메뉴 건너뛰기




Volumn 22, Issue 1, 2018, Pages 184-195

Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification

Author keywords

Convolutional neural network (CNN); gabor filter; interstitial lung disease (ILD) classification; local binary pattern (LBP); lung classification

Indexed keywords

BIOLOGICAL ORGANS; COMPUTERIZED TOMOGRAPHY; CONVOLUTION; GABOR FILTERS; TEXTURES;

EID: 85040364846     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2017.2685586     Document Type: Article
Times cited : (93)

References (66)
  • 3
    • 0033008912 scopus 로고    scopus 로고
    • Detection failures in spiral CT screening for lung cancer: Analysis of CT findings 1
    • R. Kakinuma et al., "Detection failures in spiral CT screening for lung cancer: Analysis of CT findings 1, " Radiology, vol. 212, no. 1, pp. 61-66, 1999.
    • (1999) Radiology , vol.212 , Issue.1 , pp. 61-66
    • Kakinuma, R.1
  • 4
    • 84875992416 scopus 로고    scopus 로고
    • Feature-based image patch approximation for lung tissue classification
    • Apr.
    • Y. Song, W. Cai, Y. Zhou, and D. D. Feng, "Feature-based image patch approximation for lung tissue classification, " IEEE Trans. Med. Imag., vol. 32, no. 4, pp. 797-808, Apr. 2013.
    • (2013) IEEE Trans. Med. Imag. , vol.32 , Issue.4 , pp. 797-808
    • Song, Y.1    Cai, W.2    Zhou, Y.3    Feng, D.D.4
  • 5
    • 84902089701 scopus 로고    scopus 로고
    • Lung texture classification using bag of visual words
    • M. Asherov, I. Diamant, and H. Greenspan, "Lung texture classification using bag of visual words, " in Proc. SPIE, vol. 9035, 2014, Art. no. 90 352K.
    • (2014) Proc. SPIE , vol.9035
    • Asherov, M.1    Diamant, I.2    Greenspan, H.3
  • 8
    • 33645675961 scopus 로고    scopus 로고
    • MDCTbased 3-D texture classification of emphysema and early smoking related lung pathologies
    • Apr.
    • Y. Xu, M. Sonka, G. McLennan, J. Guo, and E. A. Hoffman, "MDCTbased 3-D texture classification of emphysema and early smoking related lung pathologies, " IEEE Trans. Med. Imag., vol. 25, no. 4, pp. 464-475, Apr. 2006.
    • (2006) IEEE Trans. Med. Imag. , vol.25 , Issue.4 , pp. 464-475
    • Xu, Y.1    Sonka, M.2    McLennan, G.3    Guo, J.4    Hoffman, E.A.5
  • 9
    • 84897573504 scopus 로고    scopus 로고
    • Discriminative data transform for image feature extraction and classification
    • Springer-Verlag
    • Y. Song et al., "Discriminative data transform for image feature extraction and classification, " in Proc. Med. Image Comput. Comput.-Assisted Intervention, Springer-Verlag, 2013, pp. 452-459.
    • (2013) Proc. Med. Image Comput. Comput.-Assisted Intervention , pp. 452-459
    • Song, Y.1
  • 10
    • 77955268957 scopus 로고    scopus 로고
    • Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography
    • A. Depeursinge et al., "Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography, " Artif. Intell. Med., vol. 50, no. 1, pp. 13-21, 2010.
    • (2010) Artif. Intell. Med. , vol.50 , Issue.1 , pp. 13-21
    • Depeursinge, A.1
  • 11
    • 84988815648 scopus 로고    scopus 로고
    • Differentiation of several interstitial lung disease patterns in HRCT images using support vector machine: Role of databases on performance
    • M. Kale, S. Mukhopadhyay, J. K. Dash, M. Garg, and N. Khandelwal, "Differentiation of several interstitial lung disease patterns in HRCT images using support vector machine: Role of databases on performance, " in Proc. SPIE, vol. 9785, 2016, Art. no. 97852Z.
    • (2016) Proc. SPIE , vol.9785
    • Kale, M.1    Mukhopadhyay, S.2    Dash, J.K.3    Garg, M.4    Khandelwal, N.5
  • 12
    • 35148830871 scopus 로고    scopus 로고
    • Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data
    • V. A. Zavaletta, B. J. Bartholmai, and R. A. Robb, "Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data, " Proc. SPIE, vol. 6511, 2007, Art. no. 65111Q.
    • (2007) Proc. SPIE , vol.6511
    • Zavaletta, V.A.1    Bartholmai, B.J.2    Robb, R.A.3
  • 13
    • 84861385969 scopus 로고    scopus 로고
    • Automatic detection and quantification of tree-in-bud (TIB) opacities from CT scans
    • Jun.
    • U. Bagci et al., "Automatic detection and quantification of tree-in-bud (TIB) opacities from CT scans, " IEEE Trans. Biomed. Eng., vol. 59, no. 6, pp. 1620-1632, Jun. 2012.
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.6 , pp. 1620-1632
    • Bagci, U.1
  • 15
    • 84924725055 scopus 로고    scopus 로고
    • Recognizing common CT imaging signs of lung diseases through a new feature selection method based on fisher criterion and genetic optimization
    • Mar.
    • X. Liu, L. Ma, L. Song, Y. Zhao, X. Zhao, and C. Zhou, "Recognizing common CT imaging signs of lung diseases through a new feature selection method based on fisher criterion and genetic optimization, " IEEE J. Biomed. Health Informat., vol. 19, no. 2, pp. 635-647, Mar. 2015.
    • (2015) IEEE J. Biomed. Health Informat. , vol.19 , Issue.2 , pp. 635-647
    • Liu, X.1    Ma, L.2    Song, L.3    Zhao, Y.4    Zhao, X.5    Zhou, C.6
  • 18
    • 76249103656 scopus 로고    scopus 로고
    • Quantitative analysis of pulmonary emphysema using local binary patterns
    • Feb.
    • L. Sørensen, S. B. Shaker, and M. De Bruijne, "Quantitative analysis of pulmonary emphysema using local binary patterns, " IEEE Trans. Med. Imag., vol. 29, no. 2, pp. 559-569, Feb. 2010.
    • (2010) IEEE Trans. Med. Imag. , vol.29 , Issue.2 , pp. 559-569
    • Sørensen, L.1    Shaker, S.B.2    De Bruijne, M.3
  • 21
    • 84930947629 scopus 로고    scopus 로고
    • Large margin local estimate with applications to medical image classification
    • Jun.
    • Y. Song et al., "Large margin local estimate with applications to medical image classification, " IEEE Trans. Med. Imag., vol. 34, no. 6, pp. 1362-1377, Jun. 2015.
    • (2015) IEEE Trans. Med. Imag. , vol.34 , Issue.6 , pp. 1362-1377
    • Song, Y.1
  • 22
    • 84961371685 scopus 로고    scopus 로고
    • Localityconstrained subcluster representation ensemble for lung image classification
    • Y. Song, W. Cai, H. Huang, Y. Zhou, Y. Wang, and D. D. Feng, "Localityconstrained subcluster representation ensemble for lung image classification, " Med. Image Anal., vol. 22, no. 1, pp. 102-113, 2015.
    • (2015) Med. Image Anal. , vol.22 , Issue.1 , pp. 102-113
    • Song, Y.1    Cai, W.2    Huang, H.3    Zhou, Y.4    Wang, Y.5    Feng, D.D.6
  • 24
    • 84900818729 scopus 로고    scopus 로고
    • A review on segmentation of positron emission tomography images
    • B. Foster, U. Bagci, A. Mansoor, Z. Xu, and D. J. Mollura, "A review on segmentation of positron emission tomography images, " Comput. Biol. Med., vol. 50, pp. 76-96, 2014.
    • (2014) Comput. Biol. Med. , vol.50 , pp. 76-96
    • Foster, B.1    Bagci, U.2    Mansoor, A.3    Xu, Z.4    Mollura, D.J.5
  • 25
    • 84880425615 scopus 로고    scopus 로고
    • Synergistic combination of clinical and imaging features predicts abnormal imaging patterns of pulmonary infections
    • U. Bagci, K. Jaster-Miller, K. N. Olivier, J. Yao, and D. J. Mollura, "Synergistic combination of clinical and imaging features predicts abnormal imaging patterns of pulmonary infections, " Comput. Biol. Med., vol. 43, no. 9, pp. 1241-1251, 2013.
    • (2013) Comput. Biol. Med. , vol.43 , Issue.9 , pp. 1241-1251
    • Bagci, U.1    Jaster-Miller, K.2    Olivier, K.N.3    Yao, J.4    Mollura, D.J.5
  • 26
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 27
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, " in Proc. 26th Annu. Int. Conf. Mach. Learn., ACM, 2009, pp. 609-616.
    • (2009) Proc. 26th Annu. Int. Conf. Mach. Learn., ACM , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 28
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • H.-I. Suk et al., "Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis, " NeuroImage, vol. 101, pp. 569-582, 2014.
    • (2014) NeuroImage , vol.101 , pp. 569-582
    • Suk, H.-I.1
  • 29
    • 84959375736 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
    • Jan.
    • J. Xu et al., "Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images, " IEEE Trans. Med. Imag., vol. 35, no. 1, pp. 119-130, Jan. 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.1 , pp. 119-130
    • Xu, J.1
  • 31
    • 84917707434 scopus 로고    scopus 로고
    • Learning features for tissue classification with the classification restricted Boltzmann machine
    • Springer
    • G. van Tulder and M. de Bruijne, "Learning features for tissue classification with the classification restricted Boltzmann machine, " in Proc. Med. Comput. Vis.: Algorithms Big Data, Springer, 2014, pp. 47-58.
    • (2014) Proc. Med. Comput. Vis.: Algorithms Big Data , pp. 47-58
    • Van Tulder, G.1    De Bruijne, M.2
  • 32
    • 84968572560 scopus 로고    scopus 로고
    • Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines
    • May
    • G. van Tulder and M. de Bruijne, "Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1262-1272, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1262-1272
    • Van Tulder, G.1    De Bruijne, M.2
  • 38
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • W. Zhang et al., "Deep convolutional neural networks for multi-modality isointense infant brain image segmentation, " NeuroImage, vol. 108, pp. 214-224, 2015.
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1
  • 39
    • 84940975497 scopus 로고    scopus 로고
    • A robust deep model for improved classification of AD/MCI patients
    • Sep.
    • F. Li, L. Tran, K.-H. Thung, S. Ji, D. Shen, and J. Li, "A robust deep model for improved classification of AD/MCI patients, " IEEE J. Biomed. Health Informat., vol. 19, no. 5, pp. 1610-1616, Sep. 2015.
    • (2015) IEEE J. Biomed. Health Informat. , vol.19 , Issue.5 , pp. 1610-1616
    • Li, F.1    Tran, L.2    Thung, K.-H.3    Ji, S.4    Shen, D.5    Li, J.6
  • 42
    • 85041046467 scopus 로고    scopus 로고
    • Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
    • M. Gao et al., "Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks, " in Proc. Comput. Methods Biomech. Biomed. Eng.: Imag. Vis., 2016, pp. 1-6.
    • (2016) Proc. Comput. Methods Biomech. Biomed. Eng.: Imag. Vis. , pp. 1-6
    • Gao, M.1
  • 43
    • 84988844623 scopus 로고    scopus 로고
    • Increasing cad system efficacy for lung texture analysis using a convolutional network
    • S. R. Tarando, C. Fetita, A. Faccinetto, and P. Yves, "Increasing cad system efficacy for lung texture analysis using a convolutional network, " Proc. SPIE, vol. 9785, 2016, Art. no. 97850Q.
    • (2016) Proc. SPIE , vol.9785
    • Tarando, S.R.1    Fetita, C.2    Faccinetto, A.3    Yves, P.4
  • 44
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • May
    • M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, "Lung pattern classification for interstitial lung diseases using a deep convolutional neural network, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1207-1216, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Ebner, L.3    Christe, A.4    Mougiakakou, S.5
  • 45
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
    • May
    • H.-C. Shin et al., "Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.-C.1
  • 47
    • 84959210421 scopus 로고    scopus 로고
    • Understanding image representations by measuring their equivariance and equivalence
    • K. Lenc and A. Vedaldi, "Understanding image representations by measuring their equivariance and equivalence, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 991-999.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recog. , pp. 991-999
    • Lenc, K.1    Vedaldi, A.2
  • 51
  • 52
    • 33745953205 scopus 로고    scopus 로고
    • Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition
    • W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang, "Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition, " in Proc. 10th IEEE Int. Conf. Comput. Vis., 2005, vol. 1, 2005, pp. 786-791.
    • (2005) Proc. 10th IEEE Int. Conf. Comput. Vis. , vol.1 , pp. 786-791
    • Zhang, W.1    Shan, S.2    Gao, W.3    Chen, X.4    Zhang, H.5
  • 54
    • 0022098435 scopus 로고
    • Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters
    • J. G. Daugman, "Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, " J. Opt. Soc. Amer. A, vol. 2, no. 7, pp. 1160-1169, 1985.
    • (1985) J. Opt. Soc. Amer. A , vol.2 , Issue.7 , pp. 1160-1169
    • Daugman, J.G.1
  • 55
    • 84865262286 scopus 로고    scopus 로고
    • Lung cancer detection using image processing techniques
    • M. S. Al-Tarawneh, "Lung cancer detection using image processing techniques, " Leonardo Electron. J. Practices Technol., vol. 11, no. 21, pp. 147-58, 2012.
    • (2012) Leonardo Electron. J. Practices Technol. , vol.11 , Issue.21 , pp. 147-158
    • Al-Tarawneh, M.S.1
  • 56
    • 57449115730 scopus 로고    scopus 로고
    • Automatic segmentation and recognition of lungs and lesion from CT scans of thorax
    • M. Kakar and D. R. Olsen, "Automatic segmentation and recognition of lungs and lesion from CT scans of thorax, " Comput. Med. Imag. Graph., vol. 33, no. 1, pp. 72-82, 2009.
    • (2009) Comput. Med. Imag. Graph. , vol.33 , Issue.1 , pp. 72-82
    • Kakar, M.1    Olsen, D.R.2
  • 57
    • 1442264195 scopus 로고    scopus 로고
    • Neural networks for computer-aided diagnosis: Detection of lung nodules in chest radiograms
    • Dec.
    • G. Coppini, S. Diciotti, M. Falchini, N. Villari, and G. Valli, "Neural networks for computer-aided diagnosis: Detection of lung nodules in chest radiograms, " IEEE Trans. Inf. Technol. Biomed., vol. 7, no. 4, pp. 344-357, Dec. 2003.
    • (2003) IEEE Trans. Inf. Technol. Biomed. , vol.7 , Issue.4 , pp. 344-357
    • Coppini, G.1    Diciotti, S.2    Falchini, M.3    Villari, N.4    Valli, G.5
  • 58
    • 0025263482 scopus 로고
    • Multichannel texture analysis using localized spatial filters
    • Jan.
    • A. C. Bovik, M. Clark, and W. S. Geisler, "Multichannel texture analysis using localized spatial filters, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 1, pp. 55-73, Jan. 1990.
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.12 , Issue.1 , pp. 55-73
    • Bovik, A.C.1    Clark, M.2    Geisler, W.S.3
  • 59
    • 34250168323 scopus 로고    scopus 로고
    • Rotation-invariant and scale-invariant Gabor features for texture image retrieval
    • J. Han and K.-K. Ma, "Rotation-invariant and scale-invariant Gabor features for texture image retrieval, " Image Vis. Comput., vol. 25, no. 9, pp. 1474-1481, 2007.
    • (2007) Image Vis. Comput. , vol.25 , Issue.9 , pp. 1474-1481
    • Han, J.1    Ma, K.-K.2
  • 60
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Jul.
    • T. Ojala, M. Pietikäinen, and T. Mäenpää, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 61
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 62
    • 84946769681 scopus 로고    scopus 로고
    • Deeply learned face representations are sparse, selective, and robust
    • Y. Sun, X. Wang, and X. Tang, "Deeply learned face representations are sparse, selective, and robust, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 2892-2900.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 2892-2900
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 66
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding, " in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675-678.
    • (2014) Proc. ACM Int. Conf. Multimedia , pp. 675-678
    • Jia, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.