메뉴 건너뛰기




Volumn 07-10-November-2016, Issue , 2016, Pages

Re-architecting the on-chip memory sub-system of machine-learning accelerator for embedded devices

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUDGET CONTROL; COMPUTER AIDED DESIGN; DATA COMPRESSION; DIGITAL STORAGE; EMBEDDED SYSTEMS; ENERGY UTILIZATION; LEARNING SYSTEMS; NEURAL NETWORKS; REDUNDANCY; ROBOTICS; SPEECH RECOGNITION;

EID: 85001086148     PISSN: 10923152     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2966986.2967068     Document Type: Conference Paper
Times cited : (29)

References (14)
  • 2
    • 79953078928 scopus 로고    scopus 로고
    • A programmable parallel accelerator for learning and classification
    • S. Cadambi, et al., "A programmable parallel accelerator for learning and classification," in Proc. PACT, 2010.
    • (2010) Proc. PACT
    • Cadambi, S.1
  • 3
    • 84964793469 scopus 로고    scopus 로고
    • Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
    • T. Chen, et al., "Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning," in Proc. of ASPLOS, 2014.
    • (2014) Proc. of ASPLOS
    • Chen, T.1
  • 4
    • 84985993737 scopus 로고    scopus 로고
    • DeepBurning: Automatic generation of FPGA-based learning accelerators for the neural network family
    • Y. Wang, et al., "DeepBurning: Automatic Generation of FPGA-based Learning Accelerators for the Neural Network Family," in Proc. DAC, 2016.
    • (2016) Proc. DAC
    • Wang, Y.1
  • 5
    • 80054919955 scopus 로고    scopus 로고
    • NeuFlow: A runtime reconfigurable dataflow processor for vision
    • C. Farabet, et al., "NeuFlow: A runtime reconfigurable dataflow processor for vision," In CVPR Workshop, 2011.
    • (2011) CVPR Workshop
    • Farabet, C.1
  • 6
    • 77955007393 scopus 로고    scopus 로고
    • A dynamically configurable coprocessor for convolutional neural networks
    • S. Chakradhar, et al., "A dynamically configurable coprocessor for convolutional neural networks," in Proc ISCA, 2010.
    • (2010) Proc ISCA
    • Chakradhar, S.1
  • 7
    • 84988372953 scopus 로고    scopus 로고
    • Cnvlutin: Ineffectual-neuron-free deep neural network computing
    • J. Albericio, et al., "Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing," in Proc. ISCA, 2016.
    • (2016) Proc. ISCA
    • Albericio, J.1
  • 8
    • 84988443578 scopus 로고    scopus 로고
    • EIE: Efficient inference engine on compressed deep neural network
    • S. Han, et al., "EIE: Efficient Inference Engine on Compressed Deep Neural Network," in Proc. ISCA, 2016.
    • (2016) Proc. ISCA
    • Han, S.1
  • 9
    • 84988317007 scopus 로고    scopus 로고
    • Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks
    • Y. Chen, et al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," in Proc. ISCA, 2016.
    • (2016) Proc. ISCA
    • Chen, Y.1
  • 10
    • 4644245377 scopus 로고    scopus 로고
    • Adaptive cache compression for highperformance processors
    • A. R. Alameldeen, et al., "Adaptive cache compression for highperformance processors," in Proc. ISCA, 2004.
    • (2004) Proc. ISCA
    • Alameldeen, A.R.1
  • 11
    • 85001107759 scopus 로고    scopus 로고
    • Nangate Open Cell Library. http://www.si2.org/openeda.si2.org/projects/nangatelib.
  • 12
    • 84977150476 scopus 로고    scopus 로고
    • C-brain:A deep learning accelerator that tames the diversity of CNNs through adaptive data-level parallelization
    • L. Song, et al., "C-Brain:A deep learning accelerator that tames the diversity of CNNs through adaptive data-level parallelization," in Proc. DAC, 2016.
    • (2016) Proc. DAC
    • Song, L.1
  • 14
    • 85000963252 scopus 로고    scopus 로고
    • in
    • Cacti 6.5, in: http://www.hpl.hp.com/research/cacti/.
    • Cacti 6.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.