meservy, D.3
McDonald, D.4
-
76
-
-
84871879955
-
Rule-based network intrusion detection using genetic algorithms
-
Mar.
-
S. Khan, "Rule-based network intrusion detection using genetic algorithms, " Int. J. Comput. Appl., vol. 18, no. 8, pp. 26-29, Mar. 2011.
-
(2011)
Int. J. Comput. Appl.
, vol.18
, Issue.8
, pp. 26-29
-
-
Khan, S.1
-
78
-
-
4344588856
-
Detecting new forms of network intrusion using genetic programming
-
W. Lu and I. Traore, "Detecting new forms of network intrusion using genetic programming, " Comput. Intell., vol. 20, pp. 470-489, 2004.
-
(2004)
Comput. Intell.
, vol.20
, pp. 470-489
-
-
Lu, W.1
Traore, I.2
-
79
-
-
2942516558
-
Extension of the limit theorems of probability theory to a sum of variables connected in a chain
-
R. Howard. Hoboken, NJ, USA: Wiley (Reprinted in Appendix B
-
A. Markov, "Extension of the limit theorems of probability theory to a sum of variables connected in a chain, " Dynamic Probabilistic Systems, vol. 1, R. Howard. Hoboken, NJ, USA: Wiley, 1971 (Reprinted in Appendix B).
-
(1971)
Dynamic Probabilistic Systems
, vol.1
-
-
Markov, A.1
-
80
-
-
84965063004
-
An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology
-
L. E. Baum and J. A. Eagon, "An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology, " Bull. Amer. Math. Soc., vol. 73, no. 3, p. 360, 1967.
-
(1967)
Bull. Amer. Math. Soc.
, vol.73
, Issue.3
, pp. 360
-
-
Baum, L.E.1
Eagon, J.A.2
-
81
-
-
33750337673
-
Using Hidden markov models to evaluate the risks of intrusions: System architecture and model validation
-
A. Arnes, F. Valeur, G. Vigna, and R. A. Kemmerer, "Using Hidden markov models to evaluate the risks of intrusions: System architecture and model validation, " Lect. Notes Comput. Sci., pp. 145-164, 2006.
-
(2006)
Lect. Notes Comput. Sci.
, pp. 145-164
-
-
Arnes, A.1
Valeur, F.2
Vigna, G.3
Kemmerer, R.A.4
-
82
-
-
79955482186
-
HMMPayl: An intrusion detection system based on hidden Markov models
-
D. Ariu, R. Tronci, and G. Giacinto, "HMMPayl: An intrusion detection system based on hidden Markov models, " Comput. Secur., vol. 30, no. 4, pp. 221-241, 2011.
-
(2011)
Comput. Secur.
, vol.30
, Issue.4
, pp. 221-241
-
-
Ariu, D.1
Tronci, R.2
Giacinto, G.3
-
83
-
-
77953783421
-
Investigating hidden Markov models capabilities in anomaly detection
-
S. S. Joshi and V. V. Phoha, "Investigating hidden Markov models capabilities in anomaly detection, " in Proc. ACM 43rd Annu. Southeast Reg. Conf., 2005, vol. 1, pp. 98-103.
-
(2005)
Proc ACM 43rd Annu. Southeast Reg. Conf.
, vol.1
, pp. 98-103
-
-
Joshi, S.S.1
Phoha, V.V.2
-
84
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
P. Dempster, N. M. Laird, and D. B. Robin, "Maximum likelihood from incomplete data via the EM algorithm, " J. Roy. Statist. Soc., Series B (methodological), pp. 1-38, 1977.
-
(1977)
J. Roy. Statist. Soc., Series B (Methodological
, pp. 1-38
-
-
Dempster, P.1
Laird, N.M.2
Robin, D.B.3
-
85
-
-
85149612939
-
Fast effective rule induction
-
W. W. Cohen, "Fast effective rule induction, " in Proc. 12th Int. Conf. Mach. Learn., Lake Tahoe, CA, USA, 1995, pp. 115-123.
-
(1995)
Proc. 12th Int. Conf. Mach. Learn., Lake Tahoe, CA, USA
, pp. 115-123
-
-
Cohen, W.W.1
-
86
-
-
0003046840
-
A theory and methodology of inductive learning
-
R. Michalski, "A theory and methodology of inductive learning, " Mach. Learn., vol. 1, pp. 83-134, 1983.
-
(1983)
Mach. Learn.
, vol.1
, pp. 83-134
-
-
Michalski, R.1
-
87
-
-
84940104123
-
A data mining framework for building intrusion detection models
-
W. Lee, S. Stolfo, and K. Mok, "A data mining framework for building intrusion detection models, " in Proc. IEEE Symp. Secur. Privacy, 1999, pp. 120-132.
-
(1999)
Proc. IEEE Symp. Secur. Privacy
, pp. 120-132
-
-
Lee, W.1
Stolfo, S.2
Mok, K.3
-
88
-
-
77954790951
-
Using artificial anomalies to detect unknown and known network intrusions
-
W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan, "Using artificial anomalies to detect unknown and known network intrusions, " Knowl. Inf. Syst., vol. 6, no. 5, pp. 507-527, 2004.
-
(2004)
Knowl. Inf. Syst.
, vol.6
, Issue.5
, pp. 507-527
-
-
Fan, W.1
Miller, M.2
Stolfo, S.3
Lee, W.4
Chan, P.5
-
89
-
-
84991833843
-
-
San Mateo, CA, USA: Morgan Kaufmann
-
I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. San Mateo, CA, USA: Morgan Kaufmann, 2011.
-
(2011)
Data Mining: Practical Machine Learning Tools and Techniques, 3rd Ed
-
-
Witten, I.H.1
Frank, E.2
-
90
-
-
51949119149
-
Network intrusion detection using Naive Bayes
-
M. Panda and M. R. Patra, "Network intrusion detection using Naive Bayes, " Int. J. Comput. Sci. Netw. Secur., vol. 7, no. 12, pp. 258-263, 2007.
-
(2007)
Int. J. Comput. Sci. Netw. Secur.
, vol.7
, Issue.12
, pp. 258-263
-
-
Panda, M.1
Patra, M.R.2
-
91
-
-
2442424268
-
Naïve Bayes vs. Decision trees in intrusion detection systems
-
N. B. Amor, S. Benferhat, and Z. Elouedi, "Naïve Bayes vs. decision trees in intrusion detection systems, " in Proc ACM Symp. Appl. Comput., 2004, pp. 420-424.
-
(2004)
Proc ACM Symp. Appl. Comput.
, pp. 420-424
-
-
Amor, N.B.1
Benferhat, S.2
Elouedi, Z.3
-
93
-
-
2442430540
-
A data mining approach for database intrusion detection
-
Y. Hu and B. Panda, "A data mining approach for database intrusion detection, " in Proc. ACM Symp. Appl. Comput., 2004, pp. 711-716.
-
(2004)
Proc. ACM Symp. Appl. Comput.
, pp. 711-716
-
-
Hu, Y.1
Panda, B.2
-
94
-
-
47349110308
-
Real-time correlation of network security alerts
-
Z. Li, A. Zhang, J. Lei, and L. Wang, "Real-time correlation of network security alerts, " in Proc. IEEE Int. Conf. e-Business Eng., 2007, pp. 73-80.
-
(2007)
Proc. IEEE Int. Conf. E-Business Eng.
, pp. 73-80
-
-
Li, Z.1
Zhang, A.2
Lei, J.3
Wang, L.4
-
96
-
-
81855197007
-
An efficient intrusion detection system based on support vector machines and gradually feature removal method
-
Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, "An efficient intrusion detection system based on support vector machines and gradually feature removal method, " Expert Syst. Appl., vol. 39, no. 1, pp. 424-430, 2012.
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.1
, pp. 424-430
-
-
Li, Y.1
Xia, J.2
Zhang, S.3
Yan, J.4
Ai, X.5
Dai, K.6
-
97
-
-
79956097533
-
Mutual information-based feature selection for IDSs
-
F. Amiri, M. Mahdi, R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani, "Mutual information-based feature selection for IDSs, " J. Netw. Comput. Appl., vol. 34, no. 4, pp. 1184-1199, 2011.
-
(2011)
J. Netw. Comput. Appl.
, vol.34
, Issue.4
, pp. 1184-1199
-
-
Amiri, F.1
Mahdi, M.2
Yousefi, R.3
Lucas, C.4
Shakery, A.5
Yazdani, N.6
-
98
-
-
24944563451
-
Robust support vector machines for anomaly detection in computer security
-
W. J. Hu, Y. H. Liao, and V. R. Vemuri, "Robust support vector machines for anomaly detection in computer security, " in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 282-289.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn.
, pp. 282-289
-
-
Hu, W.J.1
Liao, Y.H.2
Vemuri, V.R.3
-
99
-
-
79956058361
-
Machine learning approach for IP-flow record anomaly detection
-
New York, NY, USA: Springer
-
C. Wagner, F. Jérôme, and E. Thomas, "Machine learning approach for IP-flow record anomaly detection, " in Networking 2011. New York, NY, USA: Springer, 2011, pp. 28-39.
-
(2011)
Networking 2011
, pp. 28-39
-
-
Wagner, C.1
Jérôme, F.2
Thomas, E.3
-
101
-
-
34250801472
-
A hybrid machine learning approach to network anomaly detection
-
Sep.
-
T. Shon and J. Moon, "A hybrid machine learning approach to network anomaly detection, " Inf. Sci., vol. 177, no. 18, pp. 3799-3821, Sep. 2007.
-
(2007)
Inf. Sci.
, vol.177
, Issue.18
, pp. 3799-3821
-
-
Shon, T.1
Moon, J.2
-
103
-
-
84971541642
-
-
accessed on Jun. 2014
-
V. Paxson. (2004). Bro 0.9 [Online]. Available: http://bro-ids.org, accessed on Jun. 2014.
-
(2004)
Bro 0.9 [Online]
-
-
Paxson, V.1
-
105
-
-
37549003336
-
MapReduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters, " Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.
-
(2008)
Commun. ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
106
-
-
79958178274
-
Extreme learning machines: A survey
-
H. Guang-Bin, D. H. Wang, and Y. Lan, "Extreme learning machines: A survey, " Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107-122, 2011.
-
(2011)
Int. J. Mach. Learn. Cybern.
, vol.2
, Issue.2
, pp. 107-122
-
-
Guang-Bin, H.1
Wang, D.H.2
Lan, Y.3
-
107
-
-
0030104449
-
Artificial neural networks: A tutorial
-
K. Jain, J. Mao, and K. M. Mohiuddin, "Artificial neural networks: A tutorial, " Computer, vol. 29, no. 3, pp. 31-44, 1996.
-
(1996)
Computer
, vol.29
, Issue.3
, pp. 31-44
-
-
Jain, K.1
Mao, J.2
Mohiuddin, K.M.3
-
108
-
-
0001371923
-
Fast discovery of association rules
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, "Fast discovery of association rules, " Adv. Knowl. Discov. Data Min., vol. 12, no. 1, pp. 307-328, 1996.
-
(1996)
Adv. Knowl. Discov. Data Min.
, vol.12
, Issue.1
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
109
-
-
45749146270
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H. P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise, " Knowl. Discov. Data Min., vol. 96, pp. 226-231, 1996.
-
(1996)
Knowl. Discov. Data Min.
, vol.96
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.4
-
110
-
-
34547427292
-
Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results
-
P. S. Oliveto, J. He, and X. Yao, "Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results, " Int. J. Autom. Comput., vol. 4, no. 3, pp. 281-293, 2007.
-
(2007)
Int. J. Autom. Comput.
, vol.4
, Issue.3
, pp. 281-293
-
-
Oliveto, P.S.1
He, J.2
Yao, X.3
-
111
-
-
0015600423
-
The Viterbi algorithm
-
Mar.
-
G. D. Forney, "The Viterbi algorithm, " Proc. IEEE, vol. 61, no. 3, pp. 268-278, Mar. 1973.
-
(1973)
Proc. IEEE
, vol.61
, Issue.3
, pp. 268-278
-
-
Forney, G.D.1
-
112
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
J. C. Burges, "A tutorial on support vector machines for pattern recognition, " Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998.
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, J.C.1
|