-
1
-
-
79953646805
-
Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation
-
Apr.
-
Zhaohong Deng, Choi Kup-Sze, Fu-lai Chung, and Shitong Wang, "Scalable TSK Fuzzy Modeling for Very Large Datasets Using Minimal-Enclosing-Ball Approximation," IEEE Transactions on Fuzzy Systems, vol.19, no.2, pp.210-226, Apr.2011.
-
(2011)
IEEE Transactions on Fuzzy Systems
, vol.19
, Issue.2
, pp. 210-226
-
-
Deng, Z.1
Kup-Sze, C.2
Chung, F.-L.3
Wang, S.4
-
2
-
-
84938767602
-
Minimax probability TSK fuzzy system classifier: A more transparent and highly interpretable classification model
-
Apr.
-
Zhaohong Deng, Longbing Cao, Yizhang Jiang and Shitong Wang, "Minimax Probability TSK Fuzzy System Classifier: A More Transparent and Highly Interpretable Classification Model," IEEE Transactions on Fuzzy Systems, vol.23, no.4, pp.813-826, Apr.2015.
-
(2015)
IEEE Transactions on Fuzzy Systems
, vol.23
, Issue.4
, pp. 813-826
-
-
Deng, Z.1
Cao, L.2
Jiang, Y.3
Wang, S.4
-
3
-
-
85015160467
-
A hierarchical fused fuzzy deep neural network for data classification
-
June
-
Yue Deng, Zhiquan Ren, You Yong Kong, Feng Bao and Qionghai Dai, "A Hierarchical Fused Fuzzy Deep Neural Network for Data Classification," IEEE Transactions on Fuzzy Systems, vol.19, no.2, pp.210-226, June.2016.
-
(2016)
IEEE Transactions on Fuzzy Systems
, vol.19
, Issue.2
, pp. 210-226
-
-
Deng, Y.1
Ren, Z.2
Kong, Y.Y.3
Bao, F.4
Dai, Q.5
-
4
-
-
84959506269
-
Fuzzy restricted boltzmann machine for the enhancement of deep learning
-
Member, IEEE, DECEMBER
-
C. L. Philip Chen, Chun-Yang Zhang, Long Chen, Member, IEEE, and Min Gan," Fuzzy Restricted Boltzmann Machine for the Enhancement of Deep Learning," IEEE Transactions on Fuzzy Systems, vol.23 no.6, pp.2163-2173, DECEMBER.2015.
-
(2015)
IEEE Transactions on Fuzzy Systems
, vol.23
, Issue.6
, pp. 2163-2173
-
-
Philip Chen, C.L.1
Zhang, C.-Y.2
Chen, L.3
Gan, M.4
-
5
-
-
85080456971
-
Deep TSK fuzzy classifier with stacked generalization and triplely concise interpretability guarantee for large data
-
August
-
Ta Zhou, Fu-lai Chung, and Shitong Wang," Deep TSK Fuzzy Classifier with Stacked Generalization and Triplely Concise Interpretability Guarantee for Large Data," IEEE Transactions on Fuzzy Systems, vol.23, no.4, pp.813-826, August.2016.
-
(2016)
IEEE Transactions on Fuzzy Systems
, vol.23
, Issue.4
, pp. 813-826
-
-
Zhou, T.1
Chung, F.-L.2
Wang, S.3
-
6
-
-
84938803955
-
Fuzzy (c + p)-means clustering and its application to a fuzzy rule-based classifier: Toward good generalization and good interpretability
-
August
-
Jacek M. Leski, "Fuzzy (c + p)-Means Clustering and Its Application to a Fuzzy Rule-Based Classifier: Toward Good Generalization and Good Interpretability," IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, August. 2015
-
(2015)
IEEE Transactions on Fuzzy Systems
, vol.23
, Issue.4
-
-
Leski, J.M.1
-
8
-
-
84890064120
-
Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability
-
DECEMBER
-
Chia-Feng Juang, Chi-You Chen, "Data-Driven Interval Type-2 Neural Fuzzy System With High Learning Accuracy and Improved Model Interpretability", IEEE Transactions on Cybernetics, VOL. 43, NO. 6, DECEMBER 2013,1781-1795
-
(2013)
IEEE Transactions on Cybernetics
, vol.43
, Issue.6
, pp. 1781-1795
-
-
Juang, C.-F.1
Chen, C.-Y.2
-
10
-
-
84894104920
-
Fuzzy deep belief networks for semi-supervised sentiment classification
-
Shusen Zhou, Q Chen, X Wang, "Fuzzy deep belief networks for semi-supervised sentiment classification", Neurocomputing,131(2014) 312-322
-
(2014)
Neurocomputing
, vol.131
, pp. 312-322
-
-
Zhou, S.1
Chen, Q.2
Wang, X.3
-
11
-
-
84978655918
-
Deep dynamic neural networks for multimodal gesture segmentation and recognition
-
AUGUST
-
Di Wu, Lionel Pigou, Pieter-Jan Kindermans, Nam Do-Hoang Le, Ling Shao, Joni Dambre, and Jean-Marc Odobez, "Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 8, AUGUST 2016, 1583-1597
-
(2016)
IEEE TRANSACTIONS on PATTERN ANALYSIS and MACHINE INTELLIGENCE
, vol.38
, Issue.8
, pp. 1583-1597
-
-
Wu, D.1
Pigou, L.2
Kindermans, P.-J.3
Do-Hoang Le, N.4
Shao, L.5
Dambre, J.6
Odobez, J.-M.7
-
12
-
-
0012045480
-
Fuzzy neural networks: A survey
-
J. J. Buckley and Y. Hayashi, "Fuzzy neural networks: A survey," Fuzzy sets and systems, vol. 66, no. 1, pp. 1-13, 1994.
-
(1994)
Fuzzy Sets and Systems
, vol.66
, Issue.1
, pp. 1-13
-
-
Buckley, J.J.1
Hayashi, Y.2
-
13
-
-
33144459783
-
Support vector-based fuzzy neural network for pattern classification
-
C.-T. Lin, C.-M. Yeh, S.-F. Liang, J.-F. Chung, and N. Kumar, "Support vector-based fuzzy neural network for pattern classification," Fuzzy Systems, IEEE Transactions on, vol. 14, no. 1, pp. 31-41, 2006
-
(2006)
Fuzzy Systems, IEEE Transactions on
, vol.14
, Issue.1
, pp. 31-41
-
-
Lin, C.-T.1
Yeh, C.-M.2
Liang, S.-F.3
Chung, J.-F.4
Kumar, N.5
-
14
-
-
0035415951
-
A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
-
AUGUST
-
Shiqian Wu, Meng Joo Er, Yang Gao, "A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks", IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 4, AUGUST 2001
-
(2001)
IEEE TRANSACTIONS on FUZZY SYSTEMS
, vol.9
, Issue.4
-
-
Wu, S.1
Joo Er, M.2
Gao, Y.3
-
15
-
-
0000966430
-
A neural expert system with automated extraction of fuzzy If-then rules and its application to medical diagnosis
-
(NIPS)
-
Yoichi Hayashi, "A Neural Expert System with Automated Extraction of Fuzzy If-Then Rules and Its Application to Medical Diagnosis", Advances in Neural Information Processing System 3(NIPS 1990)
-
(1990)
Advances in Neural Information Processing System
, vol.3
-
-
Hayashi, Y.1
-
16
-
-
85080389458
-
Fuzzy and deep learning approaches for user modeling in wetland design
-
Andrew Hoblitzell, Meghna Babbar-Sebens, Snehasis Mukhopadhyay, "Fuzzy and deep learning approaches for user modeling in wetland design", 2016 IEEE International Conference on Systems, Man, and Cybernetics(SMC)
-
2016 IEEE International Conference on Systems, Man, and Cybernetics(SMC)
-
-
Hoblitzell, A.1
Babbar-Sebens, M.2
Mukhopadhyay, S.3
-
17
-
-
85006725481
-
A deep-neuro-fuzzy approach for estimating the interaction forces in robotic surgery
-
Angelica I. Aviles, Samar M. Alsaleh, Eduard Montseny, Pilar Sobrevilla, Alicia Casals, "A Deep-Neuro-Fuzzy Approach for Estimating the Interaction Forces in Robotic Surgery", 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1113-1119,2016
-
(2016)
2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
, pp. 1113-1119
-
-
Aviles, A.I.1
Alsaleh, S.M.2
Montseny, E.3
Sobrevilla, P.4
Casals, A.5
-
18
-
-
1942450610
-
Feature extraction by non parametric mutual information maximization
-
K. Torkkola, "Feature extraction by non parametric mutual information maximization," The Journal of Machine Learning Research, vol. 3, pp.1415-1438, 2003
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
19
-
-
33749252873
-
-
MIT Press, USA
-
O. Chapelle, B. Scholkopf, A. Zien, "Semi-supervised Learning", MIT Press, USA,2006
-
(2006)
Semi-supervised Learning
-
-
Chapelle, O.1
Scholkopf, B.2
Zien, A.3
-
20
-
-
34248666540
-
Fuzzy sets
-
L.A. Zadeh, "Fuzzy sets", Inf. Control 8 (1965) 338-353
-
(1965)
Inf. Control
, vol.8
, pp. 338-353
-
-
Zadeh, L.A.1
-
21
-
-
0031142488
-
Quantum neural networks (qnn's): Inherently fuzzy feedforward neural networks
-
G. Purushothaman, N.B. Karayiannis, "Quantum neural networks (qnn's):inherently fuzzy feedforward neural networks", IEEE Trans. Neural Networks 8 (1997) 679-693.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, pp. 679-693
-
-
Purushothaman, G.1
Karayiannis, N.B.2
-
23
-
-
0021892282
-
Fuzzy identification of systems and its application to modeling and control
-
Jan.
-
T. Takagi and M. Sugeno, "Fuzzy identification of systems and its application to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, pp. 116-132, Jan. 1985
-
(1985)
IEEE Trans. Syst., Man, Cybern.
, vol.SMC-15
, Issue.1
, pp. 116-132
-
-
Takagi, T.1
Sugeno, M.2
-
24
-
-
0027601884
-
ANFIS: Adaptive-network-based fuzzy inference systems
-
Man, Cybern., May
-
J.-S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference systems, "IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May 1993.
-
(1993)
IEEE Trans. Syst.
, vol.23
, Issue.3
, pp. 665-685
-
-
Jang, J.-S.R.1
-
26
-
-
0032205732
-
Improving the interpretability of TSK fuzzy models by combining global learning and local learning
-
Aug.
-
J. Yen, L. Wang, and C. W. Gillespie, "Improving the interpretability of TSK fuzzy models by combining global learning and local learning," IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 530-537, Aug. 1998.
-
(1998)
IEEE Trans. Fuzzy Syst.
, vol.6
, Issue.4
, pp. 530-537
-
-
Yen, J.1
Wang, L.2
Gillespie, C.W.3
-
27
-
-
0005619704
-
Generalization of adaptive neuro-fuzzy inference systems
-
Nov.
-
M. F. Azeem, M. Hanmandlu, and N. Ahmad, "Generalization of adaptive neuro-fuzzy inference systems," IEEE Trans. Neural Netw., vol. 11, no. 6, pp. 1332-1346, Nov. 2000
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, Issue.6
, pp. 1332-1346
-
-
Azeem, M.F.1
Hanmandlu, M.2
Ahmad, N.3
-
29
-
-
84879854889
-
Representation learning: A review and new perspectives
-
August
-
Yoshua Bengio, Aaron Courville, and Pascal Vincent, "Representation Learning: A Review and New Perspectives", IEEE Transactions on Pattern ANALYSIS AND MACHINE INTELLIGENCE, vol. 35, no. 8, August 2013
-
(2013)
IEEE Transactions on Pattern ANALYSIS and MACHINE INTELLIGENCE
, vol.35
, Issue.8
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
30
-
-
45749110924
-
Representational power of restricted boltzmann machines and deep belief networks
-
N. Le Roux and Y. Bengio, "Representational power of restricted boltzmann machines and deep belief networks," Neural computation, vol. 20, no. 6, pp. 1631-1649, 2008
-
(2008)
Neural Computation
, vol.20
, Issue.6
, pp. 1631-1649
-
-
Le Roux, N.1
Bengio, Y.2
-
31
-
-
84901790749
-
Contrastive divergence learning for the restricted boltzmann machine
-
IEEE
-
J.-W. Liu, G.-H. Chi, and X.-L. Luo, "Contrastive divergence learning for the restricted boltzmann machine," in Natural Computation (ICNC),2013 Ninth International Conference on, pp. 18-22, IEEE, 2013.
-
(2013)
Natural Computation (ICNC),2013 Ninth International Conference on
, pp. 18-22
-
-
Liu, J.-W.1
Chi, G.-H.2
Luo, X.-L.3
-
32
-
-
84885023116
-
Training restricted boltzmann machines: An introduction
-
A. Fischer and C. Igel, "Training restricted boltzmann machines: an introduction," Pattern Recognition, vol. 47, no. 1, pp. 25-39, 2014
-
(2014)
Pattern Recognition
, vol.47
, Issue.1
, pp. 25-39
-
-
Fischer, A.1
Igel, C.2
-
33
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al., "Greedy layer-wise training of deep networks," Advances in neural information processing systems, vol. 19, p. 153, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
34
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G.E. Hinton and R.R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol.313, no.5786, pp.504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
36
-
-
33745805403
-
A faster learning algorithm for deep belief nets
-
G.E. Hinton, S. Osindero and Y.W. The, "A faster learning algorithm for deep belief nets," Neural Comput, vol.1, no.7, pp.1527-1544, 2006
-
(2006)
Neural Comput
, vol.1
, Issue.7
, pp. 1527-1544
-
-
Hinton, G.E.1
Osindero, S.2
The, Y.W.3
-
37
-
-
85032279011
-
On least learning machine
-
(Natual Science Edition), Feb.
-
Wang Shitong and Korris Fu-Lai Chung, "On Least Learning Machine", Journal of Jiangnan University (Natual Science Edition), vol.9, pp.505-510, Feb.2010
-
(2010)
Journal of Jiangnan University
, vol.9
, pp. 505-510
-
-
Shitong, W.1
Fu-Lai Chung, K.2
|