-
1
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., vol. 25. 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
3
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Jan.
-
D. Silver et al., "Mastering the game of Go with deep neural networks and tree search," Nature, vol. 529, no. 7587, pp. 484-489, Jan. 2016.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
-
5
-
-
85040641336
-
-
Accessed on Nov. 1. [Online]
-
Amazon Rekognition. Accessed on Nov. 1, 2016. [Online]. Available: https://aws.amazon.com/rekognition/
-
(2016)
Amazon Rekognition
-
-
-
6
-
-
84933585162
-
Very deep convolution networks for large-scale image recognition
-
Sep.
-
K. Simonyan and A. Zisserman, "Very deep convolution networks for large-scale image recognition," CoRR, pp. 1-14, Sep. 2014.
-
(2014)
CoRR
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
7
-
-
77954995378
-
Understanding sources of inefficiency in general-purpose chips
-
R. Hameed et al., "Understanding sources of inefficiency in general-purpose chips," in Proc. 37th Annu. Int. Symp. Comput. Archit., 2010, pp. 37-47.
-
(2010)
Proc. 37th Annu. Int. Symp. Comput. Archit.
, pp. 37-47
-
-
Hameed, R.1
-
9
-
-
84988443578
-
EIE: Efficient inference engine on compressed deep neural network
-
S. Han et al., "EIE: Efficient inference engine on compressed deep neural network," in Proc. 43rd Int. Symp. Comput. Archit., 2016, pp. 243-254.
-
(2016)
Proc. 43rd Int. Symp. Comput. Archit.
, pp. 243-254
-
-
Han, S.1
-
10
-
-
84962860246
-
Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks
-
San Francisco, CA, USA, Jan./Feb.
-
Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), San Francisco, CA, USA, Jan./Feb. 2016, pp. 262-263.
-
(2016)
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC)
, pp. 262-263
-
-
Chen, Y.-H.1
Krishna, T.2
Emer, J.S.3
Sze, V.4
-
11
-
-
84962921765
-
Optimizing FPGA-based accelerator design for deep convolution neural networks
-
C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing FPGA-based accelerator design for deep convolution neural networks," in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2015, pp. 161-170.
-
(2015)
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays
, pp. 161-170
-
-
Zhang, C.1
Li, P.2
Sun, G.3
Guan, Y.4
Xiao, B.5
Cong, J.6
-
12
-
-
84962847015
-
A 1.42TOPS/W deep convolution neural network recognition processor for intelligent IoE systems
-
Jan./Feb.
-
J. Sim, J.-S. Park, M. Kim, D. Bae, Y. Choi, and L.-S. Kim, "A 1.42TOPS/W deep convolution neural network recognition processor for intelligent IoE systems," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Jan./Feb. 2016, pp. 264-265.
-
(2016)
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers
, pp. 264-265
-
-
Sim, J.1
Park, J.-S.2
Kim, M.3
Bae, D.4
Choi, Y.5
Kim, L.-S.6
-
13
-
-
84988345240
-
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars
-
A. Shafiee et al., "ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars," in Proc. 43rd Int. Symp. Comput. Archit., 2016, pp. 14-26.
-
(2016)
Proc. 43rd Int. Symp. Comput. Archit.
, pp. 14-26
-
-
Shafiee, A.1
-
14
-
-
85040669023
-
-
Ph.D. dissertation, Dept. Mater. Sci. Eng., Univ. California, Berkeley, Berkeley, CA, USA
-
M. D. Pickett, "The materials science of titanium dioxide memristors," Ph.D. dissertation, Dept. Mater. Sci. Eng., Univ. California, Berkeley, Berkeley, CA, USA, 2010.
-
(2010)
The Materials Science of Titanium Dioxide Memristors
-
-
Pickett, M.D.1
-
15
-
-
84960407578
-
Traffic sign recognition using extreme learning classifier with deep convolution features
-
Suzhou, China
-
Y. Zeng, X. Xu, Y. Fang, and K. Zhao, "Traffic sign recognition using extreme learning classifier with deep convolution features," in Proc. Int. Conf. Intell. Sci. Big Data Eng. (IScIDE), Suzhou, China, 2015, pp. 1-10.
-
(2015)
Proc. Int. Conf. Intell. Sci. Big Data Eng. (IScIDE)
, pp. 1-10
-
-
Zeng, Y.1
Xu, X.2
Fang, Y.3
Zhao, K.4
-
16
-
-
84876231242
-
Image net classification with deep convolution neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton, "Image Net classification with deep convolution neural networks," in Proc. Conf. Workshop Neural Inf. Process. Syst., 2012, pp. 1106-1114.
-
(2012)
Proc. Conf. Workshop Neural Inf. Process. Syst.
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
17
-
-
84986274465
-
Deep residual learning for image recognition
-
Las Vegas, NV, USA, Jun.
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
84970003080
-
Deep learning with limited numerical precision
-
Lille, France
-
S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, "Deep learning with limited numerical precision," in Proc. 32nd Int. Conf. Int. Conf. Mach. Learn. (ICML), vol. 37. Lille, France, 2015, pp. 1737-1746.
-
(2015)
Proc. 32nd Int. Conf. Int. Conf. Mach. Learn. (ICML)
, vol.37
, pp. 1737-1746
-
-
Gupta, S.1
Agrawal, A.2
Gopalakrishnan, K.3
Narayanan, P.4
-
19
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
20
-
-
85040673673
-
-
Accessed on Jun. 1. [Online]
-
Kneron Inc. Hardware IP Demo. Accessed on Jun. 1, 2017. [Online]. Available: https://www.youtube.com/watch?v=ttdSLXmBEWE
-
(2017)
Hardware IP Demo
-
-
|