메뉴 건너뛰기




Volumn 7, Issue 2, 2018, Pages

Visually-enabled active deep learning for (geo) text and image classification: A review

Author keywords

Active learning; Deep learning; Geographic information retrieval; Human centered computing; Image classification; Machine learning; Multi class classification; Multi label classification; Text classification; Visual analytics

Indexed keywords


EID: 85043275308     PISSN: None     EISSN: 22209964     Source Type: Journal    
DOI: 10.3390/ijgi7020065     Document Type: Conference Paper
Times cited : (47)

References (228)
  • 5
    • 85066750614 scopus 로고    scopus 로고
    • Towards better analysis of machine learning models: A visual analytics perspective
    • Liu, S.;Wang, X.; Liu, M.; Zhu, J. Towards better analysis of machine learning models: A visual analytics perspective. Vis. Inf. 2017, 1, 48-56.
    • (2017) Vis. Inf , vol.1 , pp. 48-56
    • Liu, S.1    Wang, X.2    Liu, M.3    Zhu, J.4
  • 7
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606-617.
    • (2011) IEEE J. Sel. Top. Signal Process , vol.5 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 10
    • 85048560245 scopus 로고    scopus 로고
    • Interactive machine learning for health informatics: When do we need the human-in-The-loop?
    • Holzinger, A. Interactive machine learning for health informatics: When do we need the human-in-The-loop? Brain Inf. 2016, 3, 119-131.
    • (2016) Brain Inf , vol.3 , pp. 119-131
    • Holzinger, A.1
  • 14
    • 85043260803 scopus 로고    scopus 로고
    • (accessed on 10 November 2017)
    • Biewald, L. Why Human-in-The-Loop Computing Is the Future of Machine Learning, 2015. Available online: https://www.computerworld.com/article/3004013/robotics/why-human-in-The-loop-computingis-The-future-of-machine-learning.html (accessed on 10 November 2017).
    • (2015) Why Human-in-The-Loop Computing is the Future of Machine Learning
    • Biewald, L.1
  • 22
    • 0030383267 scopus 로고    scopus 로고
    • Visualization techniques for mining large databases: A comparison
    • Keim, D.A.; Kriegel, H.P. Visualization techniques for mining large databases: A comparison. IEEE Trans. Knowl. Data Eng. 1996, 8, 923-938.
    • (1996) IEEE Trans. Knowl. Data Eng , vol.8 , pp. 923-938
    • Keim, D.A.1    Kriegel, H.P.2
  • 23
    • 0033374040 scopus 로고    scopus 로고
    • Constructing knowledge from multivariate spatiotemporal data: Integrating geographical visualization with knowledge discovery in database methods
    • MacEachren, A.M.; Wachowicz, M.; Edsall, R.; Haug, D.; Masters, R. Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. Int. J. Geogr. Inf. Sci. 1999, 13, 311-334.
    • (1999) Int. J. Geogr. Inf. Sci , vol.13 , pp. 311-334
    • MacEachren, A.M.1    Wachowicz, M.2    Edsall, R.3    Haug, D.4    Masters, R.5
  • 24
    • 70449699746 scopus 로고    scopus 로고
    • Spatial data mining and geographic knowledge discovery-An introduction
    • Guo, D.; Mennis, J. Spatial data mining and geographic knowledge discovery-An introduction. Comput. Environ. Urban Syst. 2009, 33, 403-408.
    • (2009) Comput. Environ. Urban Syst , vol.33 , pp. 403-408
    • Guo, D.1    Mennis, J.2
  • 30
    • 79952368651 scopus 로고    scopus 로고
    • Active learning in multimedia annotation and retrieval: A survey
    • Wang, M.; Hua, X.S. Active learning in multimedia annotation and retrieval: A survey. ACM Trans. Intell. Syst. Technol. 2011, 2, 10.
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , pp. 10
    • Wang, M.1    Hua, X.S.2
  • 35
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss, G.M.; Provost, F. Learning when training data are costly: The effect of class distribution on tree induction. J. Artif. Intell. Res. 2003, 19, 315-354.
    • (2003) J. Artif. Intell. Res , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 38
    • 79960392344 scopus 로고    scopus 로고
    • Amazon's Mechanical Turk: A new source of inexpensive, yet high-quality, data?
    • Buhrmester, M.; Kwang, T.; Gosling, S.D. Amazon's Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 2011, 6, 3-5.
    • (2011) Perspect. Psychol. Sci , vol.6 , pp. 3-5
    • Buhrmester, M.1    Kwang, T.2    Gosling, S.D.3
  • 39
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn, D.; Atlas, L.; Ladner, R. Improving generalization with active learning. Mach. Learn. 1994, 15, 201-221.
    • (1994) Mach. Learn , vol.15 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 43
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78-87.
    • (2012) Commun. ACM , vol.55 , pp. 78-87
    • Domingos, P.1
  • 45
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Angluin, D. Queries and concept learning. Mach. Learn. 1988, 2, 319-342.
    • (1988) Mach. Learn , vol.2 , pp. 319-342
    • Angluin, D.1
  • 46
    • 84948142702 scopus 로고    scopus 로고
    • Queries revisited
    • Springer: Berlin/Heidelberg, Germany
    • Angluin, D. Queries revisited. In Algorithmic Learning Theory; Springer: Berlin/Heidelberg, Germany, 2001; pp. 12-31.
    • (2001) Algorithmic Learning Theory , pp. 12-31
    • Angluin, D.1
  • 49
    • 84924074550 scopus 로고    scopus 로고
    • Active learning via query synthesis and nearest neighbour search
    • Wang, L.; Hu, X.; Yuan, B.; Lu, J. Active learning via query synthesis and nearest neighbour search. Neurocomputing 2015, 147, 426-434.
    • (2015) Neurocomputing , vol.147 , pp. 426-434
    • Wang, L.1    Hu, X.2    Yuan, B.3    Lu, J.4
  • 50
    • 85030477094 scopus 로고    scopus 로고
    • Near-optimal active learning of halfspaces via query synthesis in the noisy setting
    • arXiv:1603.03515
    • Chen, L.; Hassani, S.H.; Karbasi, A. Near-Optimal Active Learning of Halfspaces via Query Synthesis in the Noisy Setting. AAAI 2017, arXiv:1603.03515.
    • (2017) AAAI
    • Chen, L.1    Hassani, S.H.2    Karbasi, A.3
  • 56
    • 85032873671 scopus 로고    scopus 로고
    • Batch-based active learning: Application to social media data for crisis management
    • Pohl, D.; Bouchachia, A.; Hellwagner, H. Batch-based active learning: Application to social media data for crisis management. Expert Syst. Appl. 2018, 93, 232-244.
    • (2018) Expert Syst. Appl , vol.93 , pp. 232-244
    • Pohl, D.1    Bouchachia, A.2    Hellwagner, H.3
  • 57
    • 0000012198 scopus 로고    scopus 로고
    • Selective sampling for example-based word sense disambiguation
    • Fujii, A.; Tokunaga, T.; Inui, K.; Tanaka, H. Selective sampling for example-based word sense disambiguation. Comput. Linguist. 1998, 24, 573-597.
    • (1998) Comput. Linguist , vol.24 , pp. 573-597
    • Fujii, A.1    Tokunaga, T.2    Inui, K.3    Tanaka, H.4
  • 61
    • 85027542157 scopus 로고    scopus 로고
    • Exploring representativeness and informativeness for active learning
    • Du, B.; Wang, Z.; Zhang, L.; Zhang, L.; Liu, W.; Shen, J.; Tao, D. Exploring representativeness and informativeness for active learning. IEEE Trans. Cybern. 2017, 47, 14-26.
    • (2017) IEEE Trans. Cybern , vol.47 , pp. 14-26
    • Du, B.1    Wang, Z.2    Zhang, L.3    Zhang, L.4    Liu, W.5    Shen, J.6    Tao, D.7
  • 62
    • 0036613407 scopus 로고    scopus 로고
    • An active learning framework for content-based information retrieval
    • Zhang, C.; Chen, T. An active learning framework for content-based information retrieval. IEEE Trans. Multimed. 2002, 4, 260-268.
    • (2002) IEEE Trans. Multimed , vol.4 , pp. 260-268
    • Zhang, C.1    Chen, T.2
  • 63
    • 13544261390 scopus 로고    scopus 로고
    • Combining active and semi-supervised learning for spoken language understanding
    • Tur, G.; Hakkani-Tür, D.; Schapire, R.E. Combining active and semi-supervised learning for spoken language understanding. Speech Commun. 2005, 45, 171-186.
    • (2005) Speech Commun , vol.45 , pp. 171-186
    • Tur, G.1    Hakkani-Tür, D.2    Schapire, R.E.3
  • 64
    • 10044229345 scopus 로고    scopus 로고
    • Active learning with support vector machine applied to gene expression data for cancer classification
    • Liu, Y. Active learning with support vector machine applied to gene expression data for cancer classification. J. Chem. Inf. Comput. Sci. 2004, 44, 1936-1941.
    • (2004) J. Chem. Inf. Comput. Sci , vol.44 , pp. 1936-1941
    • Liu, Y.1
  • 65
    • 85030114581 scopus 로고    scopus 로고
    • ANALYTiC: An active learning system for trajectory classification
    • Júnior, A.S.; Renso, C.; Matwin, S. ANALYTiC: An Active Learning System for Trajectory Classification. IEEE Comput. Graph. Appl. 2017, 37, 28-39.
    • (2017) IEEE Comput. Graph. Appl , vol.37 , pp. 28-39
    • Júnior, A.S.1    Renso, C.2    Matwin, S.3
  • 67
    • 68549086546 scopus 로고    scopus 로고
    • Semisupervised SVM batch mode active learning with applications to image retrieval
    • Hoi, S.C.; Jin, R.; Zhu, J.; Lyu, M.R. Semisupervised SVM batch mode active learning with applications to image retrieval. ACM Trans. Inf. Syst. 2009, 27, 16.
    • (2009) ACM Trans. Inf. Syst , vol.27 , pp. 16
    • Hoi, S.C.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 68
    • 84963700724 scopus 로고    scopus 로고
    • Evidence-based uncertainty sampling for active learning
    • Sharma, M.; Bilgic, M. Evidence-based uncertainty sampling for active learning. Data Min. Knowl. Discov. 2017, 31, 164-202.
    • (2017) Data Min. Knowl. Discov , vol.31 , pp. 164-202
    • Sharma, M.1    Bilgic, M.2
  • 69
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund, Y.; Seung, H.S.; Shamir, E.; Tishby, N. Selective sampling using the query by committee algorithm. Mach. Learn. 1997, 28, 133-168.
    • (1997) Mach. Learn , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 72
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79-86.
    • (1951) Ann. Math. Stat , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 77
    • 33746634025 scopus 로고    scopus 로고
    • Leveraging active learning for relevance feedback using an information theoretic diversity measure
    • Dagli, C.K.; Rajaram, S.; Huang, T.S. Leveraging active learning for relevance feedback using an information theoretic diversity measure. Lect. Notes Comput. Sci. 2006, 4071, 123.
    • (2006) Lect. Notes Comput. Sci , vol.4071 , pp. 123
    • Dagli, C.K.1    Rajaram, S.2    Huang, T.S.3
  • 81
    • 34547951114 scopus 로고    scopus 로고
    • Evaluation of active learning strategies for video indexing
    • Ayache, S.; Quénot, G. Evaluation of active learning strategies for video indexing. Signal Process. Image Commun. 2007, 22, 692-704.
    • (2007) Signal Process. Image Commun , vol.22 , pp. 692-704
    • Ayache, S.1    Quénot, G.2
  • 83
    • 84858080696 scopus 로고    scopus 로고
    • A batch-mode active learning technique based on multiple uncertainty for SVM classifier
    • Patra, S.; Bruzzone, L. A batch-mode active learning technique based on multiple uncertainty for SVM classifier. IEEE Geosci. Remote Sens. Lett. 2012, 9, 497-501.
    • (2012) IEEE Geosci. Remote Sens. Lett , vol.9 , pp. 497-501
    • Patra, S.1    Bruzzone, L.2
  • 84
    • 78149319339 scopus 로고    scopus 로고
    • Incorporating diversity and density in active learning for relevance feedback
    • Springer: Berlin/Heidelberg, Germany
    • Xu, Z.; Akella, R.; Zhang, Y. Incorporating diversity and density in active learning for relevance feedback. In ECiR; Springer: Berlin/Heidelberg, Germany, 2007; Volume 7, pp. 246-257.
    • (2007) ECiR , vol.7 , pp. 246-257
    • Xu, Z.1    Akella, R.2    Zhang, Y.3
  • 85
  • 90
    • 84963541556 scopus 로고    scopus 로고
    • A visual analytical approach for transfer learning in classification
    • Ma, Y.; Xu, J.; Wu, X.; Wang, F.; Chen, W. A visual analytical approach for transfer learning in classification. Inf. Sci. 2017, 390, 54-69.
    • (2017) Inf. Sci , vol.390 , pp. 54-69
    • Ma, Y.1    Xu, J.2    Wu, X.3    Wang, F.4    Chen, W.5
  • 91
    • 85020470195 scopus 로고    scopus 로고
    • A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
    • Miller, C.; Nagy, Z.; Schlueter, A. A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings. Renew. Sustain. Energy Rev. 2018, 81, 1365-1377.
    • (2018) Renew. Sustain. Energy Rev , vol.81 , pp. 1365-1377
    • Miller, C.1    Nagy, Z.2    Schlueter, A.3
  • 96
    • 80052292225 scopus 로고    scopus 로고
    • Mastering the information age solving problems with visual analytics
    • Ellis, G.; Mansmann, F. Mastering the information age solving problems with visual analytics. Eurographics 2010, 2, 5.
    • (2010) Eurographics , vol.2 , pp. 5
    • Ellis, G.1    Mansmann, F.2
  • 105
    • 84920541067 scopus 로고    scopus 로고
    • Power to the people: The role of humans in interactive machine learning
    • Amershi, S.; Cakmak, M.; Knox, W.B.; Kulesza, T. Power to the people: The role of humans in interactive machine learning. AI Mag. 2014, 35, 105-120.
    • (2014) AI Mag , vol.35 , pp. 105-120
    • Amershi, S.1    Cakmak, M.2    Knox, W.B.3    Kulesza, T.4
  • 107
    • 85043253910 scopus 로고    scopus 로고
    • Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, USA
    • Sharma, M. Active Learning with Rich Feedback. Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, USA, 2017.
    • (2017) Active Learning with Rich Feedback
    • Sharma, M.1
  • 110
    • 80053225377 scopus 로고    scopus 로고
    • Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances
    • Scotland, UK, 27-31 July
    • Settles, B. Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Scotland, UK, 27-31 July 2011; pp. 1467-1478.
    • (2011) Proceedings of the Conference on Empirical Methods in Natural Language Processing , pp. 1467-1478
    • Settles, B.1
  • 111
    • 85043234607 scopus 로고    scopus 로고
    • Master's Thesis, Dalhousie University, Halifax, NS, Canada
    • Huang, L. Active Learning with Visualization. Master's Thesis, Dalhousie University, Halifax, NS, Canada, 2017.
    • (2017) Active Learning with Visualization
    • Huang, L.1
  • 114
    • 85043235339 scopus 로고    scopus 로고
    • Deep learning takes on translation
    • Monroe, D. Deep learning takes on translation. Commun. ACM 2017, 60, 12-14.
    • (2017) Commun. ACM , vol.60 , pp. 12-14
    • Monroe, D.1
  • 120
    • 84922375195 scopus 로고    scopus 로고
    • Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
    • ICML: Atlanta, GA, USA
    • Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning; ICML: Atlanta, GA, USA, 2013: Volume 3, p. 2.
    • (2013) Workshop on Challenges in Representation Learning , vol.3 , pp. 2
    • Lee, D.H.1
  • 121
    • 84906331113 scopus 로고    scopus 로고
    • Cross-Age reference coding for age-invariant face recognition and retrieval
    • Springer: Berlin/Heidelberg, Germany
    • Chen, B.C.; Chen, C.S.; Hsu, W.H. Cross-Age reference coding for age-invariant face recognition and retrieval. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 768-783.
    • (2014) European Conference on Computer Vision , pp. 768-783
    • Chen, B.C.1    Chen, C.S.2    Hsu, W.H.3
  • 126
    • 84937849144 scopus 로고    scopus 로고
    • (accessed on 15 October 2017)
    • Goodfellow, I. Generative Adversarial Networks for Text, 2016. Available online: https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative-Adversarial-networks-for-Text/(accessed on 15 October 2017).
    • (2016) Generative Adversarial Networks for Text
    • Goodfellow, I.1
  • 127
    • 84882929257 scopus 로고    scopus 로고
    • Active deep learning method for semi-supervised sentiment classification
    • Zhou, S.; Chen, Q.; Wang, X. Active deep learning method for semi-supervised sentiment classification. Neurocomputing 2013, 120, 536-546.
    • (2013) Neurocomputing , vol.120 , pp. 536-546
    • Zhou, S.1    Chen, Q.2    Wang, X.3
  • 129
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22-40.
    • (2016) IEEE Geosci. Remote Sens. Mag , vol.4 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 130
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • Mitra, P.; Shankar, B.U.; Pal, S.K. Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognit. Lett. 2004, 25, 1067-1074.
    • (2004) Pattern Recognit. Lett , vol.25 , pp. 1067-1074
    • Mitra, P.1    Shankar, B.U.2    Pal, S.K.3
  • 131
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • Rajan, S.; Ghosh, J.; Crawford, M.M. An active learning approach to hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1231-1242.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 133
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Demir, B.; Persello, C.; Bruzzone, L. Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1014-1031.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 134
    • 79955632976 scopus 로고    scopus 로고
    • A fast cluster-Assumption based active-learning technique for classification of remote sensing images
    • Patra, S.; Bruzzone, L. A fast cluster-Assumption based active-learning technique for classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1617-1626.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 1617-1626
    • Patra, S.1    Bruzzone, L.2
  • 136
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • Ferecatu, M.; Boujemaa, N. Interactive remote-sensing image retrieval using active relevance feedback. IEEE Trans. Geosci. Remote Sens. 2007, 45, 818-826.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 137
    • 84947127828 scopus 로고    scopus 로고
    • Deep learning based feature selection for remote sensing scene classification
    • Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321-2325.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4
  • 138
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527-1554.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 144
    • 85035042003 scopus 로고    scopus 로고
    • A review of openstreetmap data
    • Ubiquity Press: London, UK
    • Mooney, P.; Minghini, M. A review of OpenStreetMap data. In Mapp. Citiz. Sens. Ubiquity Press: London, UK, 2017; pp. 37-59. DOI:https://doi.org/10.5334/bbf.c.
    • (2017) Mapp. Citiz. Sens , pp. 37-59
    • Mooney, P.1    Minghini, M.2
  • 145
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by EM
    • (accessed on 17 November 2017
    • McCallum, A. Multi-label text classification with a mixture model trained by EM. AAAI Workshop Text Learn. 1999, 1-7. Available online: https://mimno.infosci.cornell.edu/info6150/readings/multilabel.pdf (accessed on 17 November 2017).
    • (1999) AAAI Workshop Text Learn , pp. 1-7
    • McCallum, A.1
  • 146
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Godbole, S.; Sarawagi, S. Discriminative methods for multi-labeled classification. Adv. Knowl. Discov. Data Min. 2004, 22-30, doi:10.1007/978-3-540-24775-3-5.
    • (2004) Adv. Knowl. Discov. Data Min , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 149
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • Silla, C.N. Jr.; Freitas, A.A. A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 2011, 22, 31-72.
    • (2011) Data Min. Knowl. Discov , vol.22 , pp. 31-72
    • Silla, C.N.1    Freitas, A.A.2
  • 151
    • 84913528724 scopus 로고    scopus 로고
    • Mandatory leaf node prediction in hierarchical multilabel classification
    • Bi, W.; Kwok, J.T. Mandatory leaf node prediction in hierarchical multilabel classification. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 2275-2287.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , pp. 2275-2287
    • Bi, W.1    Kwok, J.T.2
  • 153
    • 85043282432 scopus 로고    scopus 로고
    • (accessed on 17 November 2017)
    • Raad, M. A nEw Business Intelligence Emerges: Geo.AI, 2017. Available online: https://www.esri.com/about/newsroom/publications/wherenext/new-business-intelligence-emerges-geo-Ai/(accessed on 17 November 2017).
    • (2017) A NEw Business Intelligence Emerges: Geo.AI
    • Raad, M.1
  • 155
    • 84953734134 scopus 로고    scopus 로고
    • Computational linguistics and deep learning
    • Manning, C.D. Computational linguistics and deep learning. Comput. Linguist. 2015, 41, 701-707.
    • (2015) Comput. Linguist , vol.41 , pp. 701-707
    • Manning, C.D.1
  • 156
    • 85010274847 scopus 로고    scopus 로고
    • (accessed on 15 November 2017)
    • Knight, W. AI's Language Problem-MIT Technology Review, 2016. Available online: https://www.technologyreview.com/s/602094/ais-language-problem (accessed on 15 November 2017).
    • (2016) AI's Language Problem-MIT Technology Review
    • Knight, W.1
  • 161
    • 85013626573 scopus 로고    scopus 로고
    • A convolutional neural network approach for assisting avalanche search and rescue operations with uav imagery
    • Bejiga, M.B.; Zeggada, A.; Nouffidj, A.; Melgani, F. A convolutional neural network approach for assisting avalanche search and rescue operations with uav imagery. Remote Sens. 2017, 9, 100.
    • (2017) Remote Sens , vol.9 , pp. 100
    • Bejiga, M.B.1    Zeggada, A.2    Nouffidj, A.3    Melgani, F.4
  • 163
    • 85043288089 scopus 로고    scopus 로고
    • (accessed on 20 October 2017
    • Andriole, S. Unstructured Data: The Other Side of Analytics, 2015. Available online: http://www.forbes.com/sites/steveandriole/2015/03/05/the-other-side-of-Analytics (accessed on 20 October 2017).
    • (2015) Unstructured Data: The other Side of Analytics
    • Andriole, S.1
  • 164
    • 84878457685 scopus 로고    scopus 로고
    • How much information is geospatially referenced? Networks and cognition
    • Hahmann, S.; Burghardt, D. How much information is geospatially referenced? Networks and cognition. Int. J. Geogr. Inf. Sci. 2013, 27, 1171-1189.
    • (2013) Int. J. Geogr. Inf. Sci , vol.27 , pp. 1171-1189
    • Hahmann, S.1    Burghardt, D.2
  • 166
    • 85029659847 scopus 로고    scopus 로고
    • Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization
    • Tracewski, L.; Bastin, L.; Fonte, C.C. Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization. Geo-Spat. Inf. Sci. 2017, 20, 252-268.
    • (2017) Geo-Spat. Inf. Sci , vol.20 , pp. 252-268
    • Tracewski, L.1    Bastin, L.2    Fonte, C.C.3
  • 167
    • 84942848720 scopus 로고    scopus 로고
    • Extracting and understanding urban areas of interest using geotagged photos
    • Hu, Y.; Gao, S.; Janowicz, K.; Yu, B.; Li, W.; Prasad, S. Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst. 2015, 54, 240-254.
    • (2015) Comput. Environ. Urban Syst , vol.54 , pp. 240-254
    • Hu, Y.1    Gao, S.2    Janowicz, K.3    Yu, B.4    Li, W.5    Prasad, S.6
  • 179
  • 180
    • 83455257005 scopus 로고    scopus 로고
    • The semantics of similarity in geographic information retrieval
    • Janowicz, K.; Raubal, M.; Kuhn, W. The semantics of similarity in geographic information retrieval. J. Spat. Inf. Sci. 2011, 2011, 29-57.
    • (2011) J. Spat. Inf. Sci , vol.2011 , pp. 29-57
    • Janowicz, K.1    Raubal, M.2    Kuhn, W.3
  • 181
    • 85041029948 scopus 로고    scopus 로고
    • Crowdsourcing the character of a place: Character-level convolutional networks for multilingual geographic text classification
    • Adams, B.; McKenzie, G. Crowdsourcing the Character of a Place: Character-Level Convolutional Networks for Multilingual Geographic Text Classification. Trans. GIS 2018. doi:10.1111/tgis.12317.
    • (2018) Trans. GIS
    • Adams, B.1    McKenzie, G.2
  • 182
    • 84953314366 scopus 로고    scopus 로고
    • Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study
    • Cervone, G.; Sava, E.; Huang, Q.; Schnebele, E.; Harrison, J.; Waters, N. Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study. Int. J. Remote Sens. 2016, 37, 100-124.
    • (2016) Int. J. Remote Sens , vol.37 , pp. 100-124
    • Cervone, G.1    Sava, E.2    Huang, Q.3    Schnebele, E.4    Harrison, J.5    Waters, N.6
  • 183
    • 84895597100 scopus 로고    scopus 로고
    • Constructing gazetteers from volunteered big geo-data based on Hadoop
    • Gao, S.; Li, L.; Li, W.; Janowicz, K.; Zhang, Y. Constructing gazetteers from volunteered big geo-data based on Hadoop. Comput. Environ. Urban Syst. 2017, 61, 172-186.
    • (2017) Comput. Environ. Urban Syst , vol.61 , pp. 172-186
    • Gao, S.1    Li, L.2    Li, W.3    Janowicz, K.4    Zhang, Y.5
  • 184
    • 84944735469 scopus 로고    scopus 로고
    • MIT Press: Cambridge, MA, USA, (accessed on 10 October 2017)
    • Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.deeplearningbook.org (accessed on 10 October 2017).
    • (2016) Deep Learning
    • Goodfellow, I.1    Bengio, Y.2    Courville, A.3
  • 185
    • 0010836411 scopus 로고    scopus 로고
    • Feature engineering for text classification
    • Scott, S.; Matwin, S. Feature engineering for text classification. ICML 1999, 99, 379-388.
    • (1999) ICML , vol.99 , pp. 379-388
    • Scott, S.1    Matwin, S.2
  • 194
    • 33745456231 scopus 로고    scopus 로고
    • Computer Sciences Technical Report 1530; University of Wisconsin: Madison, MI, USA
    • Zhu, X. Semi-Supervised Learning Literature Survey; Computer Sciences Technical Report 1530; University of Wisconsin: Madison, MI, USA, 2005.
    • (2005) Semi-Supervised Learning Literature Survey
    • Zhu, X.1
  • 195
    • 85043279029 scopus 로고    scopus 로고
    • Intelligent behavior in humans and machines
    • (accessed on 29 December 2017)
    • Langley, P. Intelligent behavior in humans and machines. American Association for Artificial Intelligence. 2006. Available online: http://lyonesse.stanford.edu/~langley/papers/ai50.dart.pdf (accessed on 29 December 2017).
    • (2006) American Association for Artificial Intelligence
    • Langley, P.1
  • 196
    • 34548084959 scopus 로고    scopus 로고
    • Technical Report CMU-ML-06-108; Carnegie Mellon University: Pittsburgh, PA, USA
    • Mitchell, T.M. The Discipline of Machine Learning; Technical Report CMU-ML-06-108; Carnegie Mellon University: Pittsburgh, PA, USA, 2006.
    • (2006) The Discipline of Machine Learning
    • Mitchell, T.M.1
  • 202
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-All schemes
    • Galar, M.; Fernández, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-All schemes. Pattern Recognit. 2011, 44, 1761-1776.
    • (2011) Pattern Recognit , vol.44 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 203
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427-437.
    • (2009) Inf. Process. Manag , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 204
  • 205
    • 84941942720 scopus 로고    scopus 로고
    • The importance of the label hierarchy in hierarchical multi-label classification
    • Levatíc, J.; Kocev, D.; Džeroski, S. The importance of the label hierarchy in hierarchical multi-label classification. J. Intell. Inf. Syst. 2015, 45, 247-271.
    • (2015) J. Intell. Inf. Syst , vol.45 , pp. 247-271
    • Levatíc, J.1    Kocev, D.2    Džeroski, S.3
  • 207
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains for multi-label classification. Mach. Learn. 2011, 85, 333-359.
    • (2011) Mach. Learn , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 208
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Zhang, M.L.; Zhou, Z.H. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 2014, 26, 1819-1837.
    • (2014) IEEE Trans. Knowl. Data Eng , vol.26 , pp. 1819-1837
    • Zhang, M.L.1    Zhou, Z.H.2
  • 210
    • 33746058639 scopus 로고    scopus 로고
    • Learning and evaluation in the presence of class hierarchies: Application to text categorization
    • Springer: Berlin/Heidelberg, Germany
    • Kiritchenko, S.; Matwin, S.; Nock, R.; Famili, A.F. Learning and evaluation in the presence of class hierarchies: Application to text categorization. In Canadian Conference on AI; Springer: Berlin/Heidelberg, Germany, 2006; Volume 2006, pp. 395-406.
    • (2006) Canadian Conference on AI , vol.2006 , pp. 395-406
    • Kiritchenko, S.1    Matwin, S.2    Nock, R.3    Famili, A.F.4
  • 213
    • 84872693448 scopus 로고    scopus 로고
    • Extracting hierarchies from data clusters for better classification
    • Sapozhnikov, G.; Ulanov, A. Extracting Hierarchies from Data Clusters for Better Classification. Algorithms 2012, 5, 506-520.
    • (2012) Algorithms , vol.5 , pp. 506-520
    • Sapozhnikov, G.1    Ulanov, A.2
  • 216
    • 13444293728 scopus 로고    scopus 로고
    • Support vector machines with binary tree architecture for multi-class classification
    • Cheong, S.; Oh, S.H.; Lee, S.Y. Support vector machines with binary tree architecture for multi-class classification. Neural Inf. Process. Lett. Rev. 2004, 2, 47-51.
    • (2004) Neural Inf. Process. Lett. Rev , vol.2 , pp. 47-51
    • Cheong, S.1    Oh, S.H.2    Lee, S.Y.3
  • 221
    • 85043282912 scopus 로고    scopus 로고
    • (accessed on 10 October 2017)
    • Stanford NER Recognizer. Available online: https://nlp.stanford.edu/software/CRF-NER.shtml (accessed on 10 October 2017).
    • Stanford NER Recognizer
  • 222
    • 85043261799 scopus 로고    scopus 로고
    • (accessed on 10 October 2017)
    • Stanford Named Entity Tagger. Available online: http://nlp.stanford.edu:8080/ner (accessed on 10 October 2017).
    • Stanford Named Entity Tagger
  • 223
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F. Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 2002, 34, 1-47.
    • (2002) ACM Comput. Surv. (CSUR) , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 228
    • 84906930943 scopus 로고    scopus 로고
    • Don't count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors
    • Baroni, M.; Dinu, G.; Kruszewski, G. Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. ACL 2014, 1, 238-247.
    • (2014) ACL , vol.1 , pp. 238-247
    • Baroni, M.1    Dinu, G.2    Kruszewski, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.