메뉴 건너뛰기




Volumn 11, Issue 9, 2016, Pages

What to do when K-means clustering fails: A simple yet principled alternative algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYES THEOREM; CLASSIFICATION ALGORITHM; CLUSTER ANALYSIS; CONTROLLED STUDY; DATA ANALYSIS; HUMAN; K MEANS ALGORITHM; MAJOR CLINICAL STUDY; MAXIMUM A POSTERIORI DIRICHLET PROCESS MIXTURE ALGORITHM; MEDICAL INFORMATICS; PARKINSON DISEASE; STATISTICAL MODEL;

EID: 84992108763     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0162259     Document Type: Article
Times cited : (150)

References (50)
  • 2
    • 84866127615 scopus 로고    scopus 로고
    • A comparative study of efficient initialization methods for the K-means clustering algorithm
    • Celebi ME, Kingravi HA, Vela PA. A comparative study of efficient initialization methods for the K-means clustering algorithm. Expert Systems with Applications. 2013;40(1):200-210. doi: 10.1016/j. eswa.2012.07.021
    • (2013) Expert Systems with Applications. , vol.40 , Issue.1 , pp. 200-210
    • Celebi, M.E.1    Kingravi, H.A.2    Vela, P.A.3
  • 3
    • 84155189174 scopus 로고    scopus 로고
    • A quality driven hierarchical data divisive soft clustering for information retrieval
    • Bordogna G, Pasi G. A quality driven hierarchical data divisive soft clustering for information retrieval. Knowledge-Based Systems. 2012;26:9-19. doi: 10.1016/j.knosys.2011.06.012
    • (2012) Knowledge-based Systems. , vol.26 , pp. 9-19
    • Bordogna, G.1    Pasi, G.2
  • 5
    • 84898603423 scopus 로고    scopus 로고
    • Identifying the clusters within nonmotor manifestations in early Parkinson's disease by using unsupervised cluster analysis
    • 24643014
    • Yang HJ, Kim YE, Yun JY, Kim HJ, Jeon BS. Identifying the clusters within nonmotor manifestations in early Parkinson's disease by using unsupervised cluster analysis. PLoS One. 2014;9(3):e91906. doi: 10.1371/journal.pone.0091906 PMID: 24643014
    • (2014) PLoS One. , vol.9 , Issue.3 , pp. e91906
    • Yang, H.J.1    Kim, Y.E.2    Yun, J.Y.3    Kim, H.J.4    Jeon, B.S.5
  • 6
    • 84876353180 scopus 로고    scopus 로고
    • Characterising flow patterns in soils by feature extraction and multiple consensus clustering
    • Bogner C, Trancon Y Widemann B, Lange H. Characterising flow patterns in soils by feature extraction and multiple consensus clustering. Ecological Informatics. 2013;15:44-52. doi: 10.1016/j.ecoinf.2013. 03.001
    • (2013) Ecological Informatics. , vol.15 , pp. 44-52
    • Bogner, C.1    Widemann, T.Y.B.2    Lange, H.3
  • 7
    • 77955229300 scopus 로고    scopus 로고
    • Text clustering using frequent itemsets
    • Zhang W, Yoshida T, Tang X, Wang Q. Text clustering using frequent itemsets. Knowledge-Based Systems. 2010;23(5):379-388. doi: 10.1016/j.knosys.2010.01.011
    • (2010) Knowledge-based Systems. , vol.23 , Issue.5 , pp. 379-388
    • Zhang, W.1    Yoshida, T.2    Tang, X.3    Wang, Q.4
  • 8
    • 84878195929 scopus 로고    scopus 로고
    • Information theory and voting based consensus clustering for combining multiple clusterings of chemical structures
    • 27481767
    • Saeed F, Salim N, Abdo A. Information theory and voting based consensus clustering for combining multiple clusterings of chemical structures. Molecular Informatics. 2013;32(7):591-598. doi: 10.1002/minf.201300004 PMID: 27481767
    • (2013) Molecular Informatics. , vol.32 , Issue.7 , pp. 591-598
    • Saeed, F.1    Salim, N.2    Abdo, A.3
  • 9
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • Springer-Verlag, Heidelberg
    • Berkhin P. A survey of clustering data mining techniques. In: Grouping Multidimensional Data. Springer-Verlag, Heidelberg; 2006. p. 25-71.
    • (2006) Grouping Multidimensional Data , pp. 25-71
    • Berkhin, P.1
  • 10
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd SP. Least squares quantization in PCM. IEEE Transactions on Information Theory. 1982;28(2):129-137. doi: 10.1109/TIT.1982.1056489
    • (1982) IEEE Transactions on Information Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.P.1
  • 11
    • 77953530161 scopus 로고    scopus 로고
    • The identification of Parkinson's disease subtypes using cluster analysis: A systematic review
    • 20535823
    • Van Rooden SM, Heiser WJ, Kok JN, Verbaan D, Van Hilten JJ, Marinus J. The identification of Parkinson's disease subtypes using cluster analysis: a systematic review. Movement Disorders. 2010;25(8):969-978. doi: 10.1002/mds.23116 PMID: 20535823
    • (2010) Movement Disorders. , vol.25 , Issue.8 , pp. 969-978
    • Van Rooden, S.M.1    Heiser, W.J.2    Kok, J.N.3    Verbaan, D.4    Van Hilten, J.J.5    Marinus, J.6
  • 16
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal RM. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics. 2000;9(2):249-265. doi: 10.2307/1390653
    • (2000) Journal of Computational and Graphical Statistics. , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.M.1
  • 17
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal RM. Slice sampling. Annals of Statistics. 2003;31(3):705-767. doi: 10.1214/aos/1056562461
    • (2003) Annals of Statistics. , vol.31 , Issue.3 , pp. 705-767
    • Neal, R.M.1
  • 21
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending K-means with efficient estimation of the number of clusters
    • Pelleg D, Moore AW. X-means: extending K-means with efficient estimation of the number of clusters. In: ICML 2000;2000. p. 727-734.
    • (2000) ICML , vol.2000 , pp. 727-734
    • Pelleg, D.1    Moore, A.W.2
  • 24
    • 79959616708 scopus 로고    scopus 로고
    • On identifying the optimal number of population clusters via the deviance information criterion
    • 21738600
    • Gao H, Bryc K, Bustamante CD. On identifying the optimal number of population clusters via the deviance information criterion. PLoS One. 2011;6(6):e21014. doi: 10.1371/journal.pone.0021014 PMID: 21738600
    • (2011) PLoS One. , vol.6 , Issue.6 , pp. e21014
    • Gao, H.1    Bryc, K.2    Bustamante, C.D.3
  • 25
    • 33745432181 scopus 로고    scopus 로고
    • Bayesian K-means as a "Maximization-Expectation" Algorithm
    • Welling M, Kurihara K. Bayesian K-means as a "Maximization-Expectation" Algorithm. In: SDM. SIAM; 2006. p. 474-478.
    • (2006) SDM. SIAM , pp. 474-478
    • Welling, M.1    Kurihara, K.2
  • 28
    • 44649182304 scopus 로고    scopus 로고
    • Splitting and merging components of a nonconjugate Dirichlet process mixture model
    • Jain S, Neal RM. Splitting and merging components of a nonconjugate Dirichlet process mixture model. Bayesian Analysis. 2007;2(3):445-472. doi: 10.1214/07-BA219
    • (2007) Bayesian Analysis. , vol.2 , Issue.3 , pp. 445-472
    • Jain, S.1    Neal, R.M.2
  • 29
    • 0002205556 scopus 로고    scopus 로고
    • Rao-Blackwellisation of sampling schemes
    • Casella G, Robert CP. Rao-Blackwellisation of sampling schemes. Biometrika. 1996;83(1):81-94. doi: 10.1093/biomet/83.1.81
    • (1996) Biometrika. , vol.83 , Issue.1 , pp. 81-94
    • Casella, G.1    Robert, C.P.2
  • 30
    • 0038969859 scopus 로고
    • Conditional expectation and unbiased sequential estimation
    • Blackwell D. Conditional expectation and unbiased sequential estimation. The Annals of Mathematical Statistics. 1947; p. 105-110. doi: 10.1214/aoms/1177730497
    • (1947) The Annals of Mathematical Statistics. , pp. 105-110
    • Blackwell, D.1
  • 31
    • 84857235576 scopus 로고    scopus 로고
    • A tutorial on Bayesian nonparametric models
    • Gershman SJ, Blei DM. A tutorial on Bayesian nonparametric models. Journal of Mathematical Psychology. 2012;56(1):1-12. doi: 10.1016/j.jmp. 2011.08.004
    • (2012) Journal of Mathematical Psychology , vol.56 , Issue.1 , pp. 1-12
    • Gershman, S.J.1    Blei, D.M.2
  • 33
    • 34249015540 scopus 로고    scopus 로고
    • Parkinson's disease data and organizing center
    • 17343272
    • Kurlan R, Murphy D. Parkinson's disease data and organizing center. Movement Disorders. 2007;22(6):904. doi: 10.1002/mds.21415 PMID: 17343272
    • (2007) Movement Disorders. , vol.22 , Issue.6 , pp. 904
    • Kurlan, R.1    Murphy, D.2
  • 36
    • 82055183880 scopus 로고    scopus 로고
    • Clinical heterogeneity in patients with early-stage Parkinson's disease: A cluster analysis
    • 21887844
    • Liu P, Feng T, Wang YJ, Zhang X, Chen B. Clinical heterogeneity in patients with early-stage Parkinson's disease: a cluster analysis. Journal of Zhejiang University Science B. 2011;12(9):694-703. doi: 10.1631/jzus. B1100069 PMID: 21887844
    • (2011) Journal of Zhejiang University Science B , vol.12 , Issue.9 , pp. 694-703
    • Liu, P.1    Feng, T.2    Wang, Y.J.3    Zhang, X.4    Chen, B.5
  • 38
    • 0031989197 scopus 로고
    • Parkinsonism: Onset, progression and mortality
    • Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;50(2):318-318.
    • (1967) Neurology , vol.50 , Issue.2 , pp. 318
    • Hoehn, M.M.1    Yahr, M.D.2
  • 40
    • 0022594196 scopus 로고
    • An introduction to hidden Markov models
    • Rabiner L, Juang B. An introduction to hidden Markov models. ieee assp magazine. 1986;3(1):4-16. doi: 10.1109/MASSP.1986.1165342
    • (1986) Ieee Assp magazine. , vol.3 , Issue.1 , pp. 4-16
    • Rabiner, L.1    Juang, B.2
  • 42
    • 0031534984 scopus 로고    scopus 로고
    • The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator
    • Pitman J, Yor M. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. The Annals of Probability. 1997; p. 855-900.
    • (1997) The Annals of Probability , pp. 855-900
    • Pitman, J.1    Yor, M.2
  • 46
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581-592. doi: 10.1093/biomet/63.3. 581
    • (1976) Biometrika. , vol.63 , Issue.3 , pp. 581-592
    • Rubin, D.B.1
  • 47
  • 48
    • 84950432453 scopus 로고
    • Parametric empirical Bayes inference: Theory and applications
    • Morris CN. Parametric empirical Bayes inference: theory and applications. Journal of the American Statistical Association. 1983;78(381):47-55. doi: 10.1080/01621459.1983.10477920
    • (1983) Journal of the American Statistical Association. , vol.78 , Issue.381 , pp. 47-55
    • Morris, C.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.