메뉴 건너뛰기




Volumn 1411, Issue 1, 2018, Pages 21-35

Insulin regulation of gluconeogenesis

Author keywords

gluconeogenesis; glucose; glycogenolysis; insulin; regulation

Indexed keywords

CDC LIKE KINASE; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; CYCLIN DEPENDENT KINASE; GLUCOCORTICOID RECEPTOR; GLUCOSE; INSULIN; INSULIN RECEPTOR SUBSTRATE 1; INSULIN RECEPTOR SUBSTRATE 2; MITOGEN ACTIVATED PROTEIN KINASE; NUCLEAR RECEPTOR DAX 1; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHOINOSITIDE DEPENDENT PROTEIN KINASE 1; PHOSPHOTRANSFERASE; PROTEIN KINASE B; STAT3 PROTEIN; STEROL REGULATORY ELEMENT BINDING PROTEIN; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR CREBH; TRANSCRIPTION FACTOR FKHR; UNCLASSIFIED DRUG; ANTIDIABETIC AGENT; PROTEIN KINASE;

EID: 85044149543     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.13435     Document Type: Review
Times cited : (366)

References (135)
  • 1
    • 0035146344 scopus 로고    scopus 로고
    • Renal gluconeogenesis: its importance in human glucose homeostasis
    • Gerich, J.E., C. Meyer, H.J. Woerle & M. Stumvoll. 2001. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24: 382–391.
    • (2001) Diabetes Care , vol.24 , pp. 382-391
    • Gerich, J.E.1    Meyer, C.2    Woerle, H.J.3    Stumvoll, M.4
  • 3
    • 0025160127 scopus 로고
    • Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription
    • O'Brien, R.M., P.C. Lucas, C.D. Forest, et al. 1990. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science 249: 533–537.
    • (1990) Science , vol.249 , pp. 533-537
    • O'Brien, R.M.1    Lucas, P.C.2    Forest, C.D.3
  • 5
    • 0035430524 scopus 로고    scopus 로고
    • Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients
    • Gastaldelli, A., E. Toschi, M. Pettiti, et al. 2001. Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 50: 1807–1812.
    • (2001) Diabetes , vol.50 , pp. 1807-1812
    • Gastaldelli, A.1    Toschi, E.2    Pettiti, M.3
  • 6
    • 0032520870 scopus 로고    scopus 로고
    • Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans
    • Petersen, K.F., D. Laurent, D.L. Rothman, et al. 1998. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J. Clin. Invest. 101: 1203–1209.
    • (1998) J. Clin. Invest. , vol.101 , pp. 1203-1209
    • Petersen, K.F.1    Laurent, D.2    Rothman, D.L.3
  • 7
    • 32444434587 scopus 로고    scopus 로고
    • Insulin's direct effects on the liver dominate the control of hepatic glucose production
    • Edgerton, D.S., M. Lautz, M. Scott, et al. 2006. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J. Clin. Invest. 116: 521–527.
    • (2006) J. Clin. Invest. , vol.116 , pp. 521-527
    • Edgerton, D.S.1    Lautz, M.2    Scott, M.3
  • 8
    • 0014008909 scopus 로고
    • Control of gluconeogenesis by acetyl CoA in rats treated with glucagon and anti-insulin serum
    • Williamson, J.R., P.H. Wright, W.J. Malaisse & J. Ashmore. 1966. Control of gluconeogenesis by acetyl CoA in rats treated with glucagon and anti-insulin serum. Biochem. Biophys. Res. Commun. 24: 765–770.
    • (1966) Biochem. Biophys. Res. Commun. , vol.24 , pp. 765-770
    • Williamson, J.R.1    Wright, P.H.2    Malaisse, W.J.3    Ashmore, J.4
  • 9
    • 0014034749 scopus 로고
    • Effects of insulin on amino acid release and urea formation in perfused rat liver
    • Mondon, C.E. & G.E. Mortimore. 1967. Effects of insulin on amino acid release and urea formation in perfused rat liver. Am. J. Physiol. 212: 173–178.
    • (1967) Am. J. Physiol. , vol.212 , pp. 173-178
    • Mondon, C.E.1    Mortimore, G.E.2
  • 10
    • 32444447035 scopus 로고    scopus 로고
    • Insulin's effect on the liver: “direct or indirect?” continues to be the question
    • Girard, J. 2006. Insulin's effect on the liver: “direct or indirect?” continues to be the question. J. Clin. Invest. 116: 302–304.
    • (2006) J. Clin. Invest. , vol.116 , pp. 302-304
    • Girard, J.1
  • 11
    • 84929190974 scopus 로고    scopus 로고
    • FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization
    • O-Sullivan, I., W. Zhang, D.H. Wasserman, et al. 2015. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 6: 7079.
    • (2015) Nat. Commun. , vol.6 , pp. 7079
    • O-Sullivan, I.1    Zhang, W.2    Wasserman, D.H.3
  • 12
    • 20044394745 scopus 로고    scopus 로고
    • Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells
    • Ravier, M.A. & G.A. Rutter. 2005. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54: 1789–1797.
    • (2005) Diabetes , vol.54 , pp. 1789-1797
    • Ravier, M.A.1    Rutter, G.A.2
  • 13
    • 79951962147 scopus 로고    scopus 로고
    • CREB and the CRTC co-activators: sensors for hormonal and metabolic signals
    • Altarejos, J.Y. & M. Montminy. 2011. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12: 141–151.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 141-151
    • Altarejos, J.Y.1    Montminy, M.2
  • 15
    • 63449087896 scopus 로고    scopus 로고
    • Insulin signaling in alpha cells modulates glucagon secretion in vivo
    • Kawamori, D., A.J. Kurpad, J. Hu, et al. 2009. Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab. 9: 350–361.
    • (2009) Cell Metab. , vol.9 , pp. 350-361
    • Kawamori, D.1    Kurpad, A.J.2    Hu, J.3
  • 16
    • 0037324750 scopus 로고    scopus 로고
    • Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production
    • Fisher, S.J. & C.R. Kahn. 2003. Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J. Clin. Invest. 111: 463–468.
    • (2003) J. Clin. Invest. , vol.111 , pp. 463-468
    • Fisher, S.J.1    Kahn, C.R.2
  • 17
    • 0030975131 scopus 로고    scopus 로고
    • Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans
    • Lewis, G.F., M. Vranic, P. Harley & A. Giacca. 1997. Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans. Diabetes 46: 1111–1119.
    • (1997) Diabetes , vol.46 , pp. 1111-1119
    • Lewis, G.F.1    Vranic, M.2    Harley, P.3    Giacca, A.4
  • 18
    • 79955584321 scopus 로고    scopus 로고
    • Leptin and the central nervous system control of glucose metabolism
    • Morton, G.J. & M.W. Schwartz. 2011. Leptin and the central nervous system control of glucose metabolism. Physiol. Rev. 91: 389–411.
    • (2011) Physiol. Rev. , vol.91 , pp. 389-411
    • Morton, G.J.1    Schwartz, M.W.2
  • 19
    • 18244395309 scopus 로고    scopus 로고
    • Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice
    • Buettner, C., R. Patel, E.D. Muse, et al. 2005. Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice. J. Clin. Invest. 115: 1306–1313.
    • (2005) J. Clin. Invest. , vol.115 , pp. 1306-1313
    • Buettner, C.1    Patel, R.2    Muse, E.D.3
  • 20
    • 84857934301 scopus 로고    scopus 로고
    • Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1
    • Lu, M., M. Wan, K.F. Leavens, et al. 2012. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat. Med. 18: 388–395.
    • (2012) Nat. Med. , vol.18 , pp. 388-395
    • Lu, M.1    Wan, M.2    Leavens, K.F.3
  • 21
    • 84929148324 scopus 로고    scopus 로고
    • Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo
    • Titchenell, P.M., Q. Chu, B.R. Monks & M.J. Birnbaum. 2015. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 6: 7078.
    • (2015) Nat. Commun. , vol.6 , pp. 7078
    • Titchenell, P.M.1    Chu, Q.2    Monks, B.R.3    Birnbaum, M.J.4
  • 22
    • 84922709227 scopus 로고    scopus 로고
    • Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes
    • Perry, R.J., J.P. Camporez, R. Kursawe, et al. 2015. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160: 745–758.
    • (2015) Cell , vol.160 , pp. 745-758
    • Perry, R.J.1    Camporez, J.P.2    Kursawe, R.3
  • 23
    • 0141839103 scopus 로고    scopus 로고
    • Novel concepts in insulin regulation of hepatic gluconeogenesis
    • Barthel, A. & D. Schmoll. 2003. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 285: E685–E692.
    • (2003) Am. J. Physiol. Endocrinol. Metab. , vol.285 , pp. E685-E692
    • Barthel, A.1    Schmoll, D.2
  • 24
    • 67749142348 scopus 로고    scopus 로고
    • Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes
    • Samuel, V.T., S.A. Beddow, T. Iwasaki, et al. 2009. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc. Natl. Acad. Sci. USA 106: 12121–12126.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 12121-12126
    • Samuel, V.T.1    Beddow, S.A.2    Iwasaki, T.3
  • 25
    • 45749114635 scopus 로고    scopus 로고
    • Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis
    • Valenti, L., R. Rametta, P. Dongiovanni, et al. 2008. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 57: 1355–1362.
    • (2008) Diabetes , vol.57 , pp. 1355-1362
    • Valenti, L.1    Rametta, R.2    Dongiovanni, P.3
  • 26
    • 20444443042 scopus 로고    scopus 로고
    • Sampling variability of liver biopsy in nonalcoholic fatty liver disease
    • Ratziu, V., F. Charlotte, A. Heurtier, et al. 2005. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128: 1898–1906.
    • (2005) Gastroenterology , vol.128 , pp. 1898-1906
    • Ratziu, V.1    Charlotte, F.2    Heurtier, A.3
  • 27
    • 78049259220 scopus 로고    scopus 로고
    • Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy
    • Rizza, R.A. 2010. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 59: 2697–2707.
    • (2010) Diabetes , vol.59 , pp. 2697-2707
    • Rizza, R.A.1
  • 28
    • 0037007124 scopus 로고    scopus 로고
    • The insulin signalling pathway
    • Lizcano, J.M. & D.R. Alessi. 2002. The insulin signalling pathway. Curr. Biol. 12: R236–R238.
    • (2002) Curr. Biol. , vol.12 , pp. R236-R238
    • Lizcano, J.M.1    Alessi, D.R.2
  • 29
    • 0032567937 scopus 로고    scopus 로고
    • Disruption of IRS-2 causes type 2 diabetes in mice
    • Withers, D.J., J.S. Gutierrez, H. Towery, et al. 1998. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900–904.
    • (1998) Nature , vol.391 , pp. 900-904
    • Withers, D.J.1    Gutierrez, J.S.2    Towery, H.3
  • 30
    • 0028032894 scopus 로고
    • Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1
    • Tamemoto, H., T. Kadowaki, K. Tobe, et al. 1994. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182–186.
    • (1994) Nature , vol.372 , pp. 182-186
    • Tamemoto, H.1    Kadowaki, T.2    Tobe, K.3
  • 31
    • 31044446941 scopus 로고    scopus 로고
    • Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth
    • Dong, X., S. Park, X. Lin, et al. 2006. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest. 116: 101–114.
    • (2006) J. Clin. Invest. , vol.116 , pp. 101-114
    • Dong, X.1    Park, S.2    Lin, X.3
  • 32
    • 0036853886 scopus 로고    scopus 로고
    • Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver
    • Miyake, K., W. Ogawa, M. Matsumoto, et al. 2002. Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. J. Clin. Invest. 110: 1483–1491.
    • (2002) J. Clin. Invest. , vol.110 , pp. 1483-1491
    • Miyake, K.1    Ogawa, W.2    Matsumoto, M.3
  • 33
    • 0032563201 scopus 로고    scopus 로고
    • Assessment of the roles of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, and protein kinase C in insulin inhibition of cAMP-induced phosphoenolpyruvate carboxykinase gene transcription
    • Agati, J.M., D. Yeagley & P.G. Quinn. 1998. Assessment of the roles of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, and protein kinase C in insulin inhibition of cAMP-induced phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 273: 18751–18759.
    • (1998) J. Biol. Chem. , vol.273 , pp. 18751-18759
    • Agati, J.M.1    Yeagley, D.2    Quinn, P.G.3
  • 34
    • 13444252573 scopus 로고    scopus 로고
    • Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure
    • Mora, A., C. Lipina, F. Tronche, et al. 2005. Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure. Biochem. J. 385: 639–648.
    • (2005) Biochem. J. , vol.385 , pp. 639-648
    • Mora, A.1    Lipina, C.2    Tronche, F.3
  • 36
    • 0032510947 scopus 로고    scopus 로고
    • Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle
    • Brozinick, J.T., Jr. & M.J. Birnbaum. 1998. Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J. Biol. Chem. 273: 14679–14682.
    • (1998) J. Biol. Chem. , vol.273 , pp. 14679-14682
    • Brozinick, J.T.1    Birnbaum, M.J.2
  • 37
    • 69249208791 scopus 로고    scopus 로고
    • The Akt kinases: isoform specificity in metabolism and cancer
    • Gonzalez, E. & T.E. McGraw. 2009. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8: 2502–2508.
    • (2009) Cell Cycle , vol.8 , pp. 2502-2508
    • Gonzalez, E.1    McGraw, T.E.2
  • 38
    • 0035368548 scopus 로고    scopus 로고
    • Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
    • Cho, H., J. Mu, J.K. Kim, et al. 2001. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292: 1728–1731.
    • (2001) Science , vol.292 , pp. 1728-1731
    • Cho, H.1    Mu, J.2    Kim, J.K.3
  • 39
    • 0035914388 scopus 로고    scopus 로고
    • Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice
    • Cho, H., J.L. Thorvaldsen, Q. Chu, et al. 2001. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276: 38349–38352.
    • (2001) J. Biol. Chem. , vol.276 , pp. 38349-38352
    • Cho, H.1    Thorvaldsen, J.L.2    Chu, Q.3
  • 40
    • 0035038729 scopus 로고    scopus 로고
    • Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression
    • Lochhead, P.A., M. Coghlan, S.Q. Rice & C. Sutherland. 2001. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 50: 937–946.
    • (2001) Diabetes , vol.50 , pp. 937-946
    • Lochhead, P.A.1    Coghlan, M.2    Rice, S.Q.3    Sutherland, C.4
  • 41
    • 0032538568 scopus 로고    scopus 로고
    • Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene
    • Liao, J., A. Barthel, K. Nakatani & R.A. Roth. 1998. Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene. J. Biol. Chem. 273: 27320–27324.
    • (1998) J. Biol. Chem. , vol.273 , pp. 27320-27324
    • Liao, J.1    Barthel, A.2    Nakatani, K.3    Roth, R.A.4
  • 42
    • 0034680839 scopus 로고    scopus 로고
    • Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity
    • Schmoll, D., K.S. Walker, D.R. Alessi, et al. 2000. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J. Biol. Chem. 275: 36324–36333.
    • (2000) J. Biol. Chem. , vol.275 , pp. 36324-36333
    • Schmoll, D.1    Walker, K.S.2    Alessi, D.R.3
  • 43
    • 80052970809 scopus 로고    scopus 로고
    • FoxO transcription factors; regulation by AKT and 14-3-3 proteins
    • Tzivion, G., M. Dobson & G. Ramakrishnan. 2011. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 1813: 1938–1945.
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1938-1945
    • Tzivion, G.1    Dobson, M.2    Ramakrishnan, G.3
  • 44
    • 0030050975 scopus 로고    scopus 로고
    • Insulin regulation of phosphoenolpyruvate carboxykinase gene expression does not require activation of the Ras/mitogen-activated protein kinase signaling pathway
    • Gabbay, R.A., C. Sutherland, L. Gnudi, et al. 1996. Insulin regulation of phosphoenolpyruvate carboxykinase gene expression does not require activation of the Ras/mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 271: 1890–1897.
    • (1996) J. Biol. Chem. , vol.271 , pp. 1890-1897
    • Gabbay, R.A.1    Sutherland, C.2    Gnudi, L.3
  • 45
    • 0032489036 scopus 로고    scopus 로고
    • Activation of the ras mitogen-activated protein kinase-ribosomal protein kinase pathway is not required for the repression of phosphoenolpyruvate carboxykinase gene transcription by insulin
    • Sutherland, C., M. Waltner-Law, L. Gnudi, et al. 1998. Activation of the ras mitogen-activated protein kinase-ribosomal protein kinase pathway is not required for the repression of phosphoenolpyruvate carboxykinase gene transcription by insulin. J. Biol. Chem. 273: 3198–3204.
    • (1998) J. Biol. Chem. , vol.273 , pp. 3198-3204
    • Sutherland, C.1    Waltner-Law, M.2    Gnudi, L.3
  • 46
    • 30044436829 scopus 로고    scopus 로고
    • p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis
    • Cao, W., Q.F. Collins, T.C. Becker, et al. 2005. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J. Biol. Chem. 280: 42731–42737.
    • (2005) J. Biol. Chem. , vol.280 , pp. 42731-42737
    • Cao, W.1    Collins, Q.F.2    Becker, T.C.3
  • 47
    • 33748299056 scopus 로고    scopus 로고
    • p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes
    • Collins, Q.F., Y. Xiong, E.G. Lupo, Jr., et al. 2006. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J. Biol. Chem. 281: 24336–24344.
    • (2006) J. Biol. Chem. , vol.281 , pp. 24336-24344
    • Collins, Q.F.1    Xiong, Y.2    Lupo, E.G.3
  • 48
    • 34347216368 scopus 로고    scopus 로고
    • Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase
    • Liu, H.Y., Q.F. Collins, Y. Xiong, et al. 2007. Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. J. Biol. Chem. 282: 14205–14212.
    • (2007) J. Biol. Chem. , vol.282 , pp. 14205-14212
    • Liu, H.Y.1    Collins, Q.F.2    Xiong, Y.3
  • 49
    • 84920019080 scopus 로고    scopus 로고
    • Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis
    • Lawan, A., L. Zhang, F. Gatzke, et al. 2015. Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis. Mol. Cell. Biol. 35: 26–40.
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 26-40
    • Lawan, A.1    Zhang, L.2    Gatzke, F.3
  • 50
    • 18244399631 scopus 로고    scopus 로고
    • Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1
    • Puigserver, P., J. Rhee, J. Lin, et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol. Cell 8: 971–982.
    • (2001) Mol. Cell , vol.8 , pp. 971-982
    • Puigserver, P.1    Rhee, J.2    Lin, J.3
  • 51
    • 33846208251 scopus 로고    scopus 로고
    • Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1
    • Asada, S., H. Daitoku, H. Matsuzaki, et al. 2007. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell. Signal. 19: 519–527.
    • (2007) Cell. Signal. , vol.19 , pp. 519-527
    • Asada, S.1    Daitoku, H.2    Matsuzaki, H.3
  • 52
    • 0031953590 scopus 로고    scopus 로고
    • Protein phosphatase-1 and insulin action
    • Ragolia, L. & N. Begum. 1998. Protein phosphatase-1 and insulin action. Mol. Cell. Biochem. 182: 49–58.
    • (1998) Mol. Cell. Biochem. , vol.182 , pp. 49-58
    • Ragolia, L.1    Begum, N.2
  • 53
    • 84920770954 scopus 로고    scopus 로고
    • Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing
    • Araki, S., R. Dairiki, Y. Nakayama, et al. 2015. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS One 10: e0116929.
    • (2015) PLoS One , vol.10
    • Araki, S.1    Dairiki, R.2    Nakayama, Y.3
  • 54
    • 79951506095 scopus 로고    scopus 로고
    • Clk2 and B56β mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt
    • Rodgers, J.T., R.O. Vogel & P. Puigserver. 2011. Clk2 and B56β mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt. Mol. Cell 41: 471–479.
    • (2011) Mol. Cell , vol.41 , pp. 471-479
    • Rodgers, J.T.1    Vogel, R.O.2    Puigserver, P.3
  • 55
    • 72649098153 scopus 로고    scopus 로고
    • Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis
    • Rodgers, J.T., W. Haas, S.P. Gygi & P. Puigserver. 2010. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab. 11: 23–34.
    • (2010) Cell Metab , vol.11 , pp. 23-34
    • Rodgers, J.T.1    Haas, W.2    Gygi, S.P.3    Puigserver, P.4
  • 56
    • 84899045749 scopus 로고    scopus 로고
    • Cdc2-like kinase 2 suppresses hepatic fatty acid oxidation and ketogenesis through disruption of the PGC-1α and MED1 complex
    • Tabata, M., J.T. Rodgers, J.A. Hall, et al. 2014. Cdc2-like kinase 2 suppresses hepatic fatty acid oxidation and ketogenesis through disruption of the PGC-1α and MED1 complex. Diabetes 63: 1519–1532.
    • (2014) Diabetes , vol.63 , pp. 1519-1532
    • Tabata, M.1    Rodgers, J.T.2    Hall, J.A.3
  • 57
    • 77953707371 scopus 로고    scopus 로고
    • Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates
    • Suryadinata, R., M. Sadowski & B. Sarcevic. 2010. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Biosci. Rep. 30: 243–255.
    • (2010) Biosci. Rep. , vol.30 , pp. 243-255
    • Suryadinata, R.1    Sadowski, M.2    Sarcevic, B.3
  • 58
    • 84962071033 scopus 로고    scopus 로고
    • Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases
    • Hydbring, P., M. Malumbres & P. Sicinski. 2016. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat. Rev. Mol. Cell Biol. 17: 280–292.
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 280-292
    • Hydbring, P.1    Malumbres, M.2    Sicinski, P.3
  • 59
    • 33847352056 scopus 로고    scopus 로고
    • London; Sunderland, MA, New Science Press; Sinauer Associates
    • Morgan, D.O. 2007. The Cell Cycle: Principles of Control. London; Sunderland, MA: New Science Press; Sinauer Associates.
    • (2007) The Cell Cycle: Principles of Control
    • Morgan, D.O.1
  • 60
    • 84944891766 scopus 로고    scopus 로고
    • Cyclin-dependent kinase regulatory subunit 1 promotes cell proliferation by insulin regulation
    • Liu, C.Y., W.L. Zhao, J.X. Wang & X.F. Zhao. 2015. Cyclin-dependent kinase regulatory subunit 1 promotes cell proliferation by insulin regulation. Cell Cycle 14: 3045–3057.
    • (2015) Cell Cycle , vol.14 , pp. 3045-3057
    • Liu, C.Y.1    Zhao, W.L.2    Wang, J.X.3    Zhao, X.F.4
  • 61
    • 84907483798 scopus 로고    scopus 로고
    • Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α
    • Bhalla, K., W.J. Liu, K. Thompson, et al. 2014. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α. Diabetes 63: 3266–3278.
    • (2014) Diabetes , vol.63 , pp. 3266-3278
    • Bhalla, K.1    Liu, W.J.2    Thompson, K.3
  • 62
    • 84903521363 scopus 로고    scopus 로고
    • Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression
    • Lee, Y., J.E. Dominy, Y.J. Choi, et al. 2014. Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510: 547–551.
    • (2014) Nature , vol.510 , pp. 547-551
    • Lee, Y.1    Dominy, J.E.2    Choi, Y.J.3
  • 63
    • 63149115282 scopus 로고    scopus 로고
    • The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes
    • Lalioti, V., G. Muruais, A. Dinarina, et al. 2009. The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 106: 4249–4253.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 4249-4253
    • Lalioti, V.1    Muruais, G.2    Dinarina, A.3
  • 64
    • 77954941113 scopus 로고    scopus 로고
    • Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5
    • Choi, J.H., A.S. Banks, J.L. Estall, et al. 2010. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466: 451–456.
    • (2010) Nature , vol.466 , pp. 451-456
    • Choi, J.H.1    Banks, A.S.2    Estall, J.L.3
  • 65
    • 33846295218 scopus 로고    scopus 로고
    • FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
    • Paik, J.H., R. Kollipara, G. Chu, et al. 2007. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128: 309–323.
    • (2007) Cell , vol.128 , pp. 309-323
    • Paik, J.H.1    Kollipara, R.2    Chu, G.3
  • 66
    • 84880415788 scopus 로고    scopus 로고
    • Forkhead box class O transcription factors in liver function and disease
    • Tikhanovich, I., J. Cox & S.A. Weinman. 2013. Forkhead box class O transcription factors in liver function and disease. J. Gastroenterol. Hepatol. 28(Suppl. 1): 125–131.
    • (2013) J. Gastroenterol. Hepatol. , vol.28 , pp. 125-131
    • Tikhanovich, I.1    Cox, J.2    Weinman, S.A.3
  • 67
    • 34548349302 scopus 로고    scopus 로고
    • Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver
    • Matsumoto, M., A. Pocai, L. Rossetti, et al. 2007. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6: 208–216.
    • (2007) Cell Metab , vol.6 , pp. 208-216
    • Matsumoto, M.1    Pocai, A.2    Rossetti, L.3
  • 68
    • 33748312093 scopus 로고    scopus 로고
    • Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism
    • Matsumoto, M., S. Han, T. Kitamura & D. Accili. 2006. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116: 2464–2472.
    • (2006) J. Clin. Invest. , vol.116 , pp. 2464-2472
    • Matsumoto, M.1    Han, S.2    Kitamura, T.3    Accili, D.4
  • 69
    • 0032830572 scopus 로고    scopus 로고
    • Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence
    • Ayala, J.E., R.S. Streeper, J.S. Desgrosellier, et al. 1999. Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes 48: 1885–1889.
    • (1999) Diabetes , vol.48 , pp. 1885-1889
    • Ayala, J.E.1    Streeper, R.S.2    Desgrosellier, J.S.3
  • 70
    • 0034730660 scopus 로고    scopus 로고
    • Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins
    • Hall, R.K., T. Yamasaki, T. Kucera, et al. 2000. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. J. Biol. Chem. 275: 30169–30175.
    • (2000) J. Biol. Chem. , vol.275 , pp. 30169-30175
    • Hall, R.K.1    Yamasaki, T.2    Kucera, T.3
  • 71
    • 20144365700 scopus 로고    scopus 로고
    • Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
    • Frescas, D., L. Valenti & D. Accili. 2005. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280: 20589–20595.
    • (2005) J. Biol. Chem. , vol.280 , pp. 20589-20595
    • Frescas, D.1    Valenti, L.2    Accili, D.3
  • 72
    • 79955815135 scopus 로고    scopus 로고
    • Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
    • Mihaylova, M.M., D.S. Vasquez, K. Ravnskjaer, et al. 2011. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145: 607–621.
    • (2011) Cell , vol.145 , pp. 607-621
    • Mihaylova, M.M.1    Vasquez, D.S.2    Ravnskjaer, K.3
  • 73
    • 79952381078 scopus 로고    scopus 로고
    • Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction
    • Zhou, Y., J. Lee, C.M. Reno, et al. 2011. Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nat. Med. 17: 356–365.
    • (2011) Nat. Med. , vol.17 , pp. 356-365
    • Zhou, Y.1    Lee, J.2    Reno, C.M.3
  • 74
    • 84901924457 scopus 로고    scopus 로고
    • USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy
    • Hall, J.A., M. Tabata, J.T. Rodgers & P. Puigserver. 2014. USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy. Mol. Endocrinol. 28: 912–924.
    • (2014) Mol. Endocrinol. , vol.28 , pp. 912-924
    • Hall, J.A.1    Tabata, M.2    Rodgers, J.T.3    Puigserver, P.4
  • 75
    • 47749149232 scopus 로고    scopus 로고
    • O-GlcNAc regulates FoxO activation in response to glucose
    • Housley, M.P., J.T. Rodgers, N.D. Udeshi, et al. 2008. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283: 16283–16292.
    • (2008) J. Biol. Chem. , vol.283 , pp. 16283-16292
    • Housley, M.P.1    Rodgers, J.T.2    Udeshi, N.D.3
  • 76
    • 39749171700 scopus 로고    scopus 로고
    • O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene
    • Kuo, M., V. Zilberfarb, N. Gangneux, et al. 2008. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett. 582: 829–834.
    • (2008) FEBS Lett , vol.582 , pp. 829-834
    • Kuo, M.1    Zilberfarb, V.2    Gangneux, N.3
  • 77
    • 64149111641 scopus 로고    scopus 로고
    • A PGC-1alpha–O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose
    • Housley, M.P., N.D. Udeshi, J.T. Rodgers, et al. 2009. A PGC-1alpha–O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 284: 5148–5157.
    • (2009) J. Biol. Chem. , vol.284 , pp. 5148-5157
    • Housley, M.P.1    Udeshi, N.D.2    Rodgers, J.T.3
  • 78
    • 84871184914 scopus 로고    scopus 로고
    • Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis
    • Shin, D.J., P. Joshi, S.H. Hong, et al. 2012. Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res. 40: 11499–11509.
    • (2012) Nucleic Acids Res , vol.40 , pp. 11499-11509
    • Shin, D.J.1    Joshi, P.2    Hong, S.H.3
  • 79
    • 84904687584 scopus 로고    scopus 로고
    • Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion
    • Zhang, P., B. Tu, H. Wang, et al. 2014. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc. Natl. Acad. Sci. USA 111: 10684–10689.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 10684-10689
    • Zhang, P.1    Tu, B.2    Wang, H.3
  • 80
    • 0023198109 scopus 로고
    • Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene
    • Montminy, M.R. & L.M. Bilezikjian. 1987. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328: 175–178.
    • (1987) Nature , vol.328 , pp. 175-178
    • Montminy, M.R.1    Bilezikjian, L.M.2
  • 81
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Herzig, S., F. Long, U.S. Jhala, et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413: 179–183.
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1    Long, F.2    Jhala, U.S.3
  • 82
    • 20144379523 scopus 로고    scopus 로고
    • Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues
    • Zhang, X., D.T. Odom, S.H. Koo, et al. 2005. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102: 4459–4464.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 4459-4464
    • Zhang, X.1    Odom, D.T.2    Koo, S.H.3
  • 83
    • 2942729543 scopus 로고    scopus 로고
    • Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein
    • Zhou, X.Y., N. Shibusawa, K. Naik, et al. 2004. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat. Med. 10: 633–637.
    • (2004) Nat. Med. , vol.10 , pp. 633-637
    • Zhou, X.Y.1    Shibusawa, N.2    Naik, K.3
  • 84
    • 34548831102 scopus 로고    scopus 로고
    • Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
    • Dentin, R., Y. Liu, S.H. Koo, et al. 2007. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449: 366–369.
    • (2007) Nature , vol.449 , pp. 366-369
    • Dentin, R.1    Liu, Y.2    Koo, S.H.3
  • 85
    • 56249100986 scopus 로고    scopus 로고
    • A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
    • Liu, Y., R. Dentin, D. Chen, et al. 2008. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456: 269–273.
    • (2008) Nature , vol.456 , pp. 269-273
    • Liu, Y.1    Dentin, R.2    Chen, D.3
  • 86
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo, S.H., L. Flechner, L. Qi, et al. 2005. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437: 1109–1111.
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.H.1    Flechner, L.2    Qi, L.3
  • 87
    • 77649253906 scopus 로고    scopus 로고
    • Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity
    • Wang, Y., H. Inoue, K. Ravnskjaer, et al. 2010. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc. Natl. Acad. Sci. USA 107: 3087–3092.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 3087-3092
    • Wang, Y.1    Inoue, H.2    Ravnskjaer, K.3
  • 88
    • 40449128605 scopus 로고    scopus 로고
    • Hepatic glucose sensing via the CREB coactivator CRTC2
    • Dentin, R., S. Hedrick, J. Xie, et al. 2008. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319: 1402–1405.
    • (2008) Science , vol.319 , pp. 1402-1405
    • Dentin, R.1    Hedrick, S.2    Xie, J.3
  • 89
    • 77950285163 scopus 로고    scopus 로고
    • Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH
    • Lee, M.W., D. Chanda, J. Yang, et al. 2010. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 11: 331–339.
    • (2010) Cell Metab , vol.11 , pp. 331-339
    • Lee, M.W.1    Chanda, D.2    Yang, J.3
  • 90
    • 84862828272 scopus 로고    scopus 로고
    • Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice
    • Zhang, C., G. Wang, Z. Zheng, et al. 2012. Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology 55: 1070–1082.
    • (2012) Hepatology , vol.55 , pp. 1070-1082
    • Zhang, C.1    Wang, G.2    Zheng, Z.3
  • 91
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver, P., Z. Wu, C.W. Park, et al. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3
  • 92
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu, Z., P. Puigserver, U. Andersson, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Andersson, U.3
  • 93
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • Lin, J., C. Handschin & B.M. Spiegelman. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1: 361–370.
    • (2005) Cell Metab , vol.1 , pp. 361-370
    • Lin, J.1    Handschin, C.2    Spiegelman, B.M.3
  • 94
    • 0032589689 scopus 로고    scopus 로고
    • Activation of PPARgamma coactivator-1 through transcription factor docking
    • Puigserver, P., G. Adelmant, Z. Wu, et al. 1999. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286: 1368–1371.
    • (1999) Science , vol.286 , pp. 1368-1371
    • Puigserver, P.1    Adelmant, G.2    Wu, Z.3
  • 95
    • 0344413490 scopus 로고    scopus 로고
    • Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha
    • Wallberg, A.E., S. Yamamura, S. Malik, et al. 2003. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol. Cell 12: 1137–1149.
    • (2003) Mol. Cell , vol.12 , pp. 1137-1149
    • Wallberg, A.E.1    Yamamura, S.2    Malik, S.3
  • 96
    • 5344252327 scopus 로고    scopus 로고
    • Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
    • Lin, J., P.H. Wu, P.T. Tarr, et al. 2004. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119: 121–135.
    • (2004) Cell , vol.119 , pp. 121-135
    • Lin, J.1    Wu, P.H.2    Tarr, P.T.3
  • 97
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1alpha interaction
    • Puigserver, P., J. Rhee, J. Donovan, et al. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1alpha interaction. Nature 423: 550–555.
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1    Rhee, J.2    Donovan, J.3
  • 98
    • 0242349197 scopus 로고    scopus 로고
    • Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis
    • Rhee, J., Y. Inoue, J.C. Yoon, et al. 2003. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc. Natl. Acad. Sci. USA 100: 4012–4017.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 4012-4017
    • Rhee, J.1    Inoue, Y.2    Yoon, J.C.3
  • 99
    • 33744534726 scopus 로고    scopus 로고
    • GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
    • Lerin, C., J.T. Rodgers, D.E. Kalume, et al. 2006. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 3: 429–438.
    • (2006) Cell Metab , vol.3 , pp. 429-438
    • Lerin, C.1    Rodgers, J.T.2    Kalume, D.E.3
  • 100
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers, J.T., C. Lerin, W. Haas, et al. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434: 113–118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3
  • 101
    • 84859563667 scopus 로고    scopus 로고
    • CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis
    • Sakai, M., M. Matsumoto, T. Tujimura, et al. 2012. CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis. Nat. Med. 18: 612–617.
    • (2012) Nat. Med. , vol.18 , pp. 612-617
    • Sakai, M.1    Matsumoto, M.2    Tujimura, T.3
  • 102
    • 34250740323 scopus 로고    scopus 로고
    • Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
    • Li, X., B. Monks, Q. Ge & M.J. Birnbaum. 2007. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447: 1012–1016.
    • (2007) Nature , vol.447 , pp. 1012-1016
    • Li, X.1    Monks, B.2    Ge, Q.3    Birnbaum, M.J.4
  • 103
    • 84962159371 scopus 로고    scopus 로고
    • Insulin-inducible SMILE inhibits hepatic gluconeogenesis
    • Lee, J.-M., W.-Y. Seo, H.-S. Han, et al. 2016. Insulin-inducible SMILE inhibits hepatic gluconeogenesis. Diabetes 65: 62–73.
    • (2016) Diabetes , vol.65 , pp. 62-73
    • Lee, J.-M.1    Seo, W.-Y.2    Han, H.-S.3
  • 104
    • 33846887168 scopus 로고    scopus 로고
    • Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance
    • Zinker, B., A. Mika, P. Nguyen, et al. 2007. Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance. Metabolism 56: 380–387.
    • (2007) Metabolism , vol.56 , pp. 380-387
    • Zinker, B.1    Mika, A.2    Nguyen, P.3
  • 105
    • 0027489828 scopus 로고
    • Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats
    • Saad, M.J., F. Folli, J.A. Kahn & C.R. Kahn. 1993. Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J. Clin. Invest. 92: 2065–2072.
    • (1993) J. Clin. Invest. , vol.92 , pp. 2065-2072
    • Saad, M.J.1    Folli, F.2    Kahn, J.A.3    Kahn, C.R.4
  • 106
    • 0028225462 scopus 로고
    • SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis
    • Wang, X., R. Sato, M.S. Brown, et al. 1994. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77: 53–62.
    • (1994) Cell , vol.77 , pp. 53-62
    • Wang, X.1    Sato, R.2    Brown, M.S.3
  • 107
    • 0036711553 scopus 로고    scopus 로고
    • New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c
    • Foufelle, F. & P. Ferre. 2002. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem. J. 366: 377–391.
    • (2002) Biochem. J. , vol.366 , pp. 377-391
    • Foufelle, F.1    Ferre, P.2
  • 108
    • 84896848270 scopus 로고    scopus 로고
    • Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver
    • Ruiz, R., V. Jideonwo, M. Ahn, et al. 2014. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J. Biol. Chem. 289: 5510–5517.
    • (2014) J. Biol. Chem. , vol.289 , pp. 5510-5517
    • Ruiz, R.1    Jideonwo, V.2    Ahn, M.3
  • 109
    • 11144354399 scopus 로고    scopus 로고
    • SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes
    • Yamamoto, T., H. Shimano, Y. Nakagawa, et al. 2004. SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes. J. Biol. Chem. 279: 12027–12035.
    • (2004) J. Biol. Chem. , vol.279 , pp. 12027-12035
    • Yamamoto, T.1    Shimano, H.2    Nakagawa, Y.3
  • 110
    • 33750040230 scopus 로고    scopus 로고
    • Structure, function, and regulation of STAT proteins
    • Lim, C.P. & X. Cao. 2006. Structure, function, and regulation of STAT proteins. Mol. Biosyst. 2: 536–550.
    • (2006) Mol. Biosyst. , vol.2 , pp. 536-550
    • Lim, C.P.1    Cao, X.2
  • 111
  • 112
    • 11144357516 scopus 로고    scopus 로고
    • Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo
    • Inoue, H., W. Ogawa, M. Ozaki, et al. 2004. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat. Med. 10: 168–174.
    • (2004) Nat. Med. , vol.10 , pp. 168-174
    • Inoue, H.1    Ogawa, W.2    Ozaki, M.3
  • 113
    • 33645579324 scopus 로고    scopus 로고
    • Role of hepatic STAT3 in brain–insulin action on hepatic glucose production
    • Inoue, H., W. Ogawa, A. Asakawa, et al. 2006. Role of hepatic STAT3 in brain–insulin action on hepatic glucose production. Cell Metab. 3: 267–275.
    • (2006) Cell Metab , vol.3 , pp. 267-275
    • Inoue, H.1    Ogawa, W.2    Asakawa, A.3
  • 114
    • 48449095742 scopus 로고    scopus 로고
    • STAT3 sensitizes insulin signaling by negatively regulating glycogen synthase kinase-3 beta
    • Moh, A., W. Zhang, S. Yu, et al. 2008. STAT3 sensitizes insulin signaling by negatively regulating glycogen synthase kinase-3 beta. Diabetes 57: 1227–1235.
    • (2008) Diabetes , vol.57 , pp. 1227-1235
    • Moh, A.1    Zhang, W.2    Yu, S.3
  • 115
    • 4944263717 scopus 로고    scopus 로고
    • Molecular mechanisms of DAX1 action
    • Iyer, A.K. & E.R. McCabe. 2004. Molecular mechanisms of DAX1 action. Mol. Genet. Metab. 83: 60–73.
    • (2004) Mol. Genet. Metab. , vol.83 , pp. 60-73
    • Iyer, A.K.1    McCabe, E.R.2
  • 116
    • 70350463602 scopus 로고    scopus 로고
    • DAX-1 acts as a novel corepressor of orphan nuclear receptor HNF4alpha and negatively regulates gluconeogenic enzyme gene expression
    • Nedumaran, B., S. Hong, Y.B. Xie, et al. 2009. DAX-1 acts as a novel corepressor of orphan nuclear receptor HNF4alpha and negatively regulates gluconeogenic enzyme gene expression. J. Biol. Chem. 284: 27511–27523.
    • (2009) J. Biol. Chem. , vol.284 , pp. 27511-27523
    • Nedumaran, B.1    Hong, S.2    Xie, Y.B.3
  • 117
    • 84878404399 scopus 로고    scopus 로고
    • Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells
    • Ahn, S.W., G.T. Gang, Y.D. Kim, et al. 2013. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J. Biol. Chem. 288: 15937–15946.
    • (2013) J. Biol. Chem. , vol.288 , pp. 15937-15946
    • Ahn, S.W.1    Gang, G.T.2    Kim, Y.D.3
  • 118
    • 84874045511 scopus 로고    scopus 로고
    • The origins and drivers of insulin resistance
    • Johnson, A.M. & J.M. Olefsky. 2013. The origins and drivers of insulin resistance. Cell 152: 673–684.
    • (2013) Cell , vol.152 , pp. 673-684
    • Johnson, A.M.1    Olefsky, J.M.2
  • 120
    • 0024384983 scopus 로고
    • Differentiation between septic and postburn insulin resistance
    • Shangraw, R.E., F. Jahoor, H. Miyoshi, et al. 1989. Differentiation between septic and postburn insulin resistance. Metabolism 38: 983–989.
    • (1989) Metabolism , vol.38 , pp. 983-989
    • Shangraw, R.E.1    Jahoor, F.2    Miyoshi, H.3
  • 121
    • 0037135547 scopus 로고    scopus 로고
    • In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents
    • Qiao, L.Y., R. Zhande, T.L. Jetton, et al. 2002. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J. Biol. Chem. 277: 26530–26539.
    • (2002) J. Biol. Chem. , vol.277 , pp. 26530-26539
    • Qiao, L.Y.1    Zhande, R.2    Jetton, T.L.3
  • 122
    • 4544343980 scopus 로고    scopus 로고
    • Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies
    • Shah, O.J., Z. Wang & T. Hunter. 2004. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14: 1650–1656.
    • (2004) Curr. Biol. , vol.14 , pp. 1650-1656
    • Shah, O.J.1    Wang, Z.2    Hunter, T.3
  • 123
    • 33749342069 scopus 로고    scopus 로고
    • Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin
    • Draznin, B. 2006. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55: 2392–2397.
    • (2006) Diabetes , vol.55 , pp. 2392-2397
    • Draznin, B.1
  • 124
    • 84956666350 scopus 로고    scopus 로고
    • The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux
    • Samuel, V.T. & G.I. Shulman. 2016. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126: 12–22.
    • (2016) J. Clin. Invest. , vol.126 , pp. 12-22
    • Samuel, V.T.1    Shulman, G.I.2
  • 125
    • 0035897696 scopus 로고    scopus 로고
    • Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)
    • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. 2001. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285: 2486–2497.
    • (2001) JAMA , vol.285 , pp. 2486-2497
  • 126
    • 38649110496 scopus 로고    scopus 로고
    • Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis
    • Biddinger, S.B., A. Hernandez-Ono, C. Rask-Madsen, et al. 2008. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 7: 125–134.
    • (2008) Cell Metab , vol.7 , pp. 125-134
    • Biddinger, S.B.1    Hernandez-Ono, A.2    Rask-Madsen, C.3
  • 127
    • 84969787249 scopus 로고    scopus 로고
    • Unraveling the paradox of selective insulin resistance in the liver: the brain–liver connection
    • Ferris, H.A. & C.R. Kahn. 2016. Unraveling the paradox of selective insulin resistance in the liver: the brain–liver connection. Diabetes 65: 1481–1483.
    • (2016) Diabetes , vol.65 , pp. 1481-1483
    • Ferris, H.A.1    Kahn, C.R.2
  • 128
    • 33645071314 scopus 로고    scopus 로고
    • Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes
    • Gelling, R.W., G.J. Morton, C.D. Morrison, et al. 2006. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab. 3: 67–73.
    • (2006) Cell Metab , vol.3 , pp. 67-73
    • Gelling, R.W.1    Morton, G.J.2    Morrison, C.D.3
  • 129
    • 33645579327 scopus 로고    scopus 로고
    • Role reversal: brain insulin and liver STAT3
    • Myers, M.G., Jr. 2006. Role reversal: brain insulin and liver STAT3. Cell Metab. 3: 231–232.
    • (2006) Cell Metab , vol.3 , pp. 231-232
    • Myers, M.G.1
  • 130
    • 0036913187 scopus 로고    scopus 로고
    • Hypothalamic insulin signaling is required for inhibition of glucose production
    • Obici, S., B.B. Zhang, G. Karkanias & L. Rossetti. 2002. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8: 1376–1382.
    • (2002) Nat. Med. , vol.8 , pp. 1376-1382
    • Obici, S.1    Zhang, B.B.2    Karkanias, G.3    Rossetti, L.4
  • 131
    • 84879861815 scopus 로고    scopus 로고
    • Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons
    • Shi, X., F. Zhou, X. Li, et al. 2013. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metab. 18: 86–98.
    • (2013) Cell Metab , vol.18 , pp. 86-98
    • Shi, X.1    Zhou, F.2    Li, X.3
  • 132
    • 80052345224 scopus 로고    scopus 로고
    • Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs
    • Ramnanan, C.J., V. Saraswathi, M.S. Smith, et al. 2011. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J. Clin. Invest. 121: 3713–3723.
    • (2011) J. Clin. Invest. , vol.121 , pp. 3713-3723
    • Ramnanan, C.J.1    Saraswathi, V.2    Smith, M.S.3
  • 133
    • 84964352862 scopus 로고    scopus 로고
    • Insulin regulates hepatic triglyceride secretion and lipid content via signaling in the brain
    • Scherer, T., C. Lindtner, J. O'Hare, et al. 2016. Insulin regulates hepatic triglyceride secretion and lipid content via signaling in the brain. Diabetes 65: 1511–1520.
    • (2016) Diabetes , vol.65 , pp. 1511-1520
    • Scherer, T.1    Lindtner, C.2    O'Hare, J.3
  • 134
    • 70349847831 scopus 로고    scopus 로고
    • Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders
    • Hallschmid, M. & B. Schultes. 2009. Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52: 2264–2269.
    • (2009) Diabetologia , vol.52 , pp. 2264-2269
    • Hallschmid, M.1    Schultes, B.2
  • 135
    • 79959446484 scopus 로고    scopus 로고
    • Ablation of PI3K p110-α prevents high-fat diet-induced liver steatosis
    • Chattopadhyay, M., E.S. Selinger, L.M. Ballou & R.Z. Lin. 2011. Ablation of PI3K p110-α prevents high-fat diet-induced liver steatosis. Diabetes 60: 1483–1492.
    • (2011) Diabetes , vol.60 , pp. 1483-1492
    • Chattopadhyay, M.1    Selinger, E.S.2    Ballou, L.M.3    Lin, R.Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.