-
1
-
-
0034269416
-
Attacking malicious code: Report to the infosec research council
-
G. McGraw, G. Morrisett, "Attacking malicious code: report to the infosec research council", IEEE Softw, vol. 17, pp. 33-41, 2002.
-
(2002)
IEEE Softw
, vol.17
, pp. 33-41
-
-
McGraw, G.1
Morrisett, G.2
-
2
-
-
33748978409
-
Malware pattern scanning schemes secure against black box analysis
-
E. Filiol, "Malware pattern scanning schemes secure against black box analysis", J. Comput. Virol, vol. 2, pp. 35-50, 2006.
-
(2006)
J. Comput. Virol
, vol.2
, pp. 35-50
-
-
Filiol, E.1
-
3
-
-
23744485744
-
Testing malware detectors
-
Boston, USA
-
M. Christodorescu, S. Jha, "Testing malware detectors", in ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA'04), Boston, USA, 2004, pp. 34-44.
-
(2004)
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA'04)
, pp. 34-44
-
-
Christodorescu, M.1
Jha, S.2
-
4
-
-
84888875986
-
Runtime packers: The hidden problem
-
Las Vegas, USA
-
T. Brosch, M. Morgenstern, "Runtime packers: the hidden problem", In Proceedings of Black Hat, Las Vegas, USA, 2006, pp. 325-334.
-
(2006)
Proceedings of Black Hat
, pp. 325-334
-
-
Brosch, T.1
Morgenstern, M.2
-
5
-
-
65749099969
-
Detection of malicious code by applying machine learning classifiers on static features - A state-of-the-art survey
-
A. Shabtai, R. Moskovitch, Y. Elovici, C. Glezer, "Detection of malicious code by applying machine learning classifiers on static features - a state-of-the-art survey", Information Security Technical Report. vol. 14, pp. 16-29, 2009.
-
(2009)
Information Security Technical Report
, vol.14
, pp. 16-29
-
-
Shabtai, A.1
Moskovitch, R.2
Elovici, Y.3
Glezer, C.4
-
6
-
-
0034838197
-
Data mining methods for detection of new malicious executables
-
Oakland USA
-
M. G. Schultz, E. Eskin, E. Zadok, S. J. Stolfo, "Data mining methods for detection of new malicious executables", In Proceedings of the IEEE Symposium on Security and Privacy, Oakland USA, 2001, pp. 38-49.
-
(2001)
Proceedings of the IEEE Symposium on Security and Privacy
, pp. 38-49
-
-
Schultz, M.G.1
Eskin, E.2
Zadok, E.3
Stolfo, S.J.4
-
7
-
-
12244279567
-
Learning to detect malicious executables in the wild
-
New York, USA
-
J. Z. Kolter, M. A. Maloof, "Learning to detect malicious executables in the wild", In Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. New York, USA, 2004, pp. 470-8.
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 470-478
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
8
-
-
80051781512
-
Feature representation and selection in malicious code detection methods based on static system calls
-
Y. Ding Y., X. Yuan, D. Zhou, L. Dong, Z. An, "Feature representation and selection in malicious code detection methods based on static system calls", Computers & Security, vol. 30, pp. 514-524, 2011.
-
(2011)
Computers & Security
, vol.30
, pp. 514-524
-
-
Ding, Y.Y.1
Yuan, X.2
Zhou, D.3
Dong, L.4
An, Z.5
-
9
-
-
2342663706
-
Virus detection using data mining techniques
-
J. Wang, P. Deng, Y. Fan, L. Jaw, Y. Liu, "Virus detection using data mining techniques", In Proceedings of IEEE International Conference on Security Technology, 2003, pp. 71-76.
-
(2003)
Proceedings of IEEE International Conference on Security Technology
, pp. 71-76
-
-
Wang, J.1
Deng, P.2
Fan, Y.3
Jaw, L.4
Liu, Y.5
-
10
-
-
34748865971
-
A feature selection and evaluation scheme for computer virus detection
-
Hong Kong
-
O. Henchiri, N. Japkowicz, "A feature selection and evaluation scheme for computer virus detection", In Proceedings of ICDM-2006, Hong Kong; 2006, pp. 891-95.
-
(2006)
Proceedings of ICDM-2006
, pp. 891-895
-
-
Henchiri, O.1
Japkowicz, N.2
-
11
-
-
51849107341
-
Unknown malcode detection via text categorization and the imbalance problem
-
Taiwan
-
R. Moskovitch, D. Stopel, C. Feher, N. Nissim, Y. Elovici, "Unknown malcode detection via text categorization and the imbalance problem", In IEEE Intelligence and Security Informatics, Taiwan; 2008, pp. 156-61.
-
(2008)
IEEE Intelligence and Security Informatics
, pp. 156-161
-
-
Moskovitch, R.1
Stopel, D.2
Feher, C.3
Nissim, N.4
Elovici, Y.5
-
12
-
-
58849157332
-
Unknown malcode detection using OPCODE representation
-
Esbjerg, Denmark
-
R. Moskovitch, N. Tzachar, E. Berger, M. Gitelman M, S. Dolev, et al., "Unknown malcode detection using OPCODE representation", In European conference on intelligence and security informatics, Esbjerg, Denmark, 2008, pp. 204-215.
-
(2008)
European Conference on Intelligence and Security Informatics
, pp. 204-215
-
-
Moskovitch, R.1
Tzachar, N.2
Berger, E.3
Gitelman, M.M.4
Dolev, S.5
-
13
-
-
84898070747
-
Application of deep belief networks for natural language understanding
-
R. Sarikaya, G. E. Hinton, and A. Deoras, "Application of deep belief networks for natural language understanding", IEEE Transactions on Audio, Speech, and Language Processing, vol. 22, pp. 778-784, 2014.
-
(2014)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.22
, pp. 778-784
-
-
Sarikaya, R.1
Hinton, G.E.2
Deoras, A.3
-
14
-
-
85162069624
-
Phone recognition with the mean-covariance restricted boltzmann machines
-
Cambridge, USA
-
G. E. Dahl, M. Ranzato, Momamed A., and Hinton G. E., "Phone Recognition with the Mean-Covariance Restricted Boltzmann Machines", in Advances in Neural Information Processing Systems NIPS. Cambridge, USA, 2010, pp. 1-8.
-
(2010)
Advances in Neural Information Processing Systems NIPS
, pp. 1-8
-
-
Dahl, G.E.1
Ranzato, M.2
Momamed, A.3
Hinton, G.E.4
-
15
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
D. Erhan, Y. Bengio, A. Courville, P. Manzagol, and P. Vincent, "Why does unsupervised pre-training help deep learning?", J. Mach. Learn. Res., vol. 11, pp. 625-660, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.4
Vincent, P.5
-
16
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. The, "A fast learning algorithm for deep belief nets", Neural Comput., vol. 18, pp. 1527-1554, 2006.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
The, Y.3
-
17
-
-
77958488310
-
Deep machine learning-a new frontier in artificial intelligence research
-
A. Itamar, C. Derek, and P. Thomas, "Deep machine learning-a new frontier in artificial intelligence research", IEEE computational intelligence magazine, vol. 11, pp. 13-18, 2010.
-
(2010)
IEEE Computational Intelligence Magazine
, vol.11
, pp. 13-18
-
-
Itamar, A.1
Derek, C.2
Thomas, P.3
-
18
-
-
84902256384
-
Control flow-based opcode behavior analysis for malware detection
-
Y. Ding, W. Dai, S. Yan, "Control flow-based opcode behavior analysis for malware detection", Computers & Security, vol. 44, pp. 231:64-82, 2014.
-
(2014)
Computers & Security
, vol.44
, pp. 23164-23182
-
-
Ding, Y.1
Dai, W.2
Yan, S.3
-
19
-
-
85007163315
-
-
Accessed 23.3.2010
-
Hex-Rays SA, "IDA pro introduction", Available from: http://www.hexrays.com/products.shtml/ (Accessed 23.3.2010).
-
IDA Pro Introduction
-
-
-
20
-
-
85007186373
-
-
Accessed 23.3.2010
-
Peid, "Peid v0.94." Available From: http://www.peid.info/ (Accessed 23.3.2010).
-
Peid v0.94
-
-
-
21
-
-
84874105145
-
Opcode sequences as representation of executables for data-mining-based unknown malware detection
-
S. Igor, B. Felix, U. P. Xabier, "Opcode sequences as representation of executables for data-mining-based unknown malware detection", Information Science, vol. 231, pp. 64-82, 2013..
-
(2013)
Information Science
, vol.231
, pp. 64-82
-
-
Igor, S.1
Felix, B.2
Xabier, U.P.3
-
22
-
-
84890752534
-
Malware detection method based on the control-flow construct feature of software
-
Z. Zhao, J. Wang, J. Bai, "Malware detection method based on the control-flow construct feature of software", IET Information Security, vol. 8, pp. 18-24, 2014.
-
(2014)
IET Information Security
, vol.8
, pp. 18-24
-
-
Zhao, Z.1
Wang, J.2
Bai, J.3
-
23
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
July
-
G. Hinton, and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks", Science, vol. 313, pp. 504-507, July 2006.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
24
-
-
34547988000
-
Greedy layerwise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks", in Proc. NIPS, 2006, pp. 1-8.
-
(2006)
Proc. NIPS
, pp. 1-8
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
26
-
-
0032786569
-
Improving support vector machine classifiers by modifying kernel functions
-
S. Amari, S. Wu, "Improving support vector machine classifiers by modifying kernel functions", Neural Networks, Vol. 12, pp. 783-789, 1999.
-
(1999)
Neural Networks
, vol.12
, pp. 783-789
-
-
Amari, S.1
Wu, S.2
|