메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

Reconstructing cell cycle and disease progression using deep learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CELLS AND CELL COMPONENTS; DISEASE; FLOW CYTOMETRY; IMAGE; SUBPOPULATION;

EID: 85028914209     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-017-00623-3     Document Type: Article
Times cited : (222)

References (26)
  • 1
    • 33747624926 scopus 로고    scopus 로고
    • High-throughput fluorescence microscopy for systems biology
    • Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7, 690-696 (2006).
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 690-696
    • Pepperkok, R.1    Ellenberg, J.2
  • 3
    • 0033884049 scopus 로고    scopus 로고
    • Flow cytometry: Principles and clinical applications in hematology
    • Brown, M. & Wittwer, C. Flow cytometry: principles and clinical applications in hematology. Clin. Chem. 46, 1221-1229 (2000).
    • (2000) Clin. Chem. , vol.46 , pp. 1221-1229
    • Brown, M.1    Wittwer, C.2
  • 4
    • 84863208608 scopus 로고    scopus 로고
    • Biological imaging software tools
    • Eliceiri, K. W. et al. Biological imaging software tools. Nat. Methods 9, 697-710 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 697-710
    • Eliceiri, K.W.1
  • 5
    • 84953896921 scopus 로고    scopus 로고
    • Label-free cell cycle analysis for high-throughput imaging flow cytometry
    • Blasi, T. et al. Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 7, 10256 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10256
    • Blasi, T.1
  • 6
    • 60549104030 scopus 로고    scopus 로고
    • Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning
    • Jones, T. R. et al. Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. PNAS 106, 1826-1831 (2009).
    • (2009) PNAS , vol.106 , pp. 1826-1831
    • Jones, T.R.1
  • 7
    • 84995528830 scopus 로고    scopus 로고
    • Cellprofiler analyst: Interactive data exploration, analysis, and classification of large biological image sets
    • Dao, D. et al. Cellprofiler analyst: interactive data exploration, analysis, and classification of large biological image sets. Bioinformatics 32, 3210-3212 (2016).
    • (2016) Bioinformatics , vol.32 , pp. 3210-3212
    • Dao, D.1
  • 8
    • 84959123422 scopus 로고    scopus 로고
    • Trajectories of cell-cycle progression from fixed cell populations
    • Gut, G., Tadmor, M. D., Pe'er, D., Pelkmans, L. & Liberali, P. Trajectories of cell-cycle progression from fixed cell populations. Nat. Methods 12, 951-954 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 951-954
    • Gut, G.1    Tadmor, M.D.2    Pe'Er, D.3    Pelkmans, L.4    Liberali, P.5
  • 9
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014).
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 10
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 11
    • 84984643819 scopus 로고    scopus 로고
    • Diffusion pseudotime robustly reconstructs branching cellular lineages
    • Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs branching cellular lineages. Nat. Methods 13, 845-848 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 845-848
    • Haghverdi, L.1    Büttner, M.2    Wolf, F.A.3    Buettner, F.4    Theis, F.J.5
  • 12
    • 85019234865 scopus 로고    scopus 로고
    • Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning
    • Pärnamaa, T. & Parts, L. Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning. G3 Genes Genom. Genet. 7, 1385-1392 (2017).
    • (2017) G3 Genes Genom. Genet. , vol.7 , pp. 1385-1392
    • Pärnamaa, T.1    Parts, L.2
  • 13
    • 84960984309 scopus 로고    scopus 로고
    • Deep learning in label-free cell classification
    • Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471 (2016).
    • (2016) Sci. Rep. , vol.6 , pp. 21471
    • Chen, C.L.1
  • 14
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • Kraus, O. Z., Ba, L. J. & Frey, B. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52-i59 (2016).
    • (2016) Bioinformatics , vol.32 , pp. i52-i59
    • Kraus, O.Z.1    Ba, L.J.2    Frey, B.3
  • 15
    • 84988526163 scopus 로고    scopus 로고
    • Single-cell phenotype classification using deep convolutional neural networks
    • Dürr, O. & Sick, B. Single-cell phenotype classification using deep convolutional neural networks. J. Biomol. Screen. 21, 998-1003 (2016).
    • (2016) J. Biomol. Screen. , vol.21 , pp. 998-1003
    • Dürr, O.1    Sick, B.2
  • 16
    • 84959185539 scopus 로고    scopus 로고
    • High-content analysis of breast cancer using single-cell deep transfer learning
    • Kandaswamy, C., Silva, L. M., Alexandre, L. A. & Santos, J. M. High-content analysis of breast cancer using single-cell deep transfer learning. J. Biomol. Screen. 21, 252-259 (2016).
    • (2016) J. Biomol. Screen. , vol.21 , pp. 252-259
    • Kandaswamy, C.1    Silva, L.M.2    Alexandre, L.A.3    Santos, J.M.4
  • 19
    • 84994481737 scopus 로고    scopus 로고
    • An open-source solution for advanced imaging flow cytometry data analysis using machine learning
    • Hennig, H. et al. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Methods 112, 201-210 (2016).
    • (2016) Methods , vol.112 , pp. 201-210
    • Hennig, H.1
  • 20
    • 84866096861 scopus 로고    scopus 로고
    • Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators
    • Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858-867 (2012).
    • (2012) Nat. Biotechnol. , vol.30 , pp. 858-867
    • Bodenmiller, B.1
  • 21
    • 84898402897 scopus 로고    scopus 로고
    • Multiplexed ion beam imaging of human breast tumors
    • Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436-442 (2014).
    • (2014) Nat. Med. , vol.20 , pp. 436-442
    • Angelo, M.1
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. NIPS 25, 1097-1105 (2012).
    • (2012) NIPS , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010).
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.