-
1
-
-
0035146344
-
Renal gluconeogenesis: its importance in human glucose homeostasis
-
Gerich, J.E., C. Meyer, H.J. Woerle & M. Stumvoll. 2001. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24: 382–391.
-
(2001)
Diabetes Care
, vol.24
, pp. 382-391
-
-
Gerich, J.E.1
Meyer, C.2
Woerle, H.J.3
Stumvoll, M.4
-
3
-
-
0025160127
-
Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription
-
O'Brien, R.M., P.C. Lucas, C.D. Forest, et al. 1990. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science 249: 533–537.
-
(1990)
Science
, vol.249
, pp. 533-537
-
-
O'Brien, R.M.1
Lucas, P.C.2
Forest, C.D.3
-
5
-
-
0035430524
-
Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients
-
Gastaldelli, A., E. Toschi, M. Pettiti, et al. 2001. Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 50: 1807–1812.
-
(2001)
Diabetes
, vol.50
, pp. 1807-1812
-
-
Gastaldelli, A.1
Toschi, E.2
Pettiti, M.3
-
6
-
-
0032520870
-
Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans
-
Petersen, K.F., D. Laurent, D.L. Rothman, et al. 1998. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J. Clin. Invest. 101: 1203–1209.
-
(1998)
J. Clin. Invest.
, vol.101
, pp. 1203-1209
-
-
Petersen, K.F.1
Laurent, D.2
Rothman, D.L.3
-
7
-
-
32444434587
-
Insulin's direct effects on the liver dominate the control of hepatic glucose production
-
Edgerton, D.S., M. Lautz, M. Scott, et al. 2006. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J. Clin. Invest. 116: 521–527.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 521-527
-
-
Edgerton, D.S.1
Lautz, M.2
Scott, M.3
-
9
-
-
0014034749
-
Effects of insulin on amino acid release and urea formation in perfused rat liver
-
Mondon, C.E. & G.E. Mortimore. 1967. Effects of insulin on amino acid release and urea formation in perfused rat liver. Am. J. Physiol. 212: 173–178.
-
(1967)
Am. J. Physiol.
, vol.212
, pp. 173-178
-
-
Mondon, C.E.1
Mortimore, G.E.2
-
10
-
-
32444447035
-
Insulin's effect on the liver: “direct or indirect?” continues to be the question
-
Girard, J. 2006. Insulin's effect on the liver: “direct or indirect?” continues to be the question. J. Clin. Invest. 116: 302–304.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 302-304
-
-
Girard, J.1
-
11
-
-
84929190974
-
FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization
-
O-Sullivan, I., W. Zhang, D.H. Wasserman, et al. 2015. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 6: 7079.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7079
-
-
O-Sullivan, I.1
Zhang, W.2
Wasserman, D.H.3
-
12
-
-
20044394745
-
Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells
-
Ravier, M.A. & G.A. Rutter. 2005. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54: 1789–1797.
-
(2005)
Diabetes
, vol.54
, pp. 1789-1797
-
-
Ravier, M.A.1
Rutter, G.A.2
-
13
-
-
79951962147
-
CREB and the CRTC co-activators: sensors for hormonal and metabolic signals
-
Altarejos, J.Y. & M. Montminy. 2011. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12: 141–151.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 141-151
-
-
Altarejos, J.Y.1
Montminy, M.2
-
15
-
-
63449087896
-
Insulin signaling in alpha cells modulates glucagon secretion in vivo
-
Kawamori, D., A.J. Kurpad, J. Hu, et al. 2009. Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab. 9: 350–361.
-
(2009)
Cell Metab.
, vol.9
, pp. 350-361
-
-
Kawamori, D.1
Kurpad, A.J.2
Hu, J.3
-
16
-
-
0037324750
-
Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production
-
Fisher, S.J. & C.R. Kahn. 2003. Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J. Clin. Invest. 111: 463–468.
-
(2003)
J. Clin. Invest.
, vol.111
, pp. 463-468
-
-
Fisher, S.J.1
Kahn, C.R.2
-
17
-
-
0030975131
-
Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans
-
Lewis, G.F., M. Vranic, P. Harley & A. Giacca. 1997. Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans. Diabetes 46: 1111–1119.
-
(1997)
Diabetes
, vol.46
, pp. 1111-1119
-
-
Lewis, G.F.1
Vranic, M.2
Harley, P.3
Giacca, A.4
-
18
-
-
79955584321
-
Leptin and the central nervous system control of glucose metabolism
-
Morton, G.J. & M.W. Schwartz. 2011. Leptin and the central nervous system control of glucose metabolism. Physiol. Rev. 91: 389–411.
-
(2011)
Physiol. Rev.
, vol.91
, pp. 389-411
-
-
Morton, G.J.1
Schwartz, M.W.2
-
19
-
-
18244395309
-
Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice
-
Buettner, C., R. Patel, E.D. Muse, et al. 2005. Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice. J. Clin. Invest. 115: 1306–1313.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1306-1313
-
-
Buettner, C.1
Patel, R.2
Muse, E.D.3
-
20
-
-
84857934301
-
Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1
-
Lu, M., M. Wan, K.F. Leavens, et al. 2012. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat. Med. 18: 388–395.
-
(2012)
Nat. Med.
, vol.18
, pp. 388-395
-
-
Lu, M.1
Wan, M.2
Leavens, K.F.3
-
21
-
-
84929148324
-
Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo
-
Titchenell, P.M., Q. Chu, B.R. Monks & M.J. Birnbaum. 2015. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 6: 7078.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7078
-
-
Titchenell, P.M.1
Chu, Q.2
Monks, B.R.3
Birnbaum, M.J.4
-
22
-
-
84922709227
-
Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes
-
Perry, R.J., J.P. Camporez, R. Kursawe, et al. 2015. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160: 745–758.
-
(2015)
Cell
, vol.160
, pp. 745-758
-
-
Perry, R.J.1
Camporez, J.P.2
Kursawe, R.3
-
23
-
-
0141839103
-
Novel concepts in insulin regulation of hepatic gluconeogenesis
-
Barthel, A. & D. Schmoll. 2003. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 285: E685–E692.
-
(2003)
Am. J. Physiol. Endocrinol. Metab.
, vol.285
, pp. E685-E692
-
-
Barthel, A.1
Schmoll, D.2
-
24
-
-
67749142348
-
Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes
-
Samuel, V.T., S.A. Beddow, T. Iwasaki, et al. 2009. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc. Natl. Acad. Sci. USA 106: 12121–12126.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 12121-12126
-
-
Samuel, V.T.1
Beddow, S.A.2
Iwasaki, T.3
-
25
-
-
45749114635
-
Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis
-
Valenti, L., R. Rametta, P. Dongiovanni, et al. 2008. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 57: 1355–1362.
-
(2008)
Diabetes
, vol.57
, pp. 1355-1362
-
-
Valenti, L.1
Rametta, R.2
Dongiovanni, P.3
-
26
-
-
20444443042
-
Sampling variability of liver biopsy in nonalcoholic fatty liver disease
-
Ratziu, V., F. Charlotte, A. Heurtier, et al. 2005. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128: 1898–1906.
-
(2005)
Gastroenterology
, vol.128
, pp. 1898-1906
-
-
Ratziu, V.1
Charlotte, F.2
Heurtier, A.3
-
27
-
-
78049259220
-
Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy
-
Rizza, R.A. 2010. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 59: 2697–2707.
-
(2010)
Diabetes
, vol.59
, pp. 2697-2707
-
-
Rizza, R.A.1
-
28
-
-
0037007124
-
The insulin signalling pathway
-
Lizcano, J.M. & D.R. Alessi. 2002. The insulin signalling pathway. Curr. Biol. 12: R236–R238.
-
(2002)
Curr. Biol.
, vol.12
, pp. R236-R238
-
-
Lizcano, J.M.1
Alessi, D.R.2
-
29
-
-
0032567937
-
Disruption of IRS-2 causes type 2 diabetes in mice
-
Withers, D.J., J.S. Gutierrez, H. Towery, et al. 1998. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900–904.
-
(1998)
Nature
, vol.391
, pp. 900-904
-
-
Withers, D.J.1
Gutierrez, J.S.2
Towery, H.3
-
30
-
-
0028032894
-
Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1
-
Tamemoto, H., T. Kadowaki, K. Tobe, et al. 1994. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182–186.
-
(1994)
Nature
, vol.372
, pp. 182-186
-
-
Tamemoto, H.1
Kadowaki, T.2
Tobe, K.3
-
31
-
-
31044446941
-
Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth
-
Dong, X., S. Park, X. Lin, et al. 2006. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest. 116: 101–114.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 101-114
-
-
Dong, X.1
Park, S.2
Lin, X.3
-
32
-
-
0036853886
-
Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver
-
Miyake, K., W. Ogawa, M. Matsumoto, et al. 2002. Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. J. Clin. Invest. 110: 1483–1491.
-
(2002)
J. Clin. Invest.
, vol.110
, pp. 1483-1491
-
-
Miyake, K.1
Ogawa, W.2
Matsumoto, M.3
-
33
-
-
0032563201
-
Assessment of the roles of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, and protein kinase C in insulin inhibition of cAMP-induced phosphoenolpyruvate carboxykinase gene transcription
-
Agati, J.M., D. Yeagley & P.G. Quinn. 1998. Assessment of the roles of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, and protein kinase C in insulin inhibition of cAMP-induced phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 273: 18751–18759.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 18751-18759
-
-
Agati, J.M.1
Yeagley, D.2
Quinn, P.G.3
-
34
-
-
13444252573
-
Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure
-
Mora, A., C. Lipina, F. Tronche, et al. 2005. Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure. Biochem. J. 385: 639–648.
-
(2005)
Biochem. J.
, vol.385
, pp. 639-648
-
-
Mora, A.1
Lipina, C.2
Tronche, F.3
-
36
-
-
0032510947
-
Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle
-
Brozinick, J.T., Jr. & M.J. Birnbaum. 1998. Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J. Biol. Chem. 273: 14679–14682.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 14679-14682
-
-
Brozinick, J.T.1
Birnbaum, M.J.2
-
37
-
-
69249208791
-
The Akt kinases: isoform specificity in metabolism and cancer
-
Gonzalez, E. & T.E. McGraw. 2009. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8: 2502–2508.
-
(2009)
Cell Cycle
, vol.8
, pp. 2502-2508
-
-
Gonzalez, E.1
McGraw, T.E.2
-
38
-
-
0035368548
-
Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
-
Cho, H., J. Mu, J.K. Kim, et al. 2001. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292: 1728–1731.
-
(2001)
Science
, vol.292
, pp. 1728-1731
-
-
Cho, H.1
Mu, J.2
Kim, J.K.3
-
39
-
-
0035914388
-
Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice
-
Cho, H., J.L. Thorvaldsen, Q. Chu, et al. 2001. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276: 38349–38352.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 38349-38352
-
-
Cho, H.1
Thorvaldsen, J.L.2
Chu, Q.3
-
40
-
-
0035038729
-
Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression
-
Lochhead, P.A., M. Coghlan, S.Q. Rice & C. Sutherland. 2001. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 50: 937–946.
-
(2001)
Diabetes
, vol.50
, pp. 937-946
-
-
Lochhead, P.A.1
Coghlan, M.2
Rice, S.Q.3
Sutherland, C.4
-
41
-
-
0032538568
-
Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene
-
Liao, J., A. Barthel, K. Nakatani & R.A. Roth. 1998. Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene. J. Biol. Chem. 273: 27320–27324.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 27320-27324
-
-
Liao, J.1
Barthel, A.2
Nakatani, K.3
Roth, R.A.4
-
42
-
-
0034680839
-
Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity
-
Schmoll, D., K.S. Walker, D.R. Alessi, et al. 2000. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J. Biol. Chem. 275: 36324–36333.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 36324-36333
-
-
Schmoll, D.1
Walker, K.S.2
Alessi, D.R.3
-
43
-
-
80052970809
-
FoxO transcription factors; regulation by AKT and 14-3-3 proteins
-
Tzivion, G., M. Dobson & G. Ramakrishnan. 2011. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 1813: 1938–1945.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1938-1945
-
-
Tzivion, G.1
Dobson, M.2
Ramakrishnan, G.3
-
44
-
-
0030050975
-
Insulin regulation of phosphoenolpyruvate carboxykinase gene expression does not require activation of the Ras/mitogen-activated protein kinase signaling pathway
-
Gabbay, R.A., C. Sutherland, L. Gnudi, et al. 1996. Insulin regulation of phosphoenolpyruvate carboxykinase gene expression does not require activation of the Ras/mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 271: 1890–1897.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 1890-1897
-
-
Gabbay, R.A.1
Sutherland, C.2
Gnudi, L.3
-
45
-
-
0032489036
-
Activation of the ras mitogen-activated protein kinase-ribosomal protein kinase pathway is not required for the repression of phosphoenolpyruvate carboxykinase gene transcription by insulin
-
Sutherland, C., M. Waltner-Law, L. Gnudi, et al. 1998. Activation of the ras mitogen-activated protein kinase-ribosomal protein kinase pathway is not required for the repression of phosphoenolpyruvate carboxykinase gene transcription by insulin. J. Biol. Chem. 273: 3198–3204.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 3198-3204
-
-
Sutherland, C.1
Waltner-Law, M.2
Gnudi, L.3
-
46
-
-
30044436829
-
p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis
-
Cao, W., Q.F. Collins, T.C. Becker, et al. 2005. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J. Biol. Chem. 280: 42731–42737.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 42731-42737
-
-
Cao, W.1
Collins, Q.F.2
Becker, T.C.3
-
47
-
-
33748299056
-
p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes
-
Collins, Q.F., Y. Xiong, E.G. Lupo, Jr., et al. 2006. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J. Biol. Chem. 281: 24336–24344.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 24336-24344
-
-
Collins, Q.F.1
Xiong, Y.2
Lupo, E.G.3
-
48
-
-
34347216368
-
Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase
-
Liu, H.Y., Q.F. Collins, Y. Xiong, et al. 2007. Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. J. Biol. Chem. 282: 14205–14212.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 14205-14212
-
-
Liu, H.Y.1
Collins, Q.F.2
Xiong, Y.3
-
49
-
-
84920019080
-
Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis
-
Lawan, A., L. Zhang, F. Gatzke, et al. 2015. Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis. Mol. Cell. Biol. 35: 26–40.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 26-40
-
-
Lawan, A.1
Zhang, L.2
Gatzke, F.3
-
50
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1
-
Puigserver, P., J. Rhee, J. Lin, et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol. Cell 8: 971–982.
-
(2001)
Mol. Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
Rhee, J.2
Lin, J.3
-
51
-
-
33846208251
-
Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1
-
Asada, S., H. Daitoku, H. Matsuzaki, et al. 2007. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell. Signal. 19: 519–527.
-
(2007)
Cell. Signal.
, vol.19
, pp. 519-527
-
-
Asada, S.1
Daitoku, H.2
Matsuzaki, H.3
-
52
-
-
0031953590
-
Protein phosphatase-1 and insulin action
-
Ragolia, L. & N. Begum. 1998. Protein phosphatase-1 and insulin action. Mol. Cell. Biochem. 182: 49–58.
-
(1998)
Mol. Cell. Biochem.
, vol.182
, pp. 49-58
-
-
Ragolia, L.1
Begum, N.2
-
53
-
-
84920770954
-
Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing
-
Araki, S., R. Dairiki, Y. Nakayama, et al. 2015. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS One 10: e0116929.
-
(2015)
PLoS One
, vol.10
-
-
Araki, S.1
Dairiki, R.2
Nakayama, Y.3
-
54
-
-
79951506095
-
Clk2 and B56β mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt
-
Rodgers, J.T., R.O. Vogel & P. Puigserver. 2011. Clk2 and B56β mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt. Mol. Cell 41: 471–479.
-
(2011)
Mol. Cell
, vol.41
, pp. 471-479
-
-
Rodgers, J.T.1
Vogel, R.O.2
Puigserver, P.3
-
55
-
-
72649098153
-
Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis
-
Rodgers, J.T., W. Haas, S.P. Gygi & P. Puigserver. 2010. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab. 11: 23–34.
-
(2010)
Cell Metab
, vol.11
, pp. 23-34
-
-
Rodgers, J.T.1
Haas, W.2
Gygi, S.P.3
Puigserver, P.4
-
56
-
-
84899045749
-
Cdc2-like kinase 2 suppresses hepatic fatty acid oxidation and ketogenesis through disruption of the PGC-1α and MED1 complex
-
Tabata, M., J.T. Rodgers, J.A. Hall, et al. 2014. Cdc2-like kinase 2 suppresses hepatic fatty acid oxidation and ketogenesis through disruption of the PGC-1α and MED1 complex. Diabetes 63: 1519–1532.
-
(2014)
Diabetes
, vol.63
, pp. 1519-1532
-
-
Tabata, M.1
Rodgers, J.T.2
Hall, J.A.3
-
57
-
-
77953707371
-
Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates
-
Suryadinata, R., M. Sadowski & B. Sarcevic. 2010. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Biosci. Rep. 30: 243–255.
-
(2010)
Biosci. Rep.
, vol.30
, pp. 243-255
-
-
Suryadinata, R.1
Sadowski, M.2
Sarcevic, B.3
-
58
-
-
84962071033
-
Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases
-
Hydbring, P., M. Malumbres & P. Sicinski. 2016. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat. Rev. Mol. Cell Biol. 17: 280–292.
-
(2016)
Nat. Rev. Mol. Cell Biol.
, vol.17
, pp. 280-292
-
-
Hydbring, P.1
Malumbres, M.2
Sicinski, P.3
-
59
-
-
33847352056
-
-
London; Sunderland, MA, New Science Press; Sinauer Associates
-
Morgan, D.O. 2007. The Cell Cycle: Principles of Control. London; Sunderland, MA: New Science Press; Sinauer Associates.
-
(2007)
The Cell Cycle: Principles of Control
-
-
Morgan, D.O.1
-
60
-
-
84944891766
-
Cyclin-dependent kinase regulatory subunit 1 promotes cell proliferation by insulin regulation
-
Liu, C.Y., W.L. Zhao, J.X. Wang & X.F. Zhao. 2015. Cyclin-dependent kinase regulatory subunit 1 promotes cell proliferation by insulin regulation. Cell Cycle 14: 3045–3057.
-
(2015)
Cell Cycle
, vol.14
, pp. 3045-3057
-
-
Liu, C.Y.1
Zhao, W.L.2
Wang, J.X.3
Zhao, X.F.4
-
61
-
-
84907483798
-
Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α
-
Bhalla, K., W.J. Liu, K. Thompson, et al. 2014. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α. Diabetes 63: 3266–3278.
-
(2014)
Diabetes
, vol.63
, pp. 3266-3278
-
-
Bhalla, K.1
Liu, W.J.2
Thompson, K.3
-
62
-
-
84903521363
-
Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression
-
Lee, Y., J.E. Dominy, Y.J. Choi, et al. 2014. Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510: 547–551.
-
(2014)
Nature
, vol.510
, pp. 547-551
-
-
Lee, Y.1
Dominy, J.E.2
Choi, Y.J.3
-
63
-
-
63149115282
-
The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes
-
Lalioti, V., G. Muruais, A. Dinarina, et al. 2009. The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 106: 4249–4253.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 4249-4253
-
-
Lalioti, V.1
Muruais, G.2
Dinarina, A.3
-
64
-
-
77954941113
-
Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5
-
Choi, J.H., A.S. Banks, J.L. Estall, et al. 2010. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466: 451–456.
-
(2010)
Nature
, vol.466
, pp. 451-456
-
-
Choi, J.H.1
Banks, A.S.2
Estall, J.L.3
-
65
-
-
33846295218
-
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
-
Paik, J.H., R. Kollipara, G. Chu, et al. 2007. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128: 309–323.
-
(2007)
Cell
, vol.128
, pp. 309-323
-
-
Paik, J.H.1
Kollipara, R.2
Chu, G.3
-
66
-
-
84880415788
-
Forkhead box class O transcription factors in liver function and disease
-
Tikhanovich, I., J. Cox & S.A. Weinman. 2013. Forkhead box class O transcription factors in liver function and disease. J. Gastroenterol. Hepatol. 28(Suppl. 1): 125–131.
-
(2013)
J. Gastroenterol. Hepatol.
, vol.28
, pp. 125-131
-
-
Tikhanovich, I.1
Cox, J.2
Weinman, S.A.3
-
67
-
-
34548349302
-
Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver
-
Matsumoto, M., A. Pocai, L. Rossetti, et al. 2007. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6: 208–216.
-
(2007)
Cell Metab
, vol.6
, pp. 208-216
-
-
Matsumoto, M.1
Pocai, A.2
Rossetti, L.3
-
68
-
-
33748312093
-
Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism
-
Matsumoto, M., S. Han, T. Kitamura & D. Accili. 2006. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116: 2464–2472.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 2464-2472
-
-
Matsumoto, M.1
Han, S.2
Kitamura, T.3
Accili, D.4
-
69
-
-
0032830572
-
Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence
-
Ayala, J.E., R.S. Streeper, J.S. Desgrosellier, et al. 1999. Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes 48: 1885–1889.
-
(1999)
Diabetes
, vol.48
, pp. 1885-1889
-
-
Ayala, J.E.1
Streeper, R.S.2
Desgrosellier, J.S.3
-
70
-
-
0034730660
-
Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins
-
Hall, R.K., T. Yamasaki, T. Kucera, et al. 2000. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. J. Biol. Chem. 275: 30169–30175.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 30169-30175
-
-
Hall, R.K.1
Yamasaki, T.2
Kucera, T.3
-
71
-
-
20144365700
-
Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
-
Frescas, D., L. Valenti & D. Accili. 2005. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280: 20589–20595.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 20589-20595
-
-
Frescas, D.1
Valenti, L.2
Accili, D.3
-
72
-
-
79955815135
-
Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
-
Mihaylova, M.M., D.S. Vasquez, K. Ravnskjaer, et al. 2011. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145: 607–621.
-
(2011)
Cell
, vol.145
, pp. 607-621
-
-
Mihaylova, M.M.1
Vasquez, D.S.2
Ravnskjaer, K.3
-
73
-
-
79952381078
-
Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction
-
Zhou, Y., J. Lee, C.M. Reno, et al. 2011. Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nat. Med. 17: 356–365.
-
(2011)
Nat. Med.
, vol.17
, pp. 356-365
-
-
Zhou, Y.1
Lee, J.2
Reno, C.M.3
-
74
-
-
84901924457
-
USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy
-
Hall, J.A., M. Tabata, J.T. Rodgers & P. Puigserver. 2014. USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy. Mol. Endocrinol. 28: 912–924.
-
(2014)
Mol. Endocrinol.
, vol.28
, pp. 912-924
-
-
Hall, J.A.1
Tabata, M.2
Rodgers, J.T.3
Puigserver, P.4
-
75
-
-
47749149232
-
O-GlcNAc regulates FoxO activation in response to glucose
-
Housley, M.P., J.T. Rodgers, N.D. Udeshi, et al. 2008. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283: 16283–16292.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 16283-16292
-
-
Housley, M.P.1
Rodgers, J.T.2
Udeshi, N.D.3
-
76
-
-
39749171700
-
O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene
-
Kuo, M., V. Zilberfarb, N. Gangneux, et al. 2008. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett. 582: 829–834.
-
(2008)
FEBS Lett
, vol.582
, pp. 829-834
-
-
Kuo, M.1
Zilberfarb, V.2
Gangneux, N.3
-
77
-
-
64149111641
-
A PGC-1alpha–O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose
-
Housley, M.P., N.D. Udeshi, J.T. Rodgers, et al. 2009. A PGC-1alpha–O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 284: 5148–5157.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 5148-5157
-
-
Housley, M.P.1
Udeshi, N.D.2
Rodgers, J.T.3
-
78
-
-
84871184914
-
Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis
-
Shin, D.J., P. Joshi, S.H. Hong, et al. 2012. Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res. 40: 11499–11509.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11499-11509
-
-
Shin, D.J.1
Joshi, P.2
Hong, S.H.3
-
79
-
-
84904687584
-
Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion
-
Zhang, P., B. Tu, H. Wang, et al. 2014. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc. Natl. Acad. Sci. USA 111: 10684–10689.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 10684-10689
-
-
Zhang, P.1
Tu, B.2
Wang, H.3
-
80
-
-
0023198109
-
Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene
-
Montminy, M.R. & L.M. Bilezikjian. 1987. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328: 175–178.
-
(1987)
Nature
, vol.328
, pp. 175-178
-
-
Montminy, M.R.1
Bilezikjian, L.M.2
-
81
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig, S., F. Long, U.S. Jhala, et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413: 179–183.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
-
82
-
-
20144379523
-
Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues
-
Zhang, X., D.T. Odom, S.H. Koo, et al. 2005. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102: 4459–4464.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 4459-4464
-
-
Zhang, X.1
Odom, D.T.2
Koo, S.H.3
-
83
-
-
2942729543
-
Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein
-
Zhou, X.Y., N. Shibusawa, K. Naik, et al. 2004. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat. Med. 10: 633–637.
-
(2004)
Nat. Med.
, vol.10
, pp. 633-637
-
-
Zhou, X.Y.1
Shibusawa, N.2
Naik, K.3
-
84
-
-
34548831102
-
Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
-
Dentin, R., Y. Liu, S.H. Koo, et al. 2007. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449: 366–369.
-
(2007)
Nature
, vol.449
, pp. 366-369
-
-
Dentin, R.1
Liu, Y.2
Koo, S.H.3
-
85
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu, Y., R. Dentin, D. Chen, et al. 2008. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456: 269–273.
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
-
86
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo, S.H., L. Flechner, L. Qi, et al. 2005. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437: 1109–1111.
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
-
87
-
-
77649253906
-
Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity
-
Wang, Y., H. Inoue, K. Ravnskjaer, et al. 2010. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc. Natl. Acad. Sci. USA 107: 3087–3092.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 3087-3092
-
-
Wang, Y.1
Inoue, H.2
Ravnskjaer, K.3
-
88
-
-
40449128605
-
Hepatic glucose sensing via the CREB coactivator CRTC2
-
Dentin, R., S. Hedrick, J. Xie, et al. 2008. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319: 1402–1405.
-
(2008)
Science
, vol.319
, pp. 1402-1405
-
-
Dentin, R.1
Hedrick, S.2
Xie, J.3
-
89
-
-
77950285163
-
Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH
-
Lee, M.W., D. Chanda, J. Yang, et al. 2010. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 11: 331–339.
-
(2010)
Cell Metab
, vol.11
, pp. 331-339
-
-
Lee, M.W.1
Chanda, D.2
Yang, J.3
-
90
-
-
84862828272
-
Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice
-
Zhang, C., G. Wang, Z. Zheng, et al. 2012. Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology 55: 1070–1082.
-
(2012)
Hepatology
, vol.55
, pp. 1070-1082
-
-
Zhang, C.1
Wang, G.2
Zheng, Z.3
-
91
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver, P., Z. Wu, C.W. Park, et al. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
-
92
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu, Z., P. Puigserver, U. Andersson, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
-
93
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin, J., C. Handschin & B.M. Spiegelman. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1: 361–370.
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
94
-
-
0032589689
-
Activation of PPARgamma coactivator-1 through transcription factor docking
-
Puigserver, P., G. Adelmant, Z. Wu, et al. 1999. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286: 1368–1371.
-
(1999)
Science
, vol.286
, pp. 1368-1371
-
-
Puigserver, P.1
Adelmant, G.2
Wu, Z.3
-
95
-
-
0344413490
-
Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha
-
Wallberg, A.E., S. Yamamura, S. Malik, et al. 2003. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol. Cell 12: 1137–1149.
-
(2003)
Mol. Cell
, vol.12
, pp. 1137-1149
-
-
Wallberg, A.E.1
Yamamura, S.2
Malik, S.3
-
96
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
Lin, J., P.H. Wu, P.T. Tarr, et al. 2004. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119: 121–135.
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
-
97
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1alpha interaction
-
Puigserver, P., J. Rhee, J. Donovan, et al. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1alpha interaction. Nature 423: 550–555.
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
Rhee, J.2
Donovan, J.3
-
98
-
-
0242349197
-
Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis
-
Rhee, J., Y. Inoue, J.C. Yoon, et al. 2003. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc. Natl. Acad. Sci. USA 100: 4012–4017.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 4012-4017
-
-
Rhee, J.1
Inoue, Y.2
Yoon, J.C.3
-
99
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
-
Lerin, C., J.T. Rodgers, D.E. Kalume, et al. 2006. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 3: 429–438.
-
(2006)
Cell Metab
, vol.3
, pp. 429-438
-
-
Lerin, C.1
Rodgers, J.T.2
Kalume, D.E.3
-
100
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers, J.T., C. Lerin, W. Haas, et al. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434: 113–118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
-
101
-
-
84859563667
-
CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis
-
Sakai, M., M. Matsumoto, T. Tujimura, et al. 2012. CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis. Nat. Med. 18: 612–617.
-
(2012)
Nat. Med.
, vol.18
, pp. 612-617
-
-
Sakai, M.1
Matsumoto, M.2
Tujimura, T.3
-
102
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
-
Li, X., B. Monks, Q. Ge & M.J. Birnbaum. 2007. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447: 1012–1016.
-
(2007)
Nature
, vol.447
, pp. 1012-1016
-
-
Li, X.1
Monks, B.2
Ge, Q.3
Birnbaum, M.J.4
-
103
-
-
84962159371
-
Insulin-inducible SMILE inhibits hepatic gluconeogenesis
-
Lee, J.-M., W.-Y. Seo, H.-S. Han, et al. 2016. Insulin-inducible SMILE inhibits hepatic gluconeogenesis. Diabetes 65: 62–73.
-
(2016)
Diabetes
, vol.65
, pp. 62-73
-
-
Lee, J.-M.1
Seo, W.-Y.2
Han, H.-S.3
-
104
-
-
33846887168
-
Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance
-
Zinker, B., A. Mika, P. Nguyen, et al. 2007. Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance. Metabolism 56: 380–387.
-
(2007)
Metabolism
, vol.56
, pp. 380-387
-
-
Zinker, B.1
Mika, A.2
Nguyen, P.3
-
105
-
-
0027489828
-
Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats
-
Saad, M.J., F. Folli, J.A. Kahn & C.R. Kahn. 1993. Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J. Clin. Invest. 92: 2065–2072.
-
(1993)
J. Clin. Invest.
, vol.92
, pp. 2065-2072
-
-
Saad, M.J.1
Folli, F.2
Kahn, J.A.3
Kahn, C.R.4
-
106
-
-
0028225462
-
SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis
-
Wang, X., R. Sato, M.S. Brown, et al. 1994. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77: 53–62.
-
(1994)
Cell
, vol.77
, pp. 53-62
-
-
Wang, X.1
Sato, R.2
Brown, M.S.3
-
107
-
-
0036711553
-
New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c
-
Foufelle, F. & P. Ferre. 2002. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem. J. 366: 377–391.
-
(2002)
Biochem. J.
, vol.366
, pp. 377-391
-
-
Foufelle, F.1
Ferre, P.2
-
108
-
-
84896848270
-
Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver
-
Ruiz, R., V. Jideonwo, M. Ahn, et al. 2014. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J. Biol. Chem. 289: 5510–5517.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 5510-5517
-
-
Ruiz, R.1
Jideonwo, V.2
Ahn, M.3
-
109
-
-
11144354399
-
SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes
-
Yamamoto, T., H. Shimano, Y. Nakagawa, et al. 2004. SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes. J. Biol. Chem. 279: 12027–12035.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 12027-12035
-
-
Yamamoto, T.1
Shimano, H.2
Nakagawa, Y.3
-
110
-
-
33750040230
-
Structure, function, and regulation of STAT proteins
-
Lim, C.P. & X. Cao. 2006. Structure, function, and regulation of STAT proteins. Mol. Biosyst. 2: 536–550.
-
(2006)
Mol. Biosyst.
, vol.2
, pp. 536-550
-
-
Lim, C.P.1
Cao, X.2
-
112
-
-
11144357516
-
Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo
-
Inoue, H., W. Ogawa, M. Ozaki, et al. 2004. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat. Med. 10: 168–174.
-
(2004)
Nat. Med.
, vol.10
, pp. 168-174
-
-
Inoue, H.1
Ogawa, W.2
Ozaki, M.3
-
113
-
-
33645579324
-
Role of hepatic STAT3 in brain–insulin action on hepatic glucose production
-
Inoue, H., W. Ogawa, A. Asakawa, et al. 2006. Role of hepatic STAT3 in brain–insulin action on hepatic glucose production. Cell Metab. 3: 267–275.
-
(2006)
Cell Metab
, vol.3
, pp. 267-275
-
-
Inoue, H.1
Ogawa, W.2
Asakawa, A.3
-
114
-
-
48449095742
-
STAT3 sensitizes insulin signaling by negatively regulating glycogen synthase kinase-3 beta
-
Moh, A., W. Zhang, S. Yu, et al. 2008. STAT3 sensitizes insulin signaling by negatively regulating glycogen synthase kinase-3 beta. Diabetes 57: 1227–1235.
-
(2008)
Diabetes
, vol.57
, pp. 1227-1235
-
-
Moh, A.1
Zhang, W.2
Yu, S.3
-
115
-
-
4944263717
-
Molecular mechanisms of DAX1 action
-
Iyer, A.K. & E.R. McCabe. 2004. Molecular mechanisms of DAX1 action. Mol. Genet. Metab. 83: 60–73.
-
(2004)
Mol. Genet. Metab.
, vol.83
, pp. 60-73
-
-
Iyer, A.K.1
McCabe, E.R.2
-
116
-
-
70350463602
-
DAX-1 acts as a novel corepressor of orphan nuclear receptor HNF4alpha and negatively regulates gluconeogenic enzyme gene expression
-
Nedumaran, B., S. Hong, Y.B. Xie, et al. 2009. DAX-1 acts as a novel corepressor of orphan nuclear receptor HNF4alpha and negatively regulates gluconeogenic enzyme gene expression. J. Biol. Chem. 284: 27511–27523.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 27511-27523
-
-
Nedumaran, B.1
Hong, S.2
Xie, Y.B.3
-
117
-
-
84878404399
-
Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells
-
Ahn, S.W., G.T. Gang, Y.D. Kim, et al. 2013. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J. Biol. Chem. 288: 15937–15946.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 15937-15946
-
-
Ahn, S.W.1
Gang, G.T.2
Kim, Y.D.3
-
118
-
-
84874045511
-
The origins and drivers of insulin resistance
-
Johnson, A.M. & J.M. Olefsky. 2013. The origins and drivers of insulin resistance. Cell 152: 673–684.
-
(2013)
Cell
, vol.152
, pp. 673-684
-
-
Johnson, A.M.1
Olefsky, J.M.2
-
120
-
-
0024384983
-
Differentiation between septic and postburn insulin resistance
-
Shangraw, R.E., F. Jahoor, H. Miyoshi, et al. 1989. Differentiation between septic and postburn insulin resistance. Metabolism 38: 983–989.
-
(1989)
Metabolism
, vol.38
, pp. 983-989
-
-
Shangraw, R.E.1
Jahoor, F.2
Miyoshi, H.3
-
121
-
-
0037135547
-
In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents
-
Qiao, L.Y., R. Zhande, T.L. Jetton, et al. 2002. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J. Biol. Chem. 277: 26530–26539.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 26530-26539
-
-
Qiao, L.Y.1
Zhande, R.2
Jetton, T.L.3
-
122
-
-
4544343980
-
Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies
-
Shah, O.J., Z. Wang & T. Hunter. 2004. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14: 1650–1656.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1650-1656
-
-
Shah, O.J.1
Wang, Z.2
Hunter, T.3
-
123
-
-
33749342069
-
Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin
-
Draznin, B. 2006. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55: 2392–2397.
-
(2006)
Diabetes
, vol.55
, pp. 2392-2397
-
-
Draznin, B.1
-
124
-
-
84956666350
-
The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux
-
Samuel, V.T. & G.I. Shulman. 2016. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126: 12–22.
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 12-22
-
-
Samuel, V.T.1
Shulman, G.I.2
-
125
-
-
0035897696
-
Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)
-
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. 2001. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285: 2486–2497.
-
(2001)
JAMA
, vol.285
, pp. 2486-2497
-
-
-
126
-
-
38649110496
-
Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis
-
Biddinger, S.B., A. Hernandez-Ono, C. Rask-Madsen, et al. 2008. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 7: 125–134.
-
(2008)
Cell Metab
, vol.7
, pp. 125-134
-
-
Biddinger, S.B.1
Hernandez-Ono, A.2
Rask-Madsen, C.3
-
127
-
-
84969787249
-
Unraveling the paradox of selective insulin resistance in the liver: the brain–liver connection
-
Ferris, H.A. & C.R. Kahn. 2016. Unraveling the paradox of selective insulin resistance in the liver: the brain–liver connection. Diabetes 65: 1481–1483.
-
(2016)
Diabetes
, vol.65
, pp. 1481-1483
-
-
Ferris, H.A.1
Kahn, C.R.2
-
128
-
-
33645071314
-
Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes
-
Gelling, R.W., G.J. Morton, C.D. Morrison, et al. 2006. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab. 3: 67–73.
-
(2006)
Cell Metab
, vol.3
, pp. 67-73
-
-
Gelling, R.W.1
Morton, G.J.2
Morrison, C.D.3
-
129
-
-
33645579327
-
Role reversal: brain insulin and liver STAT3
-
Myers, M.G., Jr. 2006. Role reversal: brain insulin and liver STAT3. Cell Metab. 3: 231–232.
-
(2006)
Cell Metab
, vol.3
, pp. 231-232
-
-
Myers, M.G.1
-
130
-
-
0036913187
-
Hypothalamic insulin signaling is required for inhibition of glucose production
-
Obici, S., B.B. Zhang, G. Karkanias & L. Rossetti. 2002. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8: 1376–1382.
-
(2002)
Nat. Med.
, vol.8
, pp. 1376-1382
-
-
Obici, S.1
Zhang, B.B.2
Karkanias, G.3
Rossetti, L.4
-
131
-
-
84879861815
-
Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons
-
Shi, X., F. Zhou, X. Li, et al. 2013. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metab. 18: 86–98.
-
(2013)
Cell Metab
, vol.18
, pp. 86-98
-
-
Shi, X.1
Zhou, F.2
Li, X.3
-
132
-
-
80052345224
-
Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs
-
Ramnanan, C.J., V. Saraswathi, M.S. Smith, et al. 2011. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J. Clin. Invest. 121: 3713–3723.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 3713-3723
-
-
Ramnanan, C.J.1
Saraswathi, V.2
Smith, M.S.3
-
133
-
-
84964352862
-
Insulin regulates hepatic triglyceride secretion and lipid content via signaling in the brain
-
Scherer, T., C. Lindtner, J. O'Hare, et al. 2016. Insulin regulates hepatic triglyceride secretion and lipid content via signaling in the brain. Diabetes 65: 1511–1520.
-
(2016)
Diabetes
, vol.65
, pp. 1511-1520
-
-
Scherer, T.1
Lindtner, C.2
O'Hare, J.3
-
134
-
-
70349847831
-
Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders
-
Hallschmid, M. & B. Schultes. 2009. Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52: 2264–2269.
-
(2009)
Diabetologia
, vol.52
, pp. 2264-2269
-
-
Hallschmid, M.1
Schultes, B.2
-
135
-
-
79959446484
-
Ablation of PI3K p110-α prevents high-fat diet-induced liver steatosis
-
Chattopadhyay, M., E.S. Selinger, L.M. Ballou & R.Z. Lin. 2011. Ablation of PI3K p110-α prevents high-fat diet-induced liver steatosis. Diabetes 60: 1483–1492.
-
(2011)
Diabetes
, vol.60
, pp. 1483-1492
-
-
Chattopadhyay, M.1
Selinger, E.S.2
Ballou, L.M.3
Lin, R.Z.4
|