-
1
-
-
4043120515
-
A new solar broadband radio spectrometer (SBRS) in China
-
[1] Fu, Q., Ji, H., Qin, Z., Xu, Z., Xia, Z., Wu, H., Liu, Y., Yan, Y., Huang, G., Chen, Z., Jin, Z., Yao, Q., Cheng, C., Xu, F., Wang, M., Pei, L., Chen, S., Yang, G., Tan, C., Shi, S., A new solar broadband radio spectrometer (SBRS) in China. Sol. Phys. 222:1 (2004), 167–173.
-
(2004)
Sol. Phys.
, vol.222
, Issue.1
, pp. 167-173
-
-
Fu, Q.1
Ji, H.2
Qin, Z.3
Xu, Z.4
Xia, Z.5
Wu, H.6
Liu, Y.7
Yan, Y.8
Huang, G.9
Chen, Z.10
Jin, Z.11
Yao, Q.12
Cheng, C.13
Xu, F.14
Wang, M.15
Pei, L.16
Chen, S.17
Yang, G.18
Tan, C.19
Shi, S.20
more..
-
3
-
-
84867135575
-
Building high-level features using large scale unsupervised learning,
-
[3] Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, A.Y. Ng, Building high-level features using large scale unsupervised learning, in: International Conference on Machine Learning, 2012.
-
(2012)
International Conference on Machine Learning
-
-
Le, Q.V.1
Ranzato, M.A.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.S.6
Dean, J.7
Ng, A.Y.8
-
4
-
-
84863049755
-
-
[4] K. Sohn, D.Y. Jung, H. Lee, A.O. Hero III, Efficient learning of sparse, distributed, convolutional feature representations for object recognition, in: International Conference on Computer Vision, 2011.
-
(2011)
A.O. Hero III, Efficient learning of sparse, distributed, convolutional feature representations for object recognition, in: International Conference on Computer Vision
-
-
Sohn, K.1
Jung, D.Y.2
Lee, H.3
-
5
-
-
85162060019
-
Unsupervised feature learning for audio classification using convolutional deep belief networks,
-
[5] H. Lee, Y. Largman, P. Pham, A. Y. Ng, Unsupervised feature learning for audio classification using convolutional deep belief networks, in: Annual Conference on Neural Information Processing Systems, 2011.
-
(2011)
Annual Conference on Neural Information Processing Systems
-
-
Lee, H.1
Largman, Y.2
Pham, P.3
Ng, A.Y.4
-
6
-
-
84055211743
-
-
[6] A. Mohamed, G.E. Dahl, G. Hinton, Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing vol. 20, no. 1, 2012, pp. 14-22.
-
(2012)
Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.1
Dahl, G.E.2
Hinton, G.3
-
7
-
-
80053558787
-
Natural language processing (almost) from scratch
-
[7] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P., Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12 (2011), 2493–2537.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
8
-
-
84919825814
-
Marginalized denoising auto-encoders for nonlinear representations,
-
[8] M. Chen, K. Weinberger, F. Sha, Y. Bengio, Marginalized denoising auto-encoders for nonlinear representations, in: International Conference on Machine Learning, 2014.
-
(2014)
International Conference on Machine Learning
-
-
Chen, M.1
Weinberger, K.2
Sha, F.3
Bengio, Y.4
-
9
-
-
84867129067
-
Marginalized stacked denoising autoencoders for domain adaptation,
-
[9] M. Chen, Z. Xu, K. Weinberger, F. Sha, Marginalized stacked denoising autoencoders for domain adaptation, in: International Conference on Machine Learning, 2012.
-
(2012)
International Conference on Machine Learning
-
-
Chen, M.1
Xu, Z.2
Weinberger, K.3
Sha, F.4
-
10
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
[10] Hinton, G., Salakhutdinov, R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
11
-
-
84959904306
-
Imaging and representation learning of solar radio spectrums for classification
-
[11] Chen, Z., Ma, L., Xu, L., Tan, C., Yan, Y., Imaging and representation learning of solar radio spectrums for classification. Multimed. Tools Appl. 75:5 (2015), 2859–2875.
-
(2015)
Multimed. Tools Appl.
, vol.75
, Issue.5
, pp. 2859-2875
-
-
Chen, Z.1
Ma, L.2
Xu, L.3
Tan, C.4
Yan, Y.5
-
12
-
-
84928013181
-
Deep learning for detecting robotic grasps
-
[12] Ian, L., Lee, H., Saxena, A., Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34 (2015), 705–724.
-
(2015)
Int. J. Robot. Res.
, vol.34
, pp. 705-724
-
-
Ian, L.1
Lee, H.2
Saxena, A.3
-
13
-
-
84921025983
-
-
[13] A. Jalali, P. Ravikumar, S. Aanghavi, C. Ruan, A dirty model for multi-task learning, Adv. Neural Inf. Process. Syst., 2010.
-
(2010)
A dirty model for multi-task learning, Adv. Neural Inf. Process. Syst.
-
-
Jalali, A.1
Ravikumar, P.2
Aanghavi, S.3
Ruan, C.4
-
14
-
-
84961291654
-
A rapid learning algorithm for vehicle classification
-
[14] Wen, X., Shao, L., Xue, Y., Fang, W., A rapid learning algorithm for vehicle classification. Information Sciences 295:1 (2015), 395–406.
-
(2015)
Information Sciences
, vol.295
, Issue.1
, pp. 395-406
-
-
Wen, X.1
Shao, L.2
Xue, Y.3
Fang, W.4
-
16
-
-
84890527827
-
Improving deep neural networks for lvcsr using rectified linear units and dropout,
-
[16] G.E. Dahl, T.N. Sainath, G. Hinton, Improving deep neural networks for lvcsr using rectified linear units and dropout, in: IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.
-
(2013)
IEEE International Conference on Acoustics, Speech and Signal Processing
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.3
-
17
-
-
84973864182
-
Multimodal convolutional neural networks for matching image and sentence,
-
[17] L. Ma, Z. Lu, L. Shang, H. Li, Multimodal convolutional neural networks for matching image and sentence, in: International Conference on Computer Vision, 2015.
-
(2015)
International Conference on Computer Vision
-
-
Ma, L.1
Lu, Z.2
Shang, L.3
Li, H.4
-
19
-
-
80053437179
-
Multimodal deep learning,
-
[19] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: International Conference on Machine Learning, 2011.
-
(2011)
International Conference on Machine Learning
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
21
-
-
84944113729
-
-
[21] R. Kiros, R. Salakhutdinov, R. Zemel, Unifying visual-semantic embedding with multimodal neural language models, arXiv:1411.2539, 2014.
-
Unifying visual-semantic embedding with multimodal neural language models, arXiv:1411.2539, 2014.
-
-
Kiros, R.1
Salakhutdinov, R.2
Zemel, R.3
-
23
-
-
84956802323
-
A tutorial survey of architectures, algorithms, and applications for deep learning
-
[23] Deng, L., A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process., 3, 2014.
-
(2014)
APSIPA Trans. Signal Inf. Process.
, vol.3
-
-
Deng, L.1
-
24
-
-
84948382785
-
DeepID-net: deformable deep convolutional neural networks for object detection,
-
[24] W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang, Z. Wang, C. Loy, X. Tang, DeepID-net: deformable deep convolutional neural networks for object detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015.
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
Ouyang, W.1
Wang, X.2
Zeng, X.3
Qiu, S.4
Luo, P.5
Tian, Y.6
Li, H.7
Yang, S.8
Wang, Z.9
Loy, C.10
Tang, X.11
-
25
-
-
85028203782
-
Incremental Support Vector Learning for Ordinal Regression
-
[25] Gu, B., Sheng, V.S., Tay, K.Y., Romano, W., Li, S., Incremental Support Vector Learning for Ordinal Regression. IEEE Trans. Neural Networks and Learning Systems 26:7 (2015), 1403–1416.
-
(2015)
IEEE Trans. Neural Networks and Learning Systems
, vol.26
, Issue.7
, pp. 1403-1416
-
-
Gu, B.1
Sheng, V.S.2
Tay, K.Y.3
Romano, W.4
Li, S.5
-
26
-
-
84929471718
-
Incremental learning for ν-Support Vector Regression
-
[26] Gu, B., Sheng, V.S., Wang, Z., Ho, D., Osman, S., Li, S., Incremental learning for ν-Support Vector Regression. Neural Networks 67 (2015), 140–150.
-
(2015)
Neural Networks
, vol.67
, pp. 140-150
-
-
Gu, B.1
Sheng, V.S.2
Wang, Z.3
Ho, D.4
Osman, S.5
Li, S.6
-
27
-
-
0242288799
-
A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
-
[27] Cao, L.J., Chua, K.S., Chong, W.K., Lee, H.P., Gu, Q.M., A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55:1 (2003), 321–336.
-
(2003)
Neurocomputing
, vol.55
, Issue.1
, pp. 321-336
-
-
Cao, L.J.1
Chua, K.S.2
Chong, W.K.3
Lee, H.P.4
Gu, Q.M.5
|