-
1
-
-
0024445798
-
Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at Serine 133
-
Gonzalez, G. A. & Montminy, M. R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at Serine 133. Cell 59, 675-680 (1989).
-
(1989)
Cell
, vol.59
, pp. 675-680
-
-
Gonzalez, G.A.1
Montminy, M.R.2
-
2
-
-
0027433708
-
Phosphorylated CREB binds specifically to the nuclear protein CBP
-
Characterizes the role of CBP as a CREB co-activator
-
Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855-859 (1993). Characterizes the role of CBP as a CREB co-activator.
-
(1993)
Nature
, vol.365
, pp. 855-859
-
-
Chrivia, J.C.1
-
3
-
-
0028060029
-
Nuclear protein CBP is a coactivator for the transcription factor CREB
-
Kwok, R. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223-226 (1994).
-
(1994)
Nature
, vol.370
, pp. 223-226
-
-
Kwok, R.1
-
4
-
-
0028060030
-
Activation of cAMP and mitogen responsive genes relies on a common nuclear factor
-
Arias, J. et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226-228 (1994).
-
(1994)
Nature
, vol.370
, pp. 226-228
-
-
Arias, J.1
-
6
-
-
0025807509
-
CREB: A Ca-regulated transcription factor phosphorylated by calmodulin-dependent kinases
-
Sheng, M., Thompson, M. A. & Greenberg, M. E. CREB: a Ca-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427-1430 (1991).
-
(1991)
Science
, vol.252
, pp. 1427-1430
-
-
Sheng, M.1
Thompson, M.A.2
Greenberg, M.E.3
-
7
-
-
0032479983
-
Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB
-
Deak, M., A. Clifton, Lucocq, J. & Alessi, D. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426-4441 (1998).
-
(1998)
EMBO J
, vol.17
, pp. 4426-4441
-
-
Deak, M.1
Clifton, A.2
Lucocq, J.3
Alessi, D.4
-
8
-
-
0029790656
-
FGF and stress regulate CREB and ATF-1 via a pathway involvin p38 MAP kinase and MAPKAP kinase-2
-
Tan, Y. et al. FGF and stress regulate CREB and ATF-1 via a pathway involvin p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15, 4629-4642 (1996).
-
(1996)
EMBO J
, vol.15
, pp. 4629-4642
-
-
Tan, Y.1
-
9
-
-
0029059248
-
Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals
-
Bonni, A., Ginty, D., Dudek, H. & Greenberg, M. Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol. Cell. Neurosci. 6, 168-183 (1995).
-
(1995)
Mol. Cell. Neurosci.
, vol.6
, pp. 168-183
-
-
Bonni, A.1
Ginty, D.2
Dudek, H.3
Greenberg, M.4
-
10
-
-
0029789643
-
Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase
-
Xing, J., Ginty, D. D. & Greenberg, M. E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959-963 (1996).
-
(1996)
Science
, vol.273
, pp. 959-963
-
-
Xing, J.1
Ginty, D.D.2
Greenberg, M.E.3
-
11
-
-
0031041602
-
CREB is activated by UVC through a p38/HOG-1-dependent protein kinase
-
Iordanov, M. et al. CREB is activated by UVC through a p38/HOG-1-dependent protein kinase. EMBO J. 16, 1009-1022 (1997).
-
(1997)
EMBO J
, vol.16
, pp. 1009-1022
-
-
Iordanov, M.1
-
12
-
-
0033977889
-
The phosphorylation status of a cyclic AMP-responsive activator is modulated via a chromatin-dependent mechanism
-
Michael, L. F., Asahara, H., Shulman, A., Kraus, W. & Montminy, M. The phosphorylation status of a cyclic AMP-responsive activator is modulated via a chromatin-dependent mechanism. Mol. Cell. Biol. 20, 1596-1603 (2000).
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 1596-1603
-
-
Michael, L.F.1
Asahara, H.2
Shulman, A.3
Kraus, W.4
Montminy, M.5
-
13
-
-
0037337748
-
Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex
-
Canettieri, G. et al. Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex. Nature Struct. Biol. 10, 175-181 (2003).
-
(2003)
Nature Struct. Biol.
, vol.10
, pp. 175-181
-
-
Canettieri, G.1
-
14
-
-
0027166104
-
Coupling of hormonal stimulation and transcription via cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A
-
Hagiwara, M. et al. Coupling of hormonal stimulation and transcription via cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol. Cell. Biol. 13, 4852-4859 (1993).
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 4852-4859
-
-
Hagiwara, M.1
-
15
-
-
0026653422
-
Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB
-
Hagiwara, M. et al. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70, 105-113 (1992).
-
(1992)
Cell
, vol.70
, pp. 105-113
-
-
Hagiwara, M.1
-
16
-
-
0028229873
-
Recombinant cyclic AMP response element binding protein (CREB) phosphorylated on Ser-133 is transcriptionally active upon its introduction into fibroblast nuclei
-
Alberts, A. S., Arias, J., Hagiwara, M., Montminy, M. R. & Feramisco, J. R. Recombinant cyclic AMP response element binding protein (CREB) phosphorylated on Ser-133 is transcriptionally active upon its introduction into fibroblast nuclei. J. Biol. Chem. 269, 7623-7630 (1994).
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 7623-7630
-
-
Alberts, A.S.1
Arias, J.2
Hagiwara, M.3
Montminy, M.R.4
Feramisco, J.R.5
-
17
-
-
0027221605
-
Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation
-
Wadzinski, B. et al. Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol. Cell. Biol. 13, 2822-2834 (1993).
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 2822-2834
-
-
Wadzinski, B.1
-
18
-
-
0000690898
-
Identification of a cyclic-AMP responsive element within the rat somatostatin gene
-
Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G. & Goodman, R. H. Identification of a cyclic-AMP responsive element within the rat somatostatin gene. Proc. Natl Acad. Sci. USA 83, 6682-6686 (1986).
-
(1986)
Proc. Natl Acad. Sci. USA
, vol.83
, pp. 6682-6686
-
-
Montminy, M.R.1
Sevarino, K.A.2
Wagner, J.A.3
Mandel, G.4
Goodman, R.H.5
-
19
-
-
0023024937
-
Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains
-
Short, J. M., Wynshaw-Boris, A., Short, H. P. & Hanson, R. W. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains. J. Biol. Chem. 261, 9721-9726 (1986).
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 9721-9726
-
-
Short, J.M.1
Wynshaw-Boris, A.2
Short, H.P.3
Hanson, R.W.4
-
20
-
-
0022454057
-
A cyclic AMP- and phorbol ester-inducible DNA element
-
Comb, M., Birnberg, N. C., Seasholtz, A., Herbert, E. & Goodman, H. M. A cyclic AMP- and phorbol ester-inducible DNA element. Nature 323, 353-356 (1986).
-
(1986)
Nature
, vol.323
, pp. 353-356
-
-
Comb, M.1
Birnberg, N.C.2
Seasholtz, A.3
Herbert, E.4
Goodman, H.M.5
-
21
-
-
0142091390
-
Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells
-
Iourgenko, V. et al. Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc. Natl Acad. Sci. USA 100, 12147-12152 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 12147-12152
-
-
Iourgenko, V.1
-
22
-
-
1942422572
-
Selective stimulation of G-6-Pase catalytic subunit but not G-6-P transporter gene expression by glucagon in vivo and cAMP in situ
-
Hornbuckle, L. A. et al. Selective stimulation of G-6-Pase catalytic subunit but not G-6-P transporter gene expression by glucagon in vivo and cAMP in situ. Am. J. Physiol. Endocrinol. Metab. 286, E795-E808 (2004).
-
(2004)
Am. J. Physiol. Endocrinol. Metab.
, vol.286
-
-
Hornbuckle, L.A.1
-
23
-
-
0024673303
-
CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation
-
Iguchi-Ariga, S. M. & Schaffner, W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612-619 (1989).
-
(1989)
Genes Dev.
, vol.3
, pp. 612-619
-
-
Iguchi-Ariga, S.M.1
Schaffner, W.2
-
24
-
-
20144379523
-
Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues
-
Provides a genome-wide characterization of CREB occupancy and activity in different tissues
-
Zhang, X. et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl Acad. Sci. USA 102, 4459-4464 (2005). Provides a genome-wide characterization of CREB occupancy and activity in different tissues.
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 4459-4464
-
-
Zhang, X.1
-
25
-
-
19944367254
-
Defining the CREB regulon: A genomewide analysis of transcription factor regulatory regions
-
Describes the genome-wide characterization of CREB target genes
-
Impey, S. et al. Defining the CREB regulon: a genomewide analysis of transcription factor regulatory regions. Cell 119, 1041-1054 (2004). Describes the genome-wide characterization of CREB target genes.
-
(2004)
Cell
, vol.119
, pp. 1041-1054
-
-
Impey, S.1
-
26
-
-
0035430282
-
Tanscriptional regulation by the phosphorylation dependent factor CREB
-
Mayr, B. & Montminy, M. Tanscriptional regulation by the phosphorylation dependent factor CREB. Nature Rev. Mol. Cell Biol. 2, 599-609 (2001).
-
(2001)
Nature Rev. Mol. Cell Biol.
, vol.2
, pp. 599-609
-
-
Mayr, B.1
Montminy, M.2
-
27
-
-
0038185273
-
Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness
-
Conkright, M. D. et al. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell 11, 1101-1108 (2003).
-
(2003)
Mol. Cell
, vol.11
, pp. 1101-1108
-
-
Conkright, M.D.1
-
28
-
-
0028787753
-
Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP
-
Brindle, P., Nakajima, T. & Montminy, M. Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP. Proc. Natl Acad. Sci. USA 92, 10521-10525 (1995).
-
(1995)
Proc. Natl Acad. Sci. USA
, vol.92
, pp. 10521-10525
-
-
Brindle, P.1
Nakajima, T.2
Montminy, M.3
-
29
-
-
0141922981
-
TORCs: Transducers of regulated CREB activity
-
Conkright, M. D. et al. TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413-423 (2003).
-
(2003)
Mol. Cell
, vol.12
, pp. 413-423
-
-
Conkright, M.D.1
-
30
-
-
0032852479
-
CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals
-
Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821-861 (1999).
-
(1999)
Annu. Rev. Biochem.
, vol.68
, pp. 821-861
-
-
Shaywitz, A.J.1
Greenberg, M.E.2
-
31
-
-
0027236765
-
Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription
-
Quinn, P. G. Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J. Biol. Chem. 268, 16999-17009 (1993).
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 16999-17009
-
-
Quinn, P.G.1
-
32
-
-
0027176490
-
Protein-kinase-A-dependent activator in CREB reveals a new role for the CREM family of repressors
-
Brindle, P., Linke, S. & Montminy, M. Protein-kinase-A-dependent activator in CREB reveals a new role for the CREM family of repressors. Nature 364, 821-824 (1993).
-
(1993)
Nature
, vol.364
, pp. 821-824
-
-
Brindle, P.1
Linke, S.2
Montminy, M.3
-
33
-
-
0028117301
-
The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex
-
Ferreri, K., Gill, G. & Montminy, M. The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex. Proc. Natl Acad. Sci. USA 91, 1210-1213 (1994).
-
(1994)
Proc. Natl Acad. Sci. USA
, vol.91
, pp. 1210-1213
-
-
Ferreri, K.1
Gill, G.2
Montminy, M.3
-
34
-
-
0031658513
-
Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators
-
Saluja, D., Vassallo, M. & Tanese, N. Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. Mol. Cell. Biol. 18, 5734-5743 (1998).
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 5734-5743
-
-
Saluja, D.1
Vassallo, M.2
Tanese, N.3
-
35
-
-
23844543808
-
TAF4 inactivation in embryonic fibroblasts activates TGFβ signalling and autocrine growth
-
Mengus, G. et al. TAF4 inactivation in embryonic fibroblasts activates TGFβ signalling and autocrine growth. EMBO J. 24, 2753-2767 (2005).
-
(2005)
EMBO J
, vol.24
, pp. 2753-2767
-
-
Mengus, G.1
-
36
-
-
0033818112
-
Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription
-
Shimohata, T. et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nature Genet. 26, 29-36 (2000).
-
(2000)
Nature Genet
, vol.26
, pp. 29-36
-
-
Shimohata, T.1
-
37
-
-
0028985162
-
Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP
-
Lundblad, J. R., Kwok, R. P., Laurance, M. E., Harter, M. L. & Goodman, R. H. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374, 85-88 (1995).
-
(1995)
Nature
, vol.374
, pp. 85-88
-
-
Lundblad, J.R.1
Kwok, R.P.2
Laurance, M.E.3
Harter, M.L.4
Goodman, R.H.5
-
38
-
-
0030058682
-
Phosphorylation of CREB at Ser133 induces complex formation with CBP via a direct mechanism
-
Parker, D. et al. Phosphorylation of CREB at Ser133 induces complex formation with CBP via a direct mechanism. Mol. Cell. Biol. 16, 694-703 (1996).
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 694-703
-
-
Parker, D.1
-
39
-
-
0034234237
-
CBP/p300 in cell growth, transformation, and development
-
Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553-1577 (2000).
-
(2000)
Genes Dev.
, vol.14
, pp. 1553-1577
-
-
Goodman, R.H.1
Smolik, S.2
-
40
-
-
0030480969
-
The CBP co-activator is a histone acetyltransferase
-
Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641-643 (1996).
-
(1996)
Nature
, vol.384
, pp. 641-643
-
-
Bannister, A.J.1
Kouzarides, T.2
-
41
-
-
0030606239
-
The transcriptional coactivators p300 and CBP are histone acetytransferases
-
Ogryzko, V. V., Schiltz, S. R., Russanova, V., Howard, B. H. & Nakatani, M. The transcriptional coactivators p300 and CBP are histone acetytransferases. Cell 87, 953-959 (1996).
-
(1996)
Cell
, vol.87
, pp. 953-959
-
-
Ogryzko, V.V.1
Schiltz, S.R.2
Russanova, V.3
Howard, B.H.4
Nakatani, M.5
-
42
-
-
0035157041
-
Chromatin-dependent cooperativity between constitutive and inducible activation domains in CREB
-
Asahara, H., Santoso, B., Du, K., Cole, P. & Montminy, M. Chromatin-dependent cooperativity between constitutive and inducible activation domains in CREB. Mol. Cell. Biol. 21, 7892-7900 (2001).
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 7892-7900
-
-
Asahara, H.1
Santoso, B.2
Du, K.3
Cole, P.4
Montminy, M.5
-
43
-
-
0000735813
-
Efficient recruitment of TFIIB and CBP-RNA polymerase II holoenzyme by an interferon-β enhanceosome in vitro
-
Kim, T. & Maniatis, T. Efficient recruitment of TFIIB and CBP-RNA polymerase II holoenzyme by an interferon-β enhanceosome in vitro. Proc. Natl Acad. Sci. USA 95, 12191-12196 (1998).
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 12191-12196
-
-
Kim, T.1
Maniatis, T.2
-
44
-
-
0030029419
-
Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator
-
Kee, B., Arias, J. & Montminy, M. Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J. Biol. Chem. 271, 2373-2375 (1996).
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 2373-2375
-
-
Kee, B.1
Arias, J.2
Montminy, M.3
-
45
-
-
0344936739
-
Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: A model for activator:coactivator interactions
-
Describes the solution structure of the CREB-CBP complex and the role of CREB phosphorylation in promoting the CREB-CBP association
-
Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752 (1997). Describes the solution structure of the CREB-CBP complex and the role of CREB phosphorylation in promoting the CREB-CBP association.
-
(1997)
Cell
, vol.91
, pp. 741-752
-
-
Radhakrishnan, I.1
-
46
-
-
0032161642
-
Analysis of an activator:coactivator complex reveals an essential role for secondary structure in transcriptional activation
-
Parker, D. et al. Analysis of an activator:coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol. Cell 2, 353-359 (1998).
-
(1998)
Mol. Cell
, vol.2
, pp. 353-359
-
-
Parker, D.1
-
47
-
-
0034460485
-
Magnitude of the CREB-dependent transcriptional response is determined by the strength of the interaction between the kinase-inducible domain of CREB and the KIX domain of CREB-binding protein
-
Shaywitz, A. J., Dove, S. L., Kornhauser, J. M., Hochschild, A. & Greenberg, M. E. Magnitude of the CREB-dependent transcriptional response is determined by the strength of the interaction between the kinase-inducible domain of CREB and the KIX domain of CREB-binding protein. Mol. Cell. Biol. 20, 9409-9422 (2000).
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 9409-9422
-
-
Shaywitz, A.J.1
Dove, S.L.2
Kornhauser, J.M.3
Hochschild, A.4
Greenberg, M.E.5
-
48
-
-
0037126308
-
A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis
-
Kasper, L. H. et al. A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 419, 738-743 (2002).
-
(2002)
Nature
, vol.419
, pp. 738-743
-
-
Kasper, L.H.1
-
49
-
-
0033961276
-
Recruitment of CREB-binding protein is sufficient for CREB-mediated gene activation
-
Cardinaux, J. R. et al. Recruitment of CREB-binding protein is sufficient for CREB-mediated gene activation. Mol. Cell. Biol. 20, 1546-1552 (2000).
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 1546-1552
-
-
Cardinaux, J.R.1
-
50
-
-
11144231977
-
Identification of small-molecule antagonists that inhibit an activator:coactivator interaction
-
Best, J. L. et al. Identification of small-molecule antagonists that inhibit an activator:coactivator interaction. Proc. Natl Acad. Sci. USA 101, 17622-17627 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 17622-17627
-
-
Best, J.L.1
-
51
-
-
0034708481
-
Stimulus-specific interaction between activator-coactivator cognates revealed with a novel complex-specific antiserum
-
Wagner, B., Bauer, A., Schutz, G. & Montminy, M. Stimulus-specific interaction between activator-coactivator cognates revealed with a novel complex-specific antiserum. J. Biol. Chem. 275, 8263-8266 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 8263-8266
-
-
Wagner, B.1
Bauer, A.2
Schutz, G.3
Montminy, M.4
-
52
-
-
34250814515
-
Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression
-
Ravnskjaer, K. et al. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J. 26, 2880-2889 (2007).
-
(2007)
EMBO J
, vol.26
, pp. 2880-2889
-
-
Ravnskjaer, K.1
-
53
-
-
0027943988
-
2+/calmodulindependent protein kinase type II and type IV involves phosphorylation of a site that negatively regulates activity
-
2+/calmodulindependent protein kinase type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527-2539 (1994).
-
(1994)
Genes Dev
, vol.8
, pp. 2527-2539
-
-
Sun, P.1
Enslen, H.2
Myung, P.3
Maurer, R.4
-
54
-
-
1942437537
-
Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress
-
Shi, Y. et al. Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress. Proc. Natl Acad. Sci. USA 101, 5898-5903 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 5898-5903
-
-
Shi, Y.1
-
55
-
-
34250375258
-
Coregulated ataxia telangiectasiamutated and casein kinase sites modulate cAMP-response element-binding protein-coactivator interactions in response to DNA damage
-
Shanware, N. P., Trinh, A. T., Williams, L. M. & Tibbetts, R. S. Coregulated ataxia telangiectasiamutated and casein kinase sites modulate cAMP-response element-binding protein-coactivator interactions in response to DNA damage. J. Biol. Chem. 282, 6283-6291 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 6283-6291
-
-
Shanware, N.P.1
Trinh, A.T.2
Williams, L.M.3
Tibbetts, R.S.4
-
56
-
-
10344262616
-
Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins
-
Characterizes the mechanism by which calcium signals regulate the CRTC co-activators
-
Bittinger, M. A. et al. Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins. Curr. Biol. 14, 2156-2161 (2004). Characterizes the mechanism by which calcium signals regulate the CRTC co-activators.
-
(2004)
Curr. Biol.
, vol.14
, pp. 2156-2161
-
-
Bittinger, M.A.1
-
57
-
-
5344228270
-
The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector
-
Describes the role of AMPK family members and calcineurin in regulating CRTC activity
-
Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61-74 (2004). Describes the role of AMPK family members and calcineurin in regulating CRTC activity.
-
(2004)
Cell
, vol.119
, pp. 61-74
-
-
Screaton, R.A.1
-
58
-
-
42649140573
-
The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila
-
Wang, B. et al. The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila. Cell Metab. 7, 434-444 (2008).
-
(2008)
Cell Metab.
, vol.7
, pp. 434-444
-
-
Wang, B.1
-
59
-
-
79951787452
-
Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB
-
Shows that CRTC-1 and CRH-1 mediate effects of AMPK and calcineurin pathways on lifespan in C. elegans
-
Mair, W. et al. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470, 404-408 (2011). Shows that CRTC-1 and CRH-1 mediate effects of AMPK and calcineurin pathways on lifespan in C. elegans.
-
(2011)
Nature
, vol.470
, pp. 404-408
-
-
Mair, W.1
-
60
-
-
77649253906
-
Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity
-
Demonstrates that CRTC expression in the brain regulates energy balance in D. melanogaster
-
Wang, Y. et al. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc. Natl Acad. Sci. USA 107, 3087-3092 (2010). Demonstrates that CRTC expression in the brain regulates energy balance in D. melanogaster.
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 3087-3092
-
-
Wang, Y.1
-
61
-
-
78149285661
-
CBP/p300 double null cells reveal effect of coactivator level and diversity on CREB transactivation
-
Kasper, L. H. et al. CBP/p300 double null cells reveal effect of coactivator level and diversity on CREB transactivation. EMBO J. 29, 3660-3672 (2010).
-
(2010)
EMBO J
, vol.29
, pp. 3660-3672
-
-
Kasper, L.H.1
-
62
-
-
30744455255
-
A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons
-
Riccio, A. et al. A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol. Cell 21, 283-294 (2006).
-
(2006)
Mol. Cell
, vol.21
, pp. 283-294
-
-
Riccio, A.1
-
63
-
-
70349217960
-
Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation
-
Describes a novel role for the CRTC family in alternative splicing of CREB target genes
-
Amelio, A. L., Caputi, M. & Conkright, M. D. Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation. EMBO J. 28, 2733-2747 (2009). Describes a novel role for the CRTC family in alternative splicing of CREB target genes.
-
(2009)
EMBO J
, vol.28
, pp. 2733-2747
-
-
Amelio, A.L.1
Caputi, M.2
Conkright, M.D.3
-
64
-
-
38049181018
-
nrb) as a component of the cAMP-signaling pathway
-
nrb) as a component of the cAMP-signaling pathway. Proc. Natl Acad. Sci. USA 104, 20314-20319 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 20314-20319
-
-
Amelio, A.L.1
-
65
-
-
77950285163
-
Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH
-
Lee, M. W. et al. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 11, 331-339 (2010).
-
(2010)
Cell Metab.
, vol.11
, pp. 331-339
-
-
Lee, M.W.1
-
66
-
-
60849118154
-
The coactivator CRTC1 promotes cell proliferation and transformation via AP-1
-
Canettieri, G. et al. The coactivator CRTC1 promotes cell proliferation and transformation via AP-1. Proc. Natl Acad. Sci. USA 106, 1445-1450 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 1445-1450
-
-
Canettieri, G.1
-
67
-
-
67749135249
-
The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis
-
Wang, Y., Vera, L., Fischer, W. H. & Montminy, M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460, 534-537 (2009).
-
(2009)
Nature
, vol.460
, pp. 534-537
-
-
Wang, Y.1
Vera, L.2
Fischer, W.H.3
Montminy, M.4
-
68
-
-
0019631645
-
Adaptation to prolonged starvation in the rat: Curtailment of skeletal muscle proteolysis
-
Goodman, M. N., McElaney, M. A. & Ruderman, N. B. Adaptation to prolonged starvation in the rat: curtailment of skeletal muscle proteolysis. Am. J. Physiol. 241, E321-E327 (1981).
-
(1981)
Am. J. Physiol.
, vol.241
-
-
Goodman, M.N.1
McElaney, M.A.2
Ruderman, N.B.3
-
69
-
-
33750110683
-
Fuel metabolism in starvation
-
Cahill, G. F. Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1-22 (2006).
-
(2006)
Annu. Rev. Nutr.
, vol.26
, pp. 1-22
-
-
Cahill Jr., G.F.1
-
70
-
-
0019068745
-
Starvation in the rat. II. Effect of age and obesity on protein sparing and fuel metabolism
-
Goodman, M. N. et al. Starvation in the rat. II. Effect of age and obesity on protein sparing and fuel metabolism. Am. J. Physiol. 239, E277-E286 (1980).
-
(1980)
Am. J. Physiol.
, vol.239
-
-
Goodman, M.N.1
-
71
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis via the co-activator PGC-1
-
Herzig, S. et al. CREB regulates hepatic gluconeogenesis via the co-activator PGC-1. Nature 413, 179-183 (2001).
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
-
72
-
-
0031883280
-
A dominant-negative inhibitor of CREB reveals that it is a general mediator stimulus-dependent transcription of c-fos
-
Ahn, S. et al. A dominant-negative inhibitor of CREB reveals that it is a general mediator stimulus-dependent transcription of c-fos. Mol. Cell. Biol. 18, 967-977 (1998).
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 967-977
-
-
Ahn, S.1
-
73
-
-
0025370378
-
Cyclic AMP-dependent protein kinase regulates transcription of the phosphoenolpyruvate carboxykinase gene but not binding of nuclear factors to the cyclic AMP regulatory element
-
Quinn, P. G. & Granner, D. K. Cyclic AMP-dependent protein kinase regulates transcription of the phosphoenolpyruvate carboxykinase gene but not binding of nuclear factors to the cyclic AMP regulatory element. Mol. Cell. Biol. 10, 3357-3364 (1990).
-
(1990)
Mol. Cell. Biol.
, vol.10
, pp. 3357-3364
-
-
Quinn, P.G.1
Granner, D.K.2
-
74
-
-
0022998516
-
Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. I. Multiple hormone regulatory elements and the effects of enhancers
-
Wynshaw-Boris, A., Short, J. M., Loose, D. S. & Hanson, R. W. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. I. Multiple hormone regulatory elements and the effects of enhancers. J. Biol. Chem. 261, 9714-9720 (1986).
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 9714-9720
-
-
Wynshaw-Boris, A.1
Short, J.M.2
Loose, D.S.3
Hanson, R.W.4
-
75
-
-
78149272381
-
FoxOs function synergistically to promote glucose production
-
Haeusler, R. A., Kaestner, K. H. & Accili, D. FoxOs function synergistically to promote glucose production. J. Biol. Chem. 285, 35245-35248 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 35245-35248
-
-
Haeusler, R.A.1
Kaestner, K.H.2
Accili, D.3
-
76
-
-
33748463364
-
NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism
-
Pei, L. et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nature Med. 12, 1048-55 (2006).
-
(2006)
Nature Med.
, vol.12
, pp. 1048-1055
-
-
Pei, L.1
-
77
-
-
38449103255
-
The clockwork of metabolism
-
Ramsey, K. M., Marcheva, B., Kohsaka, A. & Bass, J. The clockwork of metabolism. Annu. Rev. Nutr. 27, 219-240 (2007).
-
(2007)
Annu. Rev. Nutr.
, vol.27
, pp. 219-240
-
-
Ramsey, K.M.1
Marcheva, B.2
Kohsaka, A.3
Bass, J.4
-
78
-
-
50249100374
-
The meter of metabolism
-
Green, C. B., Takahashi, J. S. & Bass, J. The meter of metabolism. Cell 134, 728-742 (2008).
-
(2008)
Cell
, vol.134
, pp. 728-742
-
-
Green, C.B.1
Takahashi, J.S.2
Bass, J.3
-
79
-
-
77957821693
-
Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
-
Zhang, E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Med. 16, 1152-1156 (2010).
-
(2010)
Nature Med
, vol.16
, pp. 1152-1156
-
-
Zhang, E.1
-
80
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Describes a role for CRTC2 and CREB in regulating hepatic gluconeogenesis
-
Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111 (2005). Describes a role for CRTC2 and CREB in regulating hepatic gluconeogenesis.
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
-
81
-
-
70350447639
-
Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes
-
Saberi, M. et al. Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 297, E1137-E1146 (2009).
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
-
-
Saberi, M.1
-
83
-
-
78049292405
-
Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis
-
Yoon, Y. S. et al. Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 17704-17709 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 17704-17709
-
-
Yoon, Y.S.1
-
84
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269-273 (2008).
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
-
85
-
-
34548831102
-
Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
-
Dentin, R. et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366-369 (2007).
-
(2007)
Nature
, vol.449
, pp. 366-369
-
-
Dentin, R.1
-
86
-
-
0034731524
-
Phosphorylation of p300 at serine 89 by protein kinase C
-
Yuan, L. W. & Gambee, J. E. Phosphorylation of p300 at serine 89 by protein kinase C. J. Biol. Chem. 275, 40946-40951 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 40946-40951
-
-
Yuan, L.W.1
Gambee, J.E.2
-
87
-
-
0035914324
-
Regulation of transcription by AMP-activated protein kinase: Phosphorylation of p300 blocks its interaction with nuclear receptors
-
Yang, W. et al. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J. Biol. Chem. 276, 38341-38344 (2001).
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 38341-38344
-
-
Yang, W.1
-
88
-
-
65549136655
-
Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
-
He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635-646 (2009).
-
(2009)
Cell
, vol.137
, pp. 635-646
-
-
He, L.1
-
89
-
-
2942729543
-
Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein
-
Zhou, X. Y. et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nature Med. 10, 633-637 (2004).
-
(2004)
Nature Med.
, vol.10
, pp. 633-637
-
-
Zhou, X.Y.1
-
90
-
-
68849090270
-
Hepatic energy state is regulated by glucagon receptor signaling in mice
-
Berglund, E. D. et al. Hepatic energy state is regulated by glucagon receptor signaling in mice. J. Clin. Invest. 119, 2412-2422 (2009).
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2412-2422
-
-
Berglund, E.D.1
-
91
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646 (2005).
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
-
92
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355-2369 (2010).
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
-
93
-
-
77952547233
-
Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases
-
Imai, S. & Guarente, L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol. Sci. 31, 212-220 (2010).
-
(2010)
Trends Pharmacol. Sci.
, vol.31
, pp. 212-220
-
-
Imai, S.1
Guarente, L.2
-
94
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Canto, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219 (2010).
-
(2010)
Cell Metab.
, vol.11
, pp. 213-219
-
-
Canto, C.1
-
95
-
-
3042750643
-
Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity
-
Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA 101, 10042-10047 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 10042-10047
-
-
Daitoku, H.1
-
96
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113-118 (2005).
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
97
-
-
0033664020
-
Overexpression of glutamine:fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance
-
Veerababu, G. et al. Overexpression of glutamine:fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes 49, 2070-2078 (2000).
-
(2000)
Diabetes
, vol.49
, pp. 2070-2078
-
-
Veerababu, G.1
-
98
-
-
40449128605
-
Hepatic glucose sensing via the CREB coactivator CRTC2
-
Dentin, R., Hedrick, S., Xie, J., Yates, J. & Montminy, M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319, 1402-1405 (2008).
-
(2008)
Science
, vol.319
, pp. 1402-1405
-
-
Dentin, R.1
Hedrick, S.2
Xie, J.3
Yates, J.4
Montminy, M.5
-
99
-
-
70449927254
-
Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein
-
Erion, D. M. et al. Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab. 10, 499-506 (2009).
-
(2009)
Cell Metab.
, vol.10
, pp. 499-506
-
-
Erion, D.M.1
-
100
-
-
67649657842
-
CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis
-
Le Lay, J. et al. CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab. 10, 55-62 (2009).
-
(2009)
Cell Metab.
, vol.10
, pp. 55-62
-
-
Le Lay, J.1
-
101
-
-
12144290381
-
Overexpression of inducible cyclic AMP early repressor inhibits transactivation of genes and cell proliferation in pancreatic β cells
-
Inada, A. et al. Overexpression of inducible cyclic AMP early repressor inhibits transactivation of genes and cell proliferation in pancreatic β cells. Mol. Cell. Biol. 24, 2831-2841 (2004).
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 2831-2841
-
-
Inada, A.1
-
102
-
-
0038339191
-
cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2
-
Jhala, U. S. et al. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev. 17, 1575-1580 (2003).
-
(2003)
Genes Dev.
, vol.17
, pp. 1575-1580
-
-
Jhala, U.S.1
-
103
-
-
48249109104
-
Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2
-
Jansson, D. et al. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc. Natl Acad. Sci. USA 105, 10161-10166 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 10161-10166
-
-
Jansson, D.1
-
104
-
-
0032039075
-
Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT
-
Aramburu, J. et al. Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol. Cell 1, 627-637 (1998).
-
(1998)
Mol. Cell
, vol.1
, pp. 627-637
-
-
Aramburu, J.1
-
105
-
-
60649091912
-
Adipocyte CREB promotes insulin resistance in obesity
-
Qi, L. et al. Adipocyte CREB promotes insulin resistance in obesity. Cell Metab. 9, 277-286 (2009).
-
(2009)
Cell Metab.
, vol.9
, pp. 277-286
-
-
Qi, L.1
-
106
-
-
78650338758
-
CRTC3 links catecholamine signaling to energy balance
-
Song, Y. et al. CRTC3 links catecholamine signaling to energy balance. Nature 468, 933-939 (2010).
-
(2010)
Nature
, vol.468
, pp. 933-939
-
-
Song, Y.1
-
107
-
-
34248358339
-
Feast or famine: The sympathetic nervous system response to nutrient intake
-
Landsberg, L. Feast or famine: the sympathetic nervous system response to nutrient intake. Cell. Mol. Neurobiol. 26, 497-508 (2006).
-
(2006)
Cell. Mol. Neurobiol.
, vol.26
, pp. 497-508
-
-
Landsberg, L.1
-
108
-
-
34249664888
-
SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes
-
Berdeaux, R. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Med. 13, 597-603 (2007).
-
(2007)
Nature Med.
, vol.13
, pp. 597-603
-
-
Berdeaux, R.1
-
109
-
-
33749247065
-
Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells
-
Wu, Z. et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells. Proc. Natl Acad. Sci. USA 103, 14379-14384 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 14379-14384
-
-
Wu, Z.1
-
110
-
-
53549133638
-
The Creb1 coactivator Crtc1 is required for energy balance and fertility
-
Altarejos, J. Y. et al. The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nature Med. 14, 1112-1117 (2008).
-
(2008)
Nature Med.
, vol.14
, pp. 1112-1117
-
-
Altarejos, J.Y.1
-
111
-
-
70449699694
-
A role for the CREB co-activator CRTC2 in the hypothalamic mechanisms linking glucose sensing with gene regulation
-
Lerner, R. G., Depatie, C., Rutter, G. A., Screaton, R. A. & Balthasar, N. A role for the CREB co-activator CRTC2 in the hypothalamic mechanisms linking glucose sensing with gene regulation. EMBO Rep. 10, 1175-1181 (2009).
-
(2009)
EMBO Rep.
, vol.10
, pp. 1175-1181
-
-
Lerner, R.G.1
Depatie, C.2
Rutter, G.A.3
Screaton, R.A.4
Balthasar, N.5
-
112
-
-
78951476314
-
Drosophila saltinducible kinase (SIK) regulates starvation resistance through CREB-regulated transcription coactivator (CRTC)
-
Choi, S., Kim, W. & Chung, J. Drosophila saltinducible kinase (SIK) regulates starvation resistance through CREB-regulated transcription coactivator (CRTC). J. Biol. Chem. 286, 2658-2664 (2010).
-
(2010)
J. Biol. Chem.
, vol.286
, pp. 2658-2664
-
-
Choi, S.1
Kim, W.2
Chung, J.3
-
113
-
-
67649669255
-
A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling
-
Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114-128 (2009).
-
(2009)
Cell
, vol.138
, pp. 114-128
-
-
Ramirez-Carrozzi, V.R.1
-
114
-
-
12344277552
-
Diabetes, obesity, and the brain
-
Schwartz, M. W. & Porte, D. Jr. Diabetes, obesity, and the brain. Science 307, 375-379 (2005).
-
(2005)
Science
, vol.307
, pp. 375-379
-
-
Schwartz, M.W.1
Porte Jr., D.2
|