-
1
-
-
33747624926
-
High-throughput fluorescence microscopy for systems biology
-
Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7, 690-696 (2006).
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 690-696
-
-
Pepperkok, R.1
Ellenberg, J.2
-
2
-
-
34447542504
-
Cellular image analysis and imaging by flow cytometry
-
Basiji, D. A., Ortyn, W. E., Liang, L., Venkatachalam, V. & Morrissey, P. Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med. 27, 653-670 (2007).
-
(2007)
Clin. Lab. Med.
, vol.27
, pp. 653-670
-
-
Basiji, D.A.1
Ortyn, W.E.2
Liang, L.3
Venkatachalam, V.4
Morrissey, P.5
-
3
-
-
0033884049
-
Flow cytometry: Principles and clinical applications in hematology
-
Brown, M. & Wittwer, C. Flow cytometry: principles and clinical applications in hematology. Clin. Chem. 46, 1221-1229 (2000).
-
(2000)
Clin. Chem.
, vol.46
, pp. 1221-1229
-
-
Brown, M.1
Wittwer, C.2
-
4
-
-
84863208608
-
Biological imaging software tools
-
Eliceiri, K. W. et al. Biological imaging software tools. Nat. Methods 9, 697-710 (2012).
-
(2012)
Nat. Methods
, vol.9
, pp. 697-710
-
-
Eliceiri, K.W.1
-
5
-
-
84953896921
-
Label-free cell cycle analysis for high-throughput imaging flow cytometry
-
Blasi, T. et al. Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 7, 10256 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 10256
-
-
Blasi, T.1
-
6
-
-
60549104030
-
Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning
-
Jones, T. R. et al. Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. PNAS 106, 1826-1831 (2009).
-
(2009)
PNAS
, vol.106
, pp. 1826-1831
-
-
Jones, T.R.1
-
7
-
-
84995528830
-
Cellprofiler analyst: Interactive data exploration, analysis, and classification of large biological image sets
-
Dao, D. et al. Cellprofiler analyst: interactive data exploration, analysis, and classification of large biological image sets. Bioinformatics 32, 3210-3212 (2016).
-
(2016)
Bioinformatics
, vol.32
, pp. 3210-3212
-
-
Dao, D.1
-
8
-
-
84959123422
-
Trajectories of cell-cycle progression from fixed cell populations
-
Gut, G., Tadmor, M. D., Pe'er, D., Pelkmans, L. & Liberali, P. Trajectories of cell-cycle progression from fixed cell populations. Nat. Methods 12, 951-954 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 951-954
-
-
Gut, G.1
Tadmor, M.D.2
Pe'Er, D.3
Pelkmans, L.4
Liberali, P.5
-
9
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014).
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
-
10
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
11
-
-
84984643819
-
Diffusion pseudotime robustly reconstructs branching cellular lineages
-
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs branching cellular lineages. Nat. Methods 13, 845-848 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 845-848
-
-
Haghverdi, L.1
Büttner, M.2
Wolf, F.A.3
Buettner, F.4
Theis, F.J.5
-
12
-
-
85019234865
-
Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning
-
Pärnamaa, T. & Parts, L. Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning. G3 Genes Genom. Genet. 7, 1385-1392 (2017).
-
(2017)
G3 Genes Genom. Genet.
, vol.7
, pp. 1385-1392
-
-
Pärnamaa, T.1
Parts, L.2
-
13
-
-
84960984309
-
Deep learning in label-free cell classification
-
Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471 (2016).
-
(2016)
Sci. Rep.
, vol.6
, pp. 21471
-
-
Chen, C.L.1
-
14
-
-
84976510674
-
Classifying and segmenting microscopy images with deep multiple instance learning
-
Kraus, O. Z., Ba, L. J. & Frey, B. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52-i59 (2016).
-
(2016)
Bioinformatics
, vol.32
, pp. i52-i59
-
-
Kraus, O.Z.1
Ba, L.J.2
Frey, B.3
-
15
-
-
84988526163
-
Single-cell phenotype classification using deep convolutional neural networks
-
Dürr, O. & Sick, B. Single-cell phenotype classification using deep convolutional neural networks. J. Biomol. Screen. 21, 998-1003 (2016).
-
(2016)
J. Biomol. Screen.
, vol.21
, pp. 998-1003
-
-
Dürr, O.1
Sick, B.2
-
16
-
-
84959185539
-
High-content analysis of breast cancer using single-cell deep transfer learning
-
Kandaswamy, C., Silva, L. M., Alexandre, L. A. & Santos, J. M. High-content analysis of breast cancer using single-cell deep transfer learning. J. Biomol. Screen. 21, 252-259 (2016).
-
(2016)
J. Biomol. Screen.
, vol.21
, pp. 252-259
-
-
Kandaswamy, C.1
Silva, L.M.2
Alexandre, L.A.3
Santos, J.M.4
-
19
-
-
84994481737
-
An open-source solution for advanced imaging flow cytometry data analysis using machine learning
-
Hennig, H. et al. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Methods 112, 201-210 (2016).
-
(2016)
Methods
, vol.112
, pp. 201-210
-
-
Hennig, H.1
-
20
-
-
84866096861
-
Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators
-
Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858-867 (2012).
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 858-867
-
-
Bodenmiller, B.1
-
21
-
-
84898402897
-
Multiplexed ion beam imaging of human breast tumors
-
Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436-442 (2014).
-
(2014)
Nat. Med.
, vol.20
, pp. 436-442
-
-
Angelo, M.1
-
23
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. NIPS 25, 1097-1105 (2012).
-
(2012)
NIPS
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010).
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
26
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
|