-
1
-
-
38649127567
-
Identification of DNA-binding proteins using support vector machines and evolutionary profiles
-
PMID: 18042272
-
Kumar M, Gromiha MM, Raghava GPS. Identification of DNA-binding proteins using support vector machines and evolutionary profiles. BMC bioinformatics. 2007; 8:463. https://doi.org/10.1186/1471-2105-8-463 PMID: 18042272
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 463
-
-
Kumar, M.1
Gromiha, M.M.2
Raghava, G.P.S.3
-
2
-
-
0042622243
-
SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence
-
PMID: 12824396
-
Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Research. 2003; 31 (13):3692–3697. https://doi.org/10.1093/nar/gkg600 PMID: 12824396
-
(2003)
Nucleic Acids Research
, vol.31
, Issue.13
, pp. 3692-3697
-
-
Cai, C.Z.1
Han, L.Y.2
Ji, Z.L.3
Chen, X.4
Chen, Y.Z.5
-
3
-
-
80052855771
-
IDNA-Prot: Identification of DNA binding proteins using random forest with grey model
-
PMID: 21935457
-
Lin WZ, Fang JA, Xiao X, Chou KC. iDNA-Prot: identification of DNA binding proteins using random forest with grey model. PloS one. 2011; 6(9):e24756. https://doi.org/10.1371/journal.pone.0024756 PMID: 21935457
-
(2011)
PloS One
, vol.6
, Issue.9
, pp. e24756
-
-
Lin, W.Z.1
Fang, J.A.2
Xiao, X.3
Chou, K.C.4
-
4
-
-
84874690054
-
An improved sequence based prediction protocol for DNA-binding proteins using SVM and comprehensive feature analysis
-
PMID: 23497329
-
Zou C, Gong J, Li H. An improved sequence based prediction protocol for DNA-binding proteins using SVM and comprehensive feature analysis. BMC Bioinformatics. 2013; 14(1):90. https://doi.org/10.1186/1471-2105-14-90 PMID: 23497329
-
(2013)
BMC Bioinformatics
, vol.14
, Issue.1
, pp. 90
-
-
Zou, C.1
Gong, J.2
Li, H.3
-
5
-
-
85027018673
-
Multi-scale encoding of amino acid sequences for predicting protein interactions using gradient boosting decision tree
-
Zhou C., Yu H., Ding Y., Guo F., Gong X. Multi-Scale Encoding of Amino Acid Sequences for Predicting Protein Interactions Using Gradient Boosting Decision Tree. PLoS ONE, 2017.
-
(2017)
PLoS ONE
-
-
Zhou, C.1
Yu, H.2
Ding, Y.3
Guo, F.4
Gong, X.5
-
6
-
-
84899864030
-
Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian NaÃve Bayes
-
Lou W, Wang X, Chen F, Chen Y, Jiang B, Zhang H. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian NaÃve Bayes. PLoS ONE. 2014; 9(1):1–10. https://doi.org/10.1371/journal.pone.0086703
-
(2014)
PLoS ONE
, vol.9
, Issue.1
, pp. 1-10
-
-
Lou, W.1
Wang, X.2
Chen, F.3
Chen, Y.4
Jiang, B.5
Zhang, H.6
-
7
-
-
84999854465
-
DNABP: Identification of DNA-binding proteins based on feature selection using a random forest and predicting binding residues
-
Ma X, Guo J, Sun X. DNABP: Identification of DNA-binding proteins based on feature selection using a random forest and predicting binding residues. PLoS ONE. 2016; 11(12):1–20. https://doi.org/10.1371/journal.pone.0167345
-
(2016)
PLoS ONE
, vol.11
, Issue.12
, pp. 1-20
-
-
Ma, X.1
Guo, J.2
Sun, X.3
-
8
-
-
84906975785
-
IDNA-Prot| dis: Identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition
-
Sep 3; )PMID: 25184541
-
Liu B, Xu J, Lan X, Xu R, Zhou J, Wang X, et al. iDNA-Prot| dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PloS one. 2014 Sep 3; 9(9):e106691. https://doi.org/10.1371/journal.pone.0106691PMID: 25184541
-
(2014)
PloS One
, vol.9
, Issue.9
, pp. e106691
-
-
Liu, B.1
Xu, J.2
Lan, X.3
Xu, R.4
Zhou, J.5
Wang, X.6
-
9
-
-
84921023793
-
PseDNA-Pro: DNA-binding protein identification by combining Chou’s PseAAC and physicochemical distance transformation
-
Jan 1; ): PMID: 27490858
-
Liu B, Xu J, Fan S, Xu R, Zhou J, Wang X. PseDNA-Pro: DNA-binding protein identification by combining Chou’s PseAAC and physicochemical distance transformation. Molecular Informatics. 2015 Jan 1; 34(1):8–17. https://doi.org/10.1002/minf.201400025 PMID: 27490858
-
(2015)
Molecular Informatics
, vol.34
, Issue.1
, pp. 8-17
-
-
Liu, B.1
Xu, J.2
Fan, S.3
Xu, R.4
Zhou, J.5
Wang, X.6
-
10
-
-
84944886528
-
DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation
-
PMID: 26482832
-
Liu B, Wang S, Wang X. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation. Scientific Reports. 2015; 5(October):15479. https://doi.org/10.1038/srep15479 PMID: 26482832
-
(2015)
Scientific Reports
, vol.5
, Issue.October
, pp. 15479
-
-
Liu, B.1
Wang, S.2
Wang, X.3
-
11
-
-
84982242267
-
Identification of DNA-binding proteins by combining auto-cross covariance transformation and ensemble learning
-
Liu B, Wang S, Dong Q, Li S, Liu X. Identification of DNA-Binding Proteins by Combining Auto-Cross Covariance Transformation and Ensemble Learning. IEEE Transactions on Nanobioscience. 2016; 15(4):328–334. https://doi.org/10.1109/TNB.2016.2555951
-
(2016)
IEEE Transactions on Nanobioscience
, vol.15
, Issue.4
, pp. 328-334
-
-
Liu, B.1
Wang, S.2
Dong, Q.3
Li, S.4
Liu, X.5
-
12
-
-
84979865452
-
Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
-
May 9; ): PMID: 25958395
-
Liu B, Liu F, Wang X, Chen J, Fang L, Chou KC. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic acids research. 2015 May 9; 43(W1):W65–71. https://doi.org/10.1093/nar/gkv458 PMID: 25958395
-
(2015)
Nucleic Acids Research
, vol.43
, Issue.W1
, pp. W65-W71
-
-
Liu, B.1
Liu, F.2
Wang, X.3
Chen, J.4
Fang, L.5
Chou, K.C.6
-
13
-
-
85013243690
-
Pse-Analysis: A python package for DNA/RNA and protein/ peptide sequence analysis based on pseudo components and kernel methods
-
Feb 21; ): PMID: 28076851
-
Liu B, Wu H, Zhang D, Wang X, Chou KC. Pse-Analysis: a python package for DNA/RNA and protein/ peptide sequence analysis based on pseudo components and kernel methods. Oncotarget. 2017 Feb 21; 8(8):13338. https://doi.org/10.18632/oncotarget.14524 PMID: 28076851
-
(2017)
Oncotarget
, vol.8
, Issue.8
, pp. 13338
-
-
Liu, B.1
Wu, H.2
Zhang, D.3
Wang, X.4
Chou, K.C.5
-
16
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. NIPS, 2014.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
18
-
-
84938888109
-
Predicting the sequence specificities of DNA- And RNA-binding proteins by deep learning
-
PMID: 26213851
-
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015; 33(8):831–838. https://doi.org/10.1038/nbt. 3300 PMID: 26213851
-
(2015)
Nat Biotechnol
, vol.33
, Issue.8
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
19
-
-
84976520648
-
Convolutional neural network architectures for predicting DNA-protein binding
-
PMID: 27307608
-
Zeng H, Edwards MD, Liu G, Gifford DK. Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics. 2016; 32(12):i121–i127. https://doi.org/10.1093/bioinformatics/ btw255 PMID: 27307608
-
(2016)
Bioinformatics
, vol.32
, Issue.12
, pp. i121-i127
-
-
Zeng, H.1
Edwards, M.D.2
Liu, G.3
Gifford, D.K.4
-
20
-
-
85039868086
-
RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach
-
Pan X, Shen HB. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. bioRxiv. 2016;
-
(2016)
bioRxiv
-
-
Pan, X.1
Shen, H.B.2
-
21
-
-
85039862682
-
-
arXiv q-bioBM
-
Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. arXiv q-bioBM. 2016; 9:00680.
-
(2016)
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model
, vol.9
, pp. 00680
-
-
Wang, S.1
Sun, S.2
Li, Z.3
Zhang, R.4
Xu, J.5
-
22
-
-
84949267267
-
Improving protein fold recognition by deep learning networks
-
PMID: 26634993
-
Jo T, Hou J, Eickholt J, Cheng J. Improving Protein Fold Recognition by Deep Learning Networks. Scientific reports. 2015; 5:17573. https://doi.org/10.1038/srep17573 PMID: 26634993
-
(2015)
Scientific Reports
, vol.5
, pp. 17573
-
-
Jo, T.1
Hou, J.2
Eickholt, J.3
Cheng, J.4
-
23
-
-
84954113329
-
Protein secondary structure prediction using deep convolutional neural fields
-
PMID: 26752681
-
Wang S, Peng J, Ma J, Xu J. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields. Scientific reports. 2016; 6:18962. https://doi.org/10.1038/srep18962 PMID: 26752681
-
(2016)
Scientific Reports
, vol.6
, pp. 18962
-
-
Wang, S.1
Peng, J.2
Ma, J.3
Xu, J.4
-
24
-
-
84953217068
-
Continuous distributed representation of biological sequences for deep proteo-mics and genomics
-
Asgari E, Mofrad MRK. Continuous distributed representation of biological sequences for deep proteo-mics and genomics. PLoS ONE. 2015; 10(11):1–15. https://doi.org/10.1371/journal.pone.0141287
-
(2015)
PLoS ONE
, vol.10
, Issue.11
, pp. 1-15
-
-
Asgari, E.1
Mofrad, M.R.K.2
-
25
-
-
84964589044
-
DNA-binding protein prediction using plant specific support vector machines: Validation and application of a new genome annotation tool
-
PMID: 26304539
-
Motion G B, Howden A J M, Huitema E, et al. DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool. Nucleic Acids Research, 2015, 43(22):e158–e158. https://doi.org/10.1093/nar/gkv805 PMID: 26304539
-
(2015)
Nucleic Acids Research
, vol.43
, Issue.22
, pp. e158
-
-
Motion, G.B.1
Howden, A.J.M.2
Huitema, E.3
-
27
-
-
0018877134
-
Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
-
Shore J E, Johnson R W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. Information Theory IEEE Transactions on, 1980, 26(1):26–37. https://doi.org/10.1109/TIT.1980.1056144
-
(1980)
Information Theory IEEE Transactions on
, vol.26
, Issue.1
, pp. 26-37
-
-
Shore, J.E.1
Johnson, R.W.2
-
28
-
-
84874240374
-
Hierarchical classification of protein folds using a novel ensemble classifier
-
Lin C, Zou Y, Qin J, et al. Hierarchical classification of protein folds using a novel ensemble classifier. Plos One, 2012, 8(2).
-
(2012)
Plos One
, vol.8
, Issue.2
-
-
Lin, C.1
Zou, Y.2
Qin, J.3
-
29
-
-
44349159560
-
Using support vector machine combined with auto covariance to predict protein—protein interactions from protein sequences
-
May 1; ): PMID: 18390576
-
Guo Y, Yu L, Wen Z, Li M. Using support vector machine combined with auto covariance to predict protein—protein interactions from protein sequences. Nucleic acids research. 2008 May 1; 36(9):3025–30. https://doi.org/10.1093/nar/gkn159 PMID: 18390576
-
(2008)
Nucleic Acids Research
, vol.36
, Issue.9
, pp. 3025-3030
-
-
Guo, Y.1
Yu, L.2
Wen, Z.3
Li, M.4
-
30
-
-
34248371273
-
Predicting protein—protein interactions based only on sequences information
-
Mar 13
-
Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, et al. Predicting protein—protein interactions based only on sequences information. Proceedings of the National Academy of Sciences. 2007 Mar 13; 104 (11):4337–41. https://doi.org/10.1073/pnas.0607879104
-
(2007)
Proceedings of The National Academy of Sciences
, vol.104
, Issue.11
, pp. 4337-4341
-
-
Shen, J.1
Zhang, J.2
Luo, X.3
Zhu, W.4
Yu, K.5
Chen, K.6
-
31
-
-
84990034009
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Computer Science, 2014.
-
(2014)
Computer Science
-
-
Simonyan, K.1
Zisserman, A.2
-
32
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
33
-
-
85020470119
-
Analysis and prediction of single-stranded and double-stranded DNA binding proteins based on protein sequences
-
Jun 12; ): PMID: 28606086
-
Wang W, Sun L, Zhang S, Zhang H, Shi J, Xu T, et al. Analysis and prediction of single-stranded and double-stranded DNA binding proteins based on protein sequences. BMC Bioinformatics. 2017 Jun 12; 18(1):300. https://doi.org/10.1186/s12859-017-1715-8 PMID: 28606086
-
(2017)
BMC Bioinformatics
, vol.18
, Issue.1
, pp. 300
-
-
Wang, W.1
Sun, L.2
Zhang, S.3
Zhang, H.4
Shi, J.5
Xu, T.6
-
34
-
-
84892954329
-
Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection
-
Dec 5; ): PMID: 24318998
-
Liu B, Zhang D, Xu R, Xu J, Wang X, Chen Q, et al. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics. 2013 Dec 5; 30(4):472–9. https://doi.org/10.1093/bioinformatics/btt709 PMID: 24318998
-
(2013)
Bioinformatics
, vol.30
, Issue.4
, pp. 472-479
-
-
Liu, B.1
Zhang, D.2
Xu, R.3
Xu, J.4
Wang, X.5
Chen, Q.6
-
35
-
-
84956620000
-
RepRNA: A web server for generating various feature vectors of RNA sequences
-
Feb 1; ): PMID: 26085220
-
Liu B, Liu F, Fang L, Wang X, Chou KC. repRNA: a web server for generating various feature vectors of RNA sequences. Molecular Genetics and Genomics. 2016 Feb 1; 291(1):473–81. https://doi.org/10.1007/s00438-015-1078-7 PMID: 26085220
-
(2016)
Molecular Genetics and Genomics
, vol.291
, Issue.1
, pp. 473-481
-
-
Liu, B.1
Liu, F.2
Fang, L.3
Wang, X.4
Chou, K.C.5
|