-
1
-
-
84971577321
-
-
arXiv, arXiv:1603.04467
-
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467.
-
(2016)
Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
-
4
-
-
84994116585
-
Human-centered machine learning through interactive visualization: Review and Open Challenges
-
Bruges, Belgium, 27-29 April
-
Sacha, D.; Sedlmair, M.; Zhang, L.; Lee, J.A.; Weiskopf, D.; North, S.; Keim, D. Human-centered machine learning through interactive visualization: Review and Open Challenges. In Proceedings of the ESANN 2016 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 27-29 April 2016.
-
(2016)
Proceedings of the ESANN 2016 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
-
-
Sacha, D.1
Sedlmair, M.2
Zhang, L.3
Lee, J.A.4
Weiskopf, D.5
North, S.6
Keim, D.7
-
5
-
-
85066750614
-
Towards better analysis of machine learning models: A visual analytics perspective
-
Liu, S.;Wang, X.; Liu, M.; Zhu, J. Towards better analysis of machine learning models: A visual analytics perspective. Vis. Inf. 2017, 1, 48-56.
-
(2017)
Vis. Inf
, vol.1
, pp. 48-56
-
-
Liu, S.1
Wang, X.2
Liu, M.3
Zhu, J.4
-
6
-
-
85054768762
-
-
arXiv 2017, arXiv:1710.10777
-
Ming, Y.; Cao, S.; Zhang, R.; Li, Z.; Chen, Y.; Song, Y.; Qu, H. Understanding Hidden Memories of Recurrent Neural Networks. arXiv 2017, arXiv:1710.10777.
-
Understanding Hidden Memories of Recurrent Neural Networks
-
-
Ming, Y.1
Cao, S.2
Zhang, R.3
Li, Z.4
Chen, Y.5
Song, Y.6
Qu, H.7
-
7
-
-
79957456032
-
A survey of active learning algorithms for supervised remote sensing image classification
-
Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606-617.
-
(2011)
IEEE J. Sel. Top. Signal Process
, vol.5
, pp. 606-617
-
-
Tuia, D.1
Volpi, M.2
Copa, L.3
Kanevski, M.4
Munoz-Mari, J.5
-
8
-
-
84963740253
-
An interactive learning framework for scalable classification of pathology images
-
Santa Clara, CA, USA, 29 October-1 November
-
Nalisnik, M.; Gutman, D.A.; Kong, J.; Cooper, L.A. An interactive learning framework for scalable classification of pathology images. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October-1 November 2015; pp. 928-935.
-
(2015)
Proceedings of the 2015 IEEE International Conference on Big Data (Big Data)
, pp. 928-935
-
-
Nalisnik, M.1
Gutman, D.A.2
Kong, J.3
Cooper, L.A.4
-
9
-
-
84959878402
-
Active learning with rationales for text classification
-
Denver, CO, USA, 31 May-5 June
-
Sharma, M.; Zhuang, D.; Bilgic, M. Active learning with rationales for text classification. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, CO, USA, 31 May-5 June 2015; pp. 441-451.
-
(2015)
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
, pp. 441-451
-
-
Sharma, M.1
Zhuang, D.2
Bilgic, M.3
-
10
-
-
85048560245
-
Interactive machine learning for health informatics: When do we need the human-in-The-loop?
-
Holzinger, A. Interactive machine learning for health informatics: When do we need the human-in-The-loop? Brain Inf. 2016, 3, 119-131.
-
(2016)
Brain Inf
, vol.3
, pp. 119-131
-
-
Holzinger, A.1
-
11
-
-
85028696903
-
Comparing visual-interactive labeling with active learning: An experimental study
-
Bernard, J.; Hutter, M.; Zeppelzauer, M.; Fellner, D.; Sedlmair, M. Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study. IEEE Trans. Vis. Comput. Graph. 2018, 24, 298-308.
-
(2018)
IEEE Trans. Vis. Comput. Graph
, vol.24
, pp. 298-308
-
-
Bernard, J.1
Hutter, M.2
Zeppelzauer, M.3
Fellner, D.4
Sedlmair, M.5
-
12
-
-
85043241766
-
-
arXiv 2017, arXiv:1710.03959
-
Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A review. arXiv 2017, arXiv:1710.03959.
-
Deep Learning in Remote Sensing: A Review
-
-
Zhu, X.X.1
Tuia, D.2
Mou, L.3
Xia, G.S.4
Zhang, L.5
Xu, F.6
Fraundorfer, F.7
-
13
-
-
85032958347
-
Active learning and visual analytics for stance classification with ALVA
-
Kucher, K.; Paradis, C.; Sahlgren, M.; Kerren, A. Active Learning and Visual Analytics for Stance Classification with ALVA. ACM Trans. Interact. Intell. Syst. 2017, 7, 14.
-
(2017)
ACM Trans. Interact. Intell. Syst
, vol.7
, pp. 14
-
-
Kucher, K.1
Paradis, C.2
Sahlgren, M.3
Kerren, A.4
-
14
-
-
85043260803
-
-
(accessed on 10 November 2017)
-
Biewald, L. Why Human-in-The-Loop Computing Is the Future of Machine Learning, 2015. Available online: https://www.computerworld.com/article/3004013/robotics/why-human-in-The-loop-computingis-The-future-of-machine-learning.html (accessed on 10 November 2017).
-
(2015)
Why Human-in-The-Loop Computing is the Future of Machine Learning
-
-
Biewald, L.1
-
15
-
-
85121736439
-
A unified process for visual-interactive labeling
-
Barcelona, Spain, 12-13 June
-
Bernard, J.; Zeppelzauer, M.; Sedlmair, M.; Aigner, W. A Unified Process for Visual-Interactive Labeling. In Proceedings of the 8th International EuroVisWorkshop on Visual Analytics (Eurographics Proceedings), Barcelona, Spain, 12-13 June 2017.
-
(2017)
Proceedings of the 8th International EuroVisWorkshop on Visual Analytics (Eurographics Proceedings)
-
-
Bernard, J.1
Zeppelzauer, M.2
Sedlmair, M.3
Aigner, W.4
-
16
-
-
79960423714
-
Challenging problems of geospatial visual analytics
-
Andrienko, G.; Andrienko, N.; Keim, D.; MacEachren, A.M.; Wrobel, S. Challenging problems of geospatial visual analytics. J. Vis. Lang. Comput. 2011, 22, 251-256.
-
(2011)
J. Vis. Lang. Comput
, vol.22
, pp. 251-256
-
-
Andrienko, G.1
Andrienko, N.2
Keim, D.3
MacEachren, A.M.4
Wrobel, S.5
-
17
-
-
84908483797
-
A new active labeling method for deep learning
-
Beijing, China, 6-11 July
-
Wang, D.; Shang, Y. A new active labeling method for deep learning. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6-11 July 2014; pp. 112-119.
-
(2014)
Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN)
, pp. 112-119
-
-
Wang, D.1
Shang, Y.2
-
18
-
-
85016940229
-
Active learning with visualization for text data
-
Limassol, Cyprus, 13 March
-
Huang, L.; Matwin, S.; de Carvalho, E.J.; Minghim, R. Active Learning with Visualization for Text Data. In Proceedings of the 2017 ACM Workshop on Exploratory Search and Interactive Data Analytics, Limassol, Cyprus, 13 March 2017; pp. 69-74.
-
(2017)
Proceedings of the 2017 ACM Workshop on Exploratory Search and Interactive Data Analytics
, pp. 69-74
-
-
Huang, L.1
Matwin, S.2
De Carvalho, E.J.3
Minghim, R.4
-
20
-
-
84926403412
-
-
2nd ed. CRC Press: Boca Raton, FL, USA
-
Miller, H.J.; Han, J. Geographic Data Mining and Knowledge Discovery, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009.
-
(2009)
Geographic Data Mining and Knowledge Discovery
-
-
Miller, H.J.1
Han, J.2
-
22
-
-
0030383267
-
Visualization techniques for mining large databases: A comparison
-
Keim, D.A.; Kriegel, H.P. Visualization techniques for mining large databases: A comparison. IEEE Trans. Knowl. Data Eng. 1996, 8, 923-938.
-
(1996)
IEEE Trans. Knowl. Data Eng
, vol.8
, pp. 923-938
-
-
Keim, D.A.1
Kriegel, H.P.2
-
23
-
-
0033374040
-
Constructing knowledge from multivariate spatiotemporal data: Integrating geographical visualization with knowledge discovery in database methods
-
MacEachren, A.M.; Wachowicz, M.; Edsall, R.; Haug, D.; Masters, R. Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. Int. J. Geogr. Inf. Sci. 1999, 13, 311-334.
-
(1999)
Int. J. Geogr. Inf. Sci
, vol.13
, pp. 311-334
-
-
MacEachren, A.M.1
Wachowicz, M.2
Edsall, R.3
Haug, D.4
Masters, R.5
-
24
-
-
70449699746
-
Spatial data mining and geographic knowledge discovery-An introduction
-
Guo, D.; Mennis, J. Spatial data mining and geographic knowledge discovery-An introduction. Comput. Environ. Urban Syst. 2009, 33, 403-408.
-
(2009)
Comput. Environ. Urban Syst
, vol.33
, pp. 403-408
-
-
Guo, D.1
Mennis, J.2
-
25
-
-
0004077438
-
-
Morgan Kaufmann: San Francisco, CA, USA
-
Fayyad, U.M.;Wierse, A.; Grinstein, G.G. Information vIsualization in Data Mining and Knowledge Discovery; Morgan Kaufmann: San Francisco, CA, USA, 2002.
-
(2002)
Information VIsualization in Data Mining and Knowledge Discovery
-
-
Fayyad, U.M.1
Wierse, A.2
Grinstein, G.G.3
-
30
-
-
79952368651
-
Active learning in multimedia annotation and retrieval: A survey
-
Wang, M.; Hua, X.S. Active learning in multimedia annotation and retrieval: A survey. ACM Trans. Intell. Syst. Technol. 2011, 2, 10.
-
(2011)
ACM Trans. Intell. Syst. Technol
, vol.2
, pp. 10
-
-
Wang, M.1
Hua, X.S.2
-
31
-
-
74049134149
-
Selective sampling with naive cotesting: Preliminary results
-
Berlin, Germany, 21 August
-
Muslea, I.; Minton, S.; Knoblock, C. Selective sampling with naive cotesting: Preliminary results. In Proceedings of the The ECAI 2000 Workshop on Machine Learning for Information Extraction, Berlin, Germany, 21 August 2000.
-
(2000)
Proceedings of the the ECAI 2000 Workshop on Machine Learning for Information Extraction
-
-
Muslea, I.1
Minton, S.2
Knoblock, C.3
-
32
-
-
85043286948
-
Interactive elicitation of knowledge on feature relevance improves predictions in small data sets
-
Limassol, Cyprus, 13-16 March
-
Peltola, T.; Soare, M.; Jacucci, G.; Kaski, S. Interactive Elicitation of Knowledge on Feature Relevance Improves Predictions in Small Data Sets. In Proceedings of the 22nd International Conference on Intelligent User Interfaces, Limassol, Cyprus, 13-16 March 2017.
-
(2017)
Proceedings of the 22nd International Conference on Intelligent User Interfaces
-
-
Peltola, T.1
Soare, M.2
Jacucci, G.3
Kaski, S.4
-
33
-
-
84959207049
-
Learning from massive noisy labeled data for image classification
-
Boston, MA, USA, 7-12 June
-
Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from massive noisy labeled data for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 2691-2699.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2691-2699
-
-
Xiao, T.1
Xia, T.2
Yang, Y.3
Huang, C.4
Wang, X.5
-
35
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
Weiss, G.M.; Provost, F. Learning when training data are costly: The effect of class distribution on tree induction. J. Artif. Intell. Res. 2003, 19, 315-354.
-
(2003)
J. Artif. Intell. Res
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
36
-
-
57649217556
-
Crowdsourcing user studies with Mechanical Turk
-
Florence, Italy, 5-10 April
-
Kittur, A.; Chi, E.H.; Suh, B. Crowdsourcing user studies with Mechanical Turk. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5-10 April 2008; pp. 453-456.
-
(2008)
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
, pp. 453-456
-
-
Kittur, A.1
Chi, E.H.2
Suh, B.3
-
37
-
-
77957011930
-
Running experiments on amazon mechanical turk
-
Paolacci, G.; Chandler, J.; Ipeirotis, P.G. Running experiments on amazon mechanical turk. Judgm. Decis. Mak. 2010, 5, 411-419.
-
(2010)
Judgm. Decis. Mak
, vol.5
, pp. 411-419
-
-
Paolacci, G.1
Chandler, J.2
Ipeirotis, P.G.3
-
38
-
-
79960392344
-
Amazon's Mechanical Turk: A new source of inexpensive, yet high-quality, data?
-
Buhrmester, M.; Kwang, T.; Gosling, S.D. Amazon's Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 2011, 6, 3-5.
-
(2011)
Perspect. Psychol. Sci
, vol.6
, pp. 3-5
-
-
Buhrmester, M.1
Kwang, T.2
Gosling, S.D.3
-
39
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D.; Atlas, L.; Ladner, R. Improving generalization with active learning. Mach. Learn. 1994, 15, 201-221.
-
(1994)
Mach. Learn
, vol.15
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
40
-
-
84863418365
-
Incremental relabeling for active learning with noisy crowdsourced annotations
-
Boston, MA, USA, 9-11 October
-
Zhao, L.; Sukthankar, G.; Sukthankar, R. Incremental relabeling for active learning with noisy crowdsourced annotations. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), Boston, MA, USA, 9-11 October 2011; pp. 728-733.
-
(2011)
Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom)
, pp. 728-733
-
-
Zhao, L.1
Sukthankar, G.2
Sukthankar, R.3
-
41
-
-
80053455236
-
Active learning from crowds
-
Bellevue, WA, USA, 28 June-2 July
-
Yan, Y.; Fung, G.M.; Rosales, R.; Dy, J.G. Active learning from crowds. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June-2 July 2011; pp. 1161-1168.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 1161-1168
-
-
Yan, Y.1
Fung, G.M.2
Rosales, R.3
Dy, J.G.4
-
42
-
-
70450181250
-
Multi-class active learning for image classification
-
Miami, FL, USA, 20-25 June
-
Joshi, A.J.; Porikli, F.; Papanikolopoulos, N. Multi-class active learning for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 2372-2379.
-
(2009)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2372-2379
-
-
Joshi, A.J.1
Porikli, F.2
Papanikolopoulos, N.3
-
43
-
-
84867539048
-
A few useful things to know about machine learning
-
Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78-87.
-
(2012)
Commun. ACM
, vol.55
, pp. 78-87
-
-
Domingos, P.1
-
45
-
-
0000710299
-
Queries and concept learning
-
Angluin, D. Queries and concept learning. Mach. Learn. 1988, 2, 319-342.
-
(1988)
Mach. Learn
, vol.2
, pp. 319-342
-
-
Angluin, D.1
-
46
-
-
84948142702
-
Queries revisited
-
Springer: Berlin/Heidelberg, Germany
-
Angluin, D. Queries revisited. In Algorithmic Learning Theory; Springer: Berlin/Heidelberg, Germany, 2001; pp. 12-31.
-
(2001)
Algorithmic Learning Theory
, pp. 12-31
-
-
Angluin, D.1
-
47
-
-
1642336155
-
Functional genomic hypothesis generation and experimentation by a robot scientist
-
King, R.D.; Whelan, K.E.; Jones, F.M.; Reiser, P.G.; Bryant, C.H.; Muggleton, S.H.; Kell, D.B.; Oliver, S.G. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 2004, 427, 247-252.
-
(2004)
Nature
, vol.427
, pp. 247-252
-
-
King, R.D.1
Whelan, K.E.2
Jones, F.M.3
Reiser, P.G.4
Bryant, C.H.5
Muggleton, S.H.6
Kell, D.B.7
Oliver, S.G.8
-
48
-
-
64249139133
-
The automation of science
-
King, R.D.; Rowland, J.; Oliver, S.G.; Young, M.; Aubrey, W.; Byrne, E.; Liakata, M.; Markham, M.; Pir, P.; Soldatova, L.N.; et al. The automation of science. Science 2009, 324, 85-89.
-
(2009)
Science
, vol.324
, pp. 85-89
-
-
King, R.D.1
Rowland, J.2
Oliver, S.G.3
Young, M.4
Aubrey, W.5
Byrne, E.6
Liakata, M.7
Markham, M.8
Pir, P.9
Soldatova, L.N.10
-
49
-
-
84924074550
-
Active learning via query synthesis and nearest neighbour search
-
Wang, L.; Hu, X.; Yuan, B.; Lu, J. Active learning via query synthesis and nearest neighbour search. Neurocomputing 2015, 147, 426-434.
-
(2015)
Neurocomputing
, vol.147
, pp. 426-434
-
-
Wang, L.1
Hu, X.2
Yuan, B.3
Lu, J.4
-
50
-
-
85030477094
-
Near-optimal active learning of halfspaces via query synthesis in the noisy setting
-
arXiv:1603.03515
-
Chen, L.; Hassani, S.H.; Karbasi, A. Near-Optimal Active Learning of Halfspaces via Query Synthesis in the Noisy Setting. AAAI 2017, arXiv:1603.03515.
-
(2017)
AAAI
-
-
Chen, L.1
Hassani, S.H.2
Karbasi, A.3
-
51
-
-
33750595414
-
Query learning can work poorly when a human oracle is used
-
Beijing, China, 3-6 November
-
Baum, E.B.; Lang, K. Query learning can work poorly when a human oracle is used. In Proceedings of the International Joint Conference on Neural Networks, Beijing, China, 3-6 November 1992; Volume 8, pp. 335-340.
-
(1992)
Proceedings of the International Joint Conference on Neural Networks
, vol.8
, pp. 335-340
-
-
Baum, E.B.1
Lang, K.2
-
53
-
-
0003283879
-
Training connectionist networks with queries and selective sampling
-
Denver, Colorado, USA, 26-29 November
-
Atlas, L.E.; Cohn, D.A.; Ladner, R.E. Training connectionist networks with queries and selective sampling. In Proceedings of the Advances in Neural Information Processing Systems, Denver, Colorado, USA, 26-29 November 1990; pp. 566-573.
-
(1990)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 566-573
-
-
Atlas, L.E.1
Cohn, D.A.2
Ladner, R.E.3
-
54
-
-
85152628923
-
Committee-based sampling for training probabilistic classifiers
-
Tahoe City, CA, USA, 9-12 July
-
Dagan, I.; Engelson, S.P. Committee-based sampling for training probabilistic classifiers. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, 9-12 July 1995; pp. 150-157.
-
(1995)
Proceedings of the Twelfth International Conference on Machine Learning
, pp. 150-157
-
-
Dagan, I.1
Engelson, S.P.2
-
55
-
-
32344452411
-
SVM selective sampling for ranking with application to data retrieval
-
Chicago, IL, USA, 21-24 August
-
Yu, H. SVM selective sampling for ranking with application to data retrieval. In Proceedings of the Eleventh ACM SIGKDD International Conference On Knowledge Discovery in Data Mining, Chicago, IL, USA, 21-24 August 2005; pp. 354-363.
-
(2005)
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
, pp. 354-363
-
-
Yu, H.1
-
56
-
-
85032873671
-
Batch-based active learning: Application to social media data for crisis management
-
Pohl, D.; Bouchachia, A.; Hellwagner, H. Batch-based active learning: Application to social media data for crisis management. Expert Syst. Appl. 2018, 93, 232-244.
-
(2018)
Expert Syst. Appl
, vol.93
, pp. 232-244
-
-
Pohl, D.1
Bouchachia, A.2
Hellwagner, H.3
-
57
-
-
0000012198
-
Selective sampling for example-based word sense disambiguation
-
Fujii, A.; Tokunaga, T.; Inui, K.; Tanaka, H. Selective sampling for example-based word sense disambiguation. Comput. Linguist. 1998, 24, 573-597.
-
(1998)
Comput. Linguist
, vol.24
, pp. 573-597
-
-
Fujii, A.1
Tokunaga, T.2
Inui, K.3
Tanaka, H.4
-
58
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
Dublin, Ireland, 3-6 July
-
Lewis, D.D.; Gale, W.A. A sequential algorithm for training text classifiers. In Proceedings of the 17th annual international ACM SIGIR Conference On Research and Development in Information Retrieval, Dublin, Ireland, 3-6 July 1994; pp. 3-12.
-
(1994)
Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 3-12
-
-
Lewis, D.D.1
Gale, W.A.2
-
59
-
-
80053375448
-
An analysis of active learning strategies for sequence labeling tasks
-
Honolulu, HI, USA, 25-27 October
-
Settles, B.; Craven, M. An analysis of active learning strategies for sequence labeling tasks. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Honolulu, HI, USA, 25-27 October 2008; pp. 1070-1079.
-
(2008)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, pp. 1070-1079
-
-
Settles, B.1
Craven, M.2
-
60
-
-
85162011798
-
Active learning by querying informative and representative examples
-
Vancouver, BC, Canada, 6-11 December
-
Huang, S.J.; Jin, R.; Zhou, Z.H. Active learning by querying informative and representative examples. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6-11 December 2010; pp. 892-900.
-
(2010)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 892-900
-
-
Huang, S.J.1
Jin, R.2
Zhou, Z.H.3
-
61
-
-
85027542157
-
Exploring representativeness and informativeness for active learning
-
Du, B.; Wang, Z.; Zhang, L.; Zhang, L.; Liu, W.; Shen, J.; Tao, D. Exploring representativeness and informativeness for active learning. IEEE Trans. Cybern. 2017, 47, 14-26.
-
(2017)
IEEE Trans. Cybern
, vol.47
, pp. 14-26
-
-
Du, B.1
Wang, Z.2
Zhang, L.3
Zhang, L.4
Liu, W.5
Shen, J.6
Tao, D.7
-
62
-
-
0036613407
-
An active learning framework for content-based information retrieval
-
Zhang, C.; Chen, T. An active learning framework for content-based information retrieval. IEEE Trans. Multimed. 2002, 4, 260-268.
-
(2002)
IEEE Trans. Multimed
, vol.4
, pp. 260-268
-
-
Zhang, C.1
Chen, T.2
-
63
-
-
13544261390
-
Combining active and semi-supervised learning for spoken language understanding
-
Tur, G.; Hakkani-Tür, D.; Schapire, R.E. Combining active and semi-supervised learning for spoken language understanding. Speech Commun. 2005, 45, 171-186.
-
(2005)
Speech Commun
, vol.45
, pp. 171-186
-
-
Tur, G.1
Hakkani-Tür, D.2
Schapire, R.E.3
-
64
-
-
10044229345
-
Active learning with support vector machine applied to gene expression data for cancer classification
-
Liu, Y. Active learning with support vector machine applied to gene expression data for cancer classification. J. Chem. Inf. Comput. Sci. 2004, 44, 1936-1941.
-
(2004)
J. Chem. Inf. Comput. Sci
, vol.44
, pp. 1936-1941
-
-
Liu, Y.1
-
65
-
-
85030114581
-
ANALYTiC: An active learning system for trajectory classification
-
Júnior, A.S.; Renso, C.; Matwin, S. ANALYTiC: An Active Learning System for Trajectory Classification. IEEE Comput. Graph. Appl. 2017, 37, 28-39.
-
(2017)
IEEE Comput. Graph. Appl
, vol.37
, pp. 28-39
-
-
Júnior, A.S.1
Renso, C.2
Matwin, S.3
-
66
-
-
34250745927
-
Batch mode active learning and its application to medical image classification
-
Pittsburgh, PA, USA, 25-29 June
-
Hoi, S.C.; Jin, R.; Zhu, J.; Lyu, M.R. Batch mode active learning and its application to medical image classification. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25-29 June 2006; pp. 417-424.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 417-424
-
-
Hoi, S.C.1
Jin, R.2
Zhu, J.3
Lyu, M.R.4
-
67
-
-
68549086546
-
Semisupervised SVM batch mode active learning with applications to image retrieval
-
Hoi, S.C.; Jin, R.; Zhu, J.; Lyu, M.R. Semisupervised SVM batch mode active learning with applications to image retrieval. ACM Trans. Inf. Syst. 2009, 27, 16.
-
(2009)
ACM Trans. Inf. Syst
, vol.27
, pp. 16
-
-
Hoi, S.C.1
Jin, R.2
Zhu, J.3
Lyu, M.R.4
-
68
-
-
84963700724
-
Evidence-based uncertainty sampling for active learning
-
Sharma, M.; Bilgic, M. Evidence-based uncertainty sampling for active learning. Data Min. Knowl. Discov. 2017, 31, 164-202.
-
(2017)
Data Min. Knowl. Discov
, vol.31
, pp. 164-202
-
-
Sharma, M.1
Bilgic, M.2
-
69
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Freund, Y.; Seung, H.S.; Shamir, E.; Tishby, N. Selective sampling using the query by committee algorithm. Mach. Learn. 1997, 28, 133-168.
-
(1997)
Mach. Learn
, vol.28
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
70
-
-
0026981853
-
Query by committee
-
Pittsburgh, PA, USA, 27-29 July
-
Seung, H.S.; Opper, M.; Sompolinsky, H. Query by committee. In Proceedings of the fIfth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27-29 July 1992; pp. 287-294.
-
(1992)
Proceedings of the FIfth Annual Workshop on Computational Learning Theory
, pp. 287-294
-
-
Seung, H.S.1
Opper, M.2
Sompolinsky, H.3
-
71
-
-
0002332781
-
Employing EM and pool-based active learning for text classification
-
Madison, WI, USA, 24-27 July
-
McCallumzy, A.K.; Nigamy, K. Employing EM and pool-based active learning for text classification. In Proceedings of the International Conference on Machine Learning (ICML), Madison, WI, USA, 24-27 July 1998; pp. 359-367.
-
(1998)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 359-367
-
-
McCallumzy, A.K.1
Nigamy, K.2
-
73
-
-
85123966307
-
Distributional clustering of english words
-
Columbus, OH, USA, 22-26 June
-
Pereira, F.; Tishby, N.; Lee, L. Distributional clustering of English words. In Proceedings of the 31st Annual Meeting on Association for Computational Linguistics, Columbus, OH, USA, 22-26 June 1993; pp. 183-190.
-
(1993)
Proceedings of the 31st Annual Meeting on Association for Computational Linguistics
, pp. 183-190
-
-
Pereira, F.1
Tishby, N.2
Lee, L.3
-
74
-
-
84958546669
-
Active hidden markov models for information extraction
-
Springer: Berlin/Heidelberg, Germany
-
Scheffer, T.; Decomain, C.; Wrobel, S. Active hidden markov models for information extraction. In International Symposium on Intelligent Data Analysis; Springer: Berlin/Heidelberg, Germany, 2001; pp. 309-318.
-
(2001)
International Symposium on Intelligent Data Analysis
, pp. 309-318
-
-
Scheffer, T.1
Decomain, C.2
Wrobel, S.3
-
76
-
-
1942517333
-
Incorporating diversity in active learning with support vector machines
-
Washington, DC, USA, 21-24 August
-
Brinker, K. Incorporating diversity in active learning with support vector machines. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21-24 August 2003; pp. 59-66.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning (ICML-03)
, pp. 59-66
-
-
Brinker, K.1
-
77
-
-
33746634025
-
Leveraging active learning for relevance feedback using an information theoretic diversity measure
-
Dagli, C.K.; Rajaram, S.; Huang, T.S. Leveraging active learning for relevance feedback using an information theoretic diversity measure. Lect. Notes Comput. Sci. 2006, 4071, 123.
-
(2006)
Lect. Notes Comput. Sci
, vol.4071
, pp. 123
-
-
Dagli, C.K.1
Rajaram, S.2
Huang, T.S.3
-
78
-
-
34247634720
-
Sampling strategies for active learning in personal photo retrieval
-
Toronto, ON, Canada, 9-12 July
-
Wu, Y.; Kozintsev, I.; Bouguet, J.Y.; Dulong, C. Sampling strategies for active learning in personal photo retrieval. In Proceedings of the 2006 IEEE International Conference on Multimedia and Expo, Toronto, ON, Canada, 9-12 July 2006; pp. 529-532.
-
(2006)
Proceedings of the 2006 IEEE International Conference on Multimedia and Expo
, pp. 529-532
-
-
Wu, Y.1
Kozintsev, I.2
Bouguet, J.Y.3
Dulong, C.4
-
79
-
-
14344265134
-
Active learning using pre-clustering
-
Banff, AB, Canada, 4-8 July
-
Nguyen, H.T.; Smeulders, A. Active learning using pre-clustering. In Proceedings of the twenty-first International Conference on Machine Learning, Banff, AB, Canada, 4-8 July 2004; p. 79.
-
(2004)
Proceedings of the Twenty-first International Conference on Machine Learning
, pp. 79
-
-
Nguyen, H.T.1
Smeulders, A.2
-
80
-
-
33845513115
-
Video annotation by active learning and cluster tuning
-
New York, NY, USA, 17-22 June
-
Qi, G.J.; Song, Y.; Hua, X.S.; Zhang, H.J.; Dai, L.R. Video annotation by active learning and cluster tuning. In Proceedings of the Computer Vision and Pattern Recognition Workshop, New York, NY, USA, 17-22 June 2006; p. 114.
-
(2006)
Proceedings of the Computer Vision and Pattern Recognition Workshop
, pp. 114
-
-
Qi, G.J.1
Song, Y.2
Hua, X.S.3
Zhang, H.J.4
Dai, L.R.5
-
81
-
-
34547951114
-
Evaluation of active learning strategies for video indexing
-
Ayache, S.; Quénot, G. Evaluation of active learning strategies for video indexing. Signal Process. Image Commun. 2007, 22, 692-704.
-
(2007)
Signal Process. Image Commun
, vol.22
, pp. 692-704
-
-
Ayache, S.1
Quénot, G.2
-
82
-
-
79951750814
-
User-based active learning
-
Sydney, Australia, 13 December
-
Seifert, C.; Granitzer, M. User-based active learning. In Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW), Sydney, Australia, 13 December 2010; pp. 418-425.
-
(2010)
Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW)
, pp. 418-425
-
-
Seifert, C.1
Granitzer, M.2
-
83
-
-
84858080696
-
A batch-mode active learning technique based on multiple uncertainty for SVM classifier
-
Patra, S.; Bruzzone, L. A batch-mode active learning technique based on multiple uncertainty for SVM classifier. IEEE Geosci. Remote Sens. Lett. 2012, 9, 497-501.
-
(2012)
IEEE Geosci. Remote Sens. Lett
, vol.9
, pp. 497-501
-
-
Patra, S.1
Bruzzone, L.2
-
84
-
-
78149319339
-
Incorporating diversity and density in active learning for relevance feedback
-
Springer: Berlin/Heidelberg, Germany
-
Xu, Z.; Akella, R.; Zhang, Y. Incorporating diversity and density in active learning for relevance feedback. In ECiR; Springer: Berlin/Heidelberg, Germany, 2007; Volume 7, pp. 246-257.
-
(2007)
ECiR
, vol.7
, pp. 246-257
-
-
Xu, Z.1
Akella, R.2
Zhang, Y.3
-
85
-
-
84873404717
-
Interactive video annotation by multi-concept multi-modality active learning
-
Wang, M.; Hua, X.S.; Mei, T.; Tang, J.; Qi, G.J.; Song, Y.; Dai, L.R. Interactive video annotation by multi-concept multi-modality active learning. Int. J. Semant. Comput. 2007, 1, 459-477.
-
(2007)
Int. J. Semant. Comput
, vol.1
, pp. 459-477
-
-
Wang, M.1
Hua, X.S.2
Mei, T.3
Tang, J.4
Qi, G.J.5
Song, Y.6
Dai, L.R.7
-
87
-
-
85012865975
-
Active learning: An empirical study of common baselines
-
Ramirez-Loaiza, M.E.; Sharma, M.; Kumar, G.; Bilgic, M. Active learning: An empirical study of common baselines. Data Min. Knowl. Discov. 2017, 31, 287-313.
-
(2017)
Data Min. Knowl. Discov
, vol.31
, pp. 287-313
-
-
Ramirez-Loaiza, M.E.1
Sharma, M.2
Kumar, G.3
Bilgic, M.4
-
89
-
-
85022223742
-
-
Lu, Y.; Garcia, R.; Hansen, B.; Gleicher, M.; Maciejewski, R. The State-of-The-Art in Predictive Visual Analytics. Comput. Graph. Forum 2017, 36, 539-562.
-
(2017)
The State-of-The-Art in Predictive Visual Analytics. Comput. Graph. Forum
, vol.36
, pp. 539-562
-
-
Lu, Y.1
Garcia, R.2
Hansen, B.3
Gleicher, M.4
Maciejewski, R.5
-
90
-
-
84963541556
-
A visual analytical approach for transfer learning in classification
-
Ma, Y.; Xu, J.; Wu, X.; Wang, F.; Chen, W. A visual analytical approach for transfer learning in classification. Inf. Sci. 2017, 390, 54-69.
-
(2017)
Inf. Sci
, vol.390
, pp. 54-69
-
-
Ma, Y.1
Xu, J.2
Wu, X.3
Wang, F.4
Chen, W.5
-
91
-
-
85020470195
-
A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
-
Miller, C.; Nagy, Z.; Schlueter, A. A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings. Renew. Sustain. Energy Rev. 2018, 81, 1365-1377.
-
(2018)
Renew. Sustain. Energy Rev
, vol.81
, pp. 1365-1377
-
-
Miller, C.1
Nagy, Z.2
Schlueter, A.3
-
92
-
-
84999114992
-
Visual interaction with dimensionality reduction: A structured literature analysis
-
Sacha, D.; Zhang, L.; Sedlmair, M.; Lee, J.A.; Peltonen, J.; Weiskopf, D.; North, S.C.; Keim, D.A. Visual interaction with dimensionality reduction: A structured literature analysis. IEEE Trans. Vis. Comput. Graph. 2017, 23, 241-250.
-
(2017)
IEEE Trans. Vis. Comput. Graph
, vol.23
, pp. 241-250
-
-
Sacha, D.1
Zhang, L.2
Sedlmair, M.3
Lee, J.A.4
Peltonen, J.5
Weiskopf, D.6
North, S.C.7
Keim, D.A.8
-
93
-
-
84872914529
-
Visual analytics for the big data era-A comparative review of state-of-The-Art commercial systems
-
Seattle, WA, USA, 14-19 October
-
Zhang, L.; Stoffel, A.; Behrisch, M.; Mittelstadt, S.; Schreck, T.; Pompl, R.; Weber, S.; Last, H.; Keim, D. Visual analytics for the big data era-A comparative review of state-of-The-Art commercial systems. In Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, USA, 14-19 October 2012; pp. 173-182.
-
(2012)
Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST)
, pp. 173-182
-
-
Zhang, L.1
Stoffel, A.2
Behrisch, M.3
Mittelstadt, S.4
Schreck, T.5
Pompl, R.6
Weber, S.7
Last, H.8
Keim, D.9
-
94
-
-
50549094540
-
Visual analytics: Definition, process, and challenges
-
Keim, D.; Andrienko, G.; Fekete, J.D.; Gorg, C.; Kohlhammer, J.; Melançon, G. Visual analytics: Definition, process, and challenges. Lect. Notes Comput. Sci. 2008, 4950, 154-176.
-
(2008)
Lect. Notes Comput. Sci
, vol.4950
, pp. 154-176
-
-
Keim, D.1
Andrienko, G.2
Fekete, J.D.3
Gorg, C.4
Kohlhammer, J.5
Melançon, G.6
-
96
-
-
80052292225
-
Mastering the information age solving problems with visual analytics
-
Ellis, G.; Mansmann, F. Mastering the information age solving problems with visual analytics. Eurographics 2010, 2, 5.
-
(2010)
Eurographics
, vol.2
, pp. 5
-
-
Ellis, G.1
Mansmann, F.2
-
97
-
-
85089753664
-
Geospatial big data and cartography: Research challenges and opportunities for making maps that matter
-
Robinson, A.C.; Demšar, U.; Moore, A.B.; Buckley, A.; Jiang, B.; Field, K.; Kraak, M.J.; Camboim, S.P.; Sluter, C.R. Geospatial big data and cartography: Research challenges and opportunities for making maps that matter. Int. J. Cartogr. 2017, 1-29. doi:10.1080/23729333.2016.1278151.
-
(2017)
Int. J. Cartogr
, pp. 1-29
-
-
Robinson, A.C.1
Demšar, U.2
Moore, A.B.3
Buckley, A.4
Jiang, B.5
Field, K.6
Kraak, M.J.7
Camboim, S.P.8
Sluter, C.R.9
-
98
-
-
84921068239
-
The human is the loop: New directions for visual analytics
-
Endert, A.; Hossain, M.S.; Ramakrishnan, N.; North, C.; Fiaux, P.; Andrews, C. The human is the loop: New directions for visual analytics. J. Intell. Inf. Syst. 2014, 43, 411-435.
-
(2014)
J. Intell. Inf. Syst
, vol.43
, pp. 411-435
-
-
Endert, A.1
Hossain, M.S.2
Ramakrishnan, N.3
North, C.4
Fiaux, P.5
Andrews, C.6
-
99
-
-
85014636018
-
Human-centred machine learning
-
San Jose, CA, USA, 7-12 May
-
Gillies, M.; Fiebrink, R.; Tanaka, A.; Garcia, J.; Bevilacqua, F.; Heloir, A.; Nunnari, F.; Mackay, W.; Amershi, S.; Lee, B.; et al. Human-Centred Machine Learning. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7-12 May 2016; pp. 3558-3565.
-
(2016)
Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems
, pp. 3558-3565
-
-
Gillies, M.1
Fiebrink, R.2
Tanaka, A.3
Garcia, J.4
Bevilacqua, F.5
Heloir, A.6
Nunnari, F.7
Mackay, W.8
Amershi, S.9
Lee, B.10
-
101
-
-
85021682673
-
Interpreting black-box classifiers using instance-level visual explanations
-
Chicago, IL, USA, 14 May
-
Tamagnini, P.; Krause, J.; Dasgupta, A.; Bertini, E. Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations. In Proceedings of the 2nd Workshop on Human-In-The-Loop Data Analytics, Chicago, IL, USA, 14 May 2017; p. 6.
-
(2017)
Proceedings of the 2nd Workshop on Human-In-The-Loop Data Analytics
, pp. 6
-
-
Tamagnini, P.1
Krause, J.2
Dasgupta, A.3
Bertini, E.4
-
102
-
-
85019013025
-
What you see is what you can change: Human-centered machine learning by interactive visualizatio
-
n
-
Sacha, D.; Sedlmair, M.; Zhang, L.; Lee, J.A.; Peltonen, J.;Weiskopf, D.; North, S.C.; Keim, D.A. What You See Is What You Can Change: Human-Centered Machine Learning By Interactive Visualization. Neurocomputing 2017, 268, 164-175.
-
(2017)
Neurocomputing
, vol.268
, pp. 164-175
-
-
Sacha, D.1
Sedlmair, M.2
Zhang, L.3
Lee, J.A.4
Peltonen, J.5
Weiskopf, D.6
North, S.C.7
Keim, D.A.8
-
103
-
-
85028709500
-
Visualizing dataflow graphs of deep learning models in tensorflow
-
Wongsuphasawat, K.; Smilkov, D.; Wexler, J.; Wilson, J.; Mane, D.; Fritz, D.; Krishnan, D.; Viegas, F.B.; Wattenberg, M. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1-12.
-
(2018)
IEEE Trans. Vis. Comput. Graph
, vol.24
, pp. 1-12
-
-
Wongsuphasawat, K.1
Smilkov, D.2
Wexler, J.3
Wilson, J.4
Mane, D.5
Fritz, D.6
Krishnan, D.7
Viegas, F.B.8
Wattenberg, M.9
-
104
-
-
85028725738
-
Do convolutional neural networks learn class hierarchy?
-
Alsallakh, B.; Jourabloo, A.; Ye, M.; Liu, X.; Ren, L. Do Convolutional Neural Networks Learn Class Hierarchy? IEEE Trans. Vis. Comput. Graph. 2018, 24, 152-162.
-
(2018)
IEEE Trans. Vis. Comput. Graph
, vol.24
, pp. 152-162
-
-
Alsallakh, B.1
Jourabloo, A.2
Ye, M.3
Liu, X.4
Ren, L.5
-
105
-
-
84920541067
-
Power to the people: The role of humans in interactive machine learning
-
Amershi, S.; Cakmak, M.; Knox, W.B.; Kulesza, T. Power to the people: The role of humans in interactive machine learning. AI Mag. 2014, 35, 105-120.
-
(2014)
AI Mag
, vol.35
, pp. 105-120
-
-
Amershi, S.1
Cakmak, M.2
Knox, W.B.3
Kulesza, T.4
-
106
-
-
84980001322
-
-
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA
-
Kim, B. Interactive and Interpretable Machine Learning Models for Human Machine Collaboration. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015.
-
(2015)
Interactive and Interpretable Machine Learning Models for Human Machine Collaboration
-
-
Kim, B.1
-
107
-
-
85043253910
-
-
Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, USA
-
Sharma, M. Active Learning with Rich Feedback. Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, USA, 2017.
-
(2017)
Active Learning with Rich Feedback
-
-
Sharma, M.1
-
108
-
-
84867642215
-
Visual classifier training for text document retrieval
-
Heimerl, F.; Koch, S.; Bosch, H.; Ertl, T. Visual classifier training for text document retrieval. IEEE Trans. Vis. Comput. Graph. 2012, 18, 2839-2848.
-
(2012)
IEEE Trans. Vis. Comput. Graph
, vol.18
, pp. 2839-2848
-
-
Heimerl, F.1
Koch, S.2
Bosch, H.3
Ertl, T.4
-
109
-
-
84872965316
-
Inter-Active learning of ad-hoc classifiers for video visual analytics
-
Seattle, WA, USA, 14-19 October
-
Höferlin, B.; Netzel, R.; Höferlin, M.; Weiskopf, D.; Heidemann, G. Inter-Active learning of ad-hoc classifiers for video visual analytics. In Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, USA, 14-19 October 2012; pp. 23-32.
-
(2012)
Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST)
, pp. 23-32
-
-
Höferlin, B.1
Netzel, R.2
Höferlin, M.3
Weiskopf, D.4
Heidemann, G.5
-
110
-
-
80053225377
-
Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances
-
Scotland, UK, 27-31 July
-
Settles, B. Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Scotland, UK, 27-31 July 2011; pp. 1467-1478.
-
(2011)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, pp. 1467-1478
-
-
Settles, B.1
-
111
-
-
85043234607
-
-
Master's Thesis, Dalhousie University, Halifax, NS, Canada
-
Huang, L. Active Learning with Visualization. Master's Thesis, Dalhousie University, Halifax, NS, Canada, 2017.
-
(2017)
Active Learning with Visualization
-
-
Huang, L.1
-
112
-
-
84943744936
-
-
arXiv, arXiv:1412.2007v2
-
Jean, S.; Cho, K.; Memisevic, R.; Bengio, Y. On using very large target vocabulary for neural machine translation. arXiv 2015, arXiv:1412.2007v2.
-
(2015)
On Using Very Large Target Vocabulary for Neural Machine Translation
-
-
Jean, S.1
Cho, K.2
Memisevic, R.3
Bengio, Y.4
-
113
-
-
85119970086
-
Montreal neural machine translation systems for WMT'15
-
Lisboa, Portugal, 17-18 September
-
Jean, S.; Firat, O.; Cho, K.; Memisevic, R.; Bengio, Y. Montreal Neural Machine Translation Systems for WMT'15. In Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisboa, Portugal, 17-18 September 2015; pp. 134-140.
-
(2015)
Proceedings of the Tenth Workshop on Statistical Machine Translation
, pp. 134-140
-
-
Jean, S.1
Firat, O.2
Cho, K.3
Memisevic, R.4
Bengio, Y.5
-
114
-
-
85043235339
-
Deep learning takes on translation
-
Monroe, D. Deep learning takes on translation. Commun. ACM 2017, 60, 12-14.
-
(2017)
Commun. ACM
, vol.60
, pp. 12-14
-
-
Monroe, D.1
-
119
-
-
85031935078
-
Cost-effective active learning for deep image classification
-
Wang, K.; Zhang, D.; Li, Y.; Zhang, R.; Lin, L. Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 2017, 27, 2591-2600.
-
(2017)
IEEE Trans. Circ. Syst. Video Technol
, vol.27
, pp. 2591-2600
-
-
Wang, K.1
Zhang, D.2
Li, Y.3
Zhang, R.4
Lin, L.5
-
120
-
-
84922375195
-
Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
-
ICML: Atlanta, GA, USA
-
Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning; ICML: Atlanta, GA, USA, 2013: Volume 3, p. 2.
-
(2013)
Workshop on Challenges in Representation Learning
, vol.3
, pp. 2
-
-
Lee, D.H.1
-
121
-
-
84906331113
-
Cross-Age reference coding for age-invariant face recognition and retrieval
-
Springer: Berlin/Heidelberg, Germany
-
Chen, B.C.; Chen, C.S.; Hsu, W.H. Cross-Age reference coding for age-invariant face recognition and retrieval. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 768-783.
-
(2014)
European Conference on Computer Vision
, pp. 768-783
-
-
Chen, B.C.1
Chen, C.S.2
Hsu, W.H.3
-
124
-
-
84937849144
-
Generative adversarial nets
-
Montreal, QC, Canada, 8-13 December
-
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8-13 December 2014; pp. 2672-2680.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
125
-
-
85018875486
-
Improved techniques for training gans
-
Barcelona, Spain, 5-10 December
-
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5-10 December 2016; pp. 2234-2242.
-
(2016)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2234-2242
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
126
-
-
84937849144
-
-
(accessed on 15 October 2017)
-
Goodfellow, I. Generative Adversarial Networks for Text, 2016. Available online: https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative-Adversarial-networks-for-Text/(accessed on 15 October 2017).
-
(2016)
Generative Adversarial Networks for Text
-
-
Goodfellow, I.1
-
127
-
-
84882929257
-
Active deep learning method for semi-supervised sentiment classification
-
Zhou, S.; Chen, Q.; Wang, X. Active deep learning method for semi-supervised sentiment classification. Neurocomputing 2013, 120, 536-546.
-
(2013)
Neurocomputing
, vol.120
, pp. 536-546
-
-
Zhou, S.1
Chen, Q.2
Wang, X.3
-
128
-
-
85030450310
-
Active discriminative text representation learning
-
San Francisco, CA, USA, 4-9 February
-
Zhang, Y.; Lease, M.; Wallace, B. Active Discriminative Text Representation Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, CA, USA, 4-9 February 2017; pp. 3386-3392.
-
(2017)
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)
, pp. 3386-3392
-
-
Zhang, Y.1
Lease, M.2
Wallace, B.3
-
129
-
-
84976384382
-
Deep learning for remote sensing data: A technical tutorial on the state of the art
-
Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22-40.
-
(2016)
IEEE Geosci. Remote Sens. Mag
, vol.4
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
130
-
-
2942558578
-
Segmentation of multispectral remote sensing images using active support vector machines
-
Mitra, P.; Shankar, B.U.; Pal, S.K. Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognit. Lett. 2004, 25, 1067-1074.
-
(2004)
Pattern Recognit. Lett
, vol.25
, pp. 1067-1074
-
-
Mitra, P.1
Shankar, B.U.2
Pal, S.K.3
-
131
-
-
41549147912
-
An active learning approach to hyperspectral data classification
-
Rajan, S.; Ghosh, J.; Crawford, M.M. An active learning approach to hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1231-1242.
-
(2008)
IEEE Trans. Geosci. Remote Sens
, vol.46
, pp. 1231-1242
-
-
Rajan, S.1
Ghosh, J.2
Crawford, M.M.3
-
132
-
-
67651183638
-
Active learning methods for remote sensing image classification
-
Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218-2232.
-
(2009)
IEEE Trans. Geosci. Remote Sens
, vol.47
, pp. 2218-2232
-
-
Tuia, D.1
Ratle, F.2
Pacifici, F.3
Kanevski, M.F.4
Emery, W.J.5
-
133
-
-
79952041537
-
Batch-mode active-learning methods for the interactive classification of remote sensing images
-
Demir, B.; Persello, C.; Bruzzone, L. Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1014-1031.
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, pp. 1014-1031
-
-
Demir, B.1
Persello, C.2
Bruzzone, L.3
-
134
-
-
79955632976
-
A fast cluster-Assumption based active-learning technique for classification of remote sensing images
-
Patra, S.; Bruzzone, L. A fast cluster-Assumption based active-learning technique for classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1617-1626.
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, pp. 1617-1626
-
-
Patra, S.1
Bruzzone, L.2
-
135
-
-
84898598578
-
Active learning in the spatial domain for remote sensing image classification
-
Stumpf, A.; Lachiche, N.; Malet, J.P.; Kerle, N.; Puissant, A. Active learning in the spatial domain for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2492-2507.
-
(2014)
IEEE Trans. Geosci. Remote Sens
, vol.52
, pp. 2492-2507
-
-
Stumpf, A.1
Lachiche, N.2
Malet, J.P.3
Kerle, N.4
Puissant, A.5
-
136
-
-
33947617297
-
Interactive remote-sensing image retrieval using active relevance feedback
-
Ferecatu, M.; Boujemaa, N. Interactive remote-sensing image retrieval using active relevance feedback. IEEE Trans. Geosci. Remote Sens. 2007, 45, 818-826.
-
(2007)
IEEE Trans. Geosci. Remote Sens
, vol.45
, pp. 818-826
-
-
Ferecatu, M.1
Boujemaa, N.2
-
137
-
-
84947127828
-
Deep learning based feature selection for remote sensing scene classification
-
Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321-2325.
-
(2015)
IEEE Geosci. Remote Sens. Lett
, vol.12
, pp. 2321-2325
-
-
Zou, Q.1
Ni, L.2
Zhang, T.3
Wang, Q.4
-
138
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527-1554.
-
(2006)
Neural Comput
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
139
-
-
84988373662
-
Active deep learning for classification of hyperspectral images
-
Liu, P.; Zhang, H.; Eom, K.B. Active deep learning for classification of hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 712-724.
-
(2017)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
, vol.10
, pp. 712-724
-
-
Liu, P.1
Zhang, H.2
Eom, K.B.3
-
140
-
-
85043297245
-
DeepVGI: Deep learning with volunteered geographic information
-
Perth, Australia, 3-7 April
-
Chen, J.; Zipf, A. DeepVGI: Deep Learning with Volunteered Geographic Information. In Proceedings of the 26th International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Committee, Perth, Australia, 3-7 April 2017; pp. 771-772.
-
(2017)
Proceedings of the 26th International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Committee
, pp. 771-772
-
-
Chen, J.1
Zipf, A.2
-
142
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, NV, USA, 3-8 December
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems; Lake Tahoe, NV, USA, 3-8 December 2012; pp. 1097-1105.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
144
-
-
85035042003
-
A review of openstreetmap data
-
Ubiquity Press: London, UK
-
Mooney, P.; Minghini, M. A review of OpenStreetMap data. In Mapp. Citiz. Sens. Ubiquity Press: London, UK, 2017; pp. 37-59. DOI:https://doi.org/10.5334/bbf.c.
-
(2017)
Mapp. Citiz. Sens
, pp. 37-59
-
-
Mooney, P.1
Minghini, M.2
-
145
-
-
0003223784
-
Multi-label text classification with a mixture model trained by EM
-
(accessed on 17 November 2017
-
McCallum, A. Multi-label text classification with a mixture model trained by EM. AAAI Workshop Text Learn. 1999, 1-7. Available online: https://mimno.infosci.cornell.edu/info6150/readings/multilabel.pdf (accessed on 17 November 2017).
-
(1999)
AAAI Workshop Text Learn
, pp. 1-7
-
-
McCallum, A.1
-
146
-
-
7444230008
-
Discriminative methods for multi-labeled classification
-
Godbole, S.; Sarawagi, S. Discriminative methods for multi-labeled classification. Adv. Knowl. Discov. Data Min. 2004, 22-30, doi:10.1007/978-3-540-24775-3-5.
-
(2004)
Adv. Knowl. Discov. Data Min
, pp. 22-30
-
-
Godbole, S.1
Sarawagi, S.2
-
147
-
-
84986313796
-
Cnn-rnn: A unified framework for multi-label image classification
-
Las Vegas, NV, USA, 26 June-1 July
-
Wang, J.; Yang, Y.; Mao, J.; Huang, Z.; Huang, C.; Xu, W. Cnn-rnn: A unified framework for multi-label image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016; pp. 2285-2294.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2285-2294
-
-
Wang, J.1
Yang, Y.2
Mao, J.3
Huang, Z.4
Huang, C.5
Xu, W.6
-
148
-
-
85043266385
-
-
arXiv, arXiv:1707.05495
-
Chen, S.F.; Chen, Y.C.; Yeh, C.K.; Wang, Y.C.F. Order-free rnn with visual attention for multi-label classification. arXiv 2017, arXiv:1707.05495.
-
(2017)
Order-free Rnn with Visual Attention for Multi-label Classification
-
-
Chen, S.F.1
Chen, Y.C.2
Yeh, C.K.3
Wang, Y.C.F.4
-
149
-
-
78651375098
-
A survey of hierarchical classification across different application domains
-
Silla, C.N. Jr.; Freitas, A.A. A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 2011, 22, 31-72.
-
(2011)
Data Min. Knowl. Discov
, vol.22
, pp. 31-72
-
-
Silla, C.N.1
Freitas, A.A.2
-
150
-
-
84868370060
-
Hierarchical versus flat classification of emotions in text
-
Los Angeles, CA, USA, 5 June
-
Ghazi, D.; Inkpen, D.; Szpakowicz, S. Hierarchical versus flat classification of emotions in text. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, Los Angeles, CA, USA, 5 June 2010; pp. 140-146.
-
(2010)
Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text
, pp. 140-146
-
-
Ghazi, D.1
Inkpen, D.2
Szpakowicz, S.3
-
151
-
-
84913528724
-
Mandatory leaf node prediction in hierarchical multilabel classification
-
Bi, W.; Kwok, J.T. Mandatory leaf node prediction in hierarchical multilabel classification. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 2275-2287.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst
, vol.25
, pp. 2275-2287
-
-
Bi, W.1
Kwok, J.T.2
-
152
-
-
84865088455
-
Querying representative points from a pool based on synthesized queries
-
Brisbane, Australia, 10-15 June
-
Hu, X.; Wang, L.; Yuan, B. Querying representative points from a pool based on synthesized queries. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10-15 June 2012; pp. 1-6.
-
(2012)
Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN)
, pp. 1-6
-
-
Hu, X.1
Wang, L.2
Yuan, B.3
-
153
-
-
85043282432
-
-
(accessed on 17 November 2017)
-
Raad, M. A nEw Business Intelligence Emerges: Geo.AI, 2017. Available online: https://www.esri.com/about/newsroom/publications/wherenext/new-business-intelligence-emerges-geo-Ai/(accessed on 17 November 2017).
-
(2017)
A NEw Business Intelligence Emerges: Geo.AI
-
-
Raad, M.1
-
154
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
155
-
-
84953734134
-
Computational linguistics and deep learning
-
Manning, C.D. Computational linguistics and deep learning. Comput. Linguist. 2015, 41, 701-707.
-
(2015)
Comput. Linguist
, vol.41
, pp. 701-707
-
-
Manning, C.D.1
-
156
-
-
85010274847
-
-
(accessed on 15 November 2017)
-
Knight, W. AI's Language Problem-MIT Technology Review, 2016. Available online: https://www.technologyreview.com/s/602094/ais-language-problem (accessed on 15 November 2017).
-
(2016)
AI's Language Problem-MIT Technology Review
-
-
Knight, W.1
-
157
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
Miami, FL, USA, 20-25 June
-
Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 248-255.
-
(2009)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
159
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7-12 June
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 1-9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
160
-
-
85040984430
-
A novel approach for building extraction from 3d disaster scenes of urban area
-
Buffalo, NY, USA, 2-4 August
-
Xia, J.;Wang, F.; Zheng, X.; Li, Z.; Gong, X. A novel approach for building extraction from 3D disaster scenes of urban area. In Proceedings of the 2017 25th International Conference on Geoinformatics, Buffalo, NY, USA, 2-4 August 2017; pp. 1-4.
-
(2017)
Proceedings of the 2017 25th International Conference on Geoinformatics
, pp. 1-4
-
-
Xia, J.1
Wang, F.2
Zheng, X.3
Li, Z.4
Gong, X.5
-
161
-
-
85013626573
-
A convolutional neural network approach for assisting avalanche search and rescue operations with uav imagery
-
Bejiga, M.B.; Zeggada, A.; Nouffidj, A.; Melgani, F. A convolutional neural network approach for assisting avalanche search and rescue operations with uav imagery. Remote Sens. 2017, 9, 100.
-
(2017)
Remote Sens
, vol.9
, pp. 100
-
-
Bejiga, M.B.1
Zeggada, A.2
Nouffidj, A.3
Melgani, F.4
-
162
-
-
85044462256
-
Deep learning for hate speech detection in tweets
-
Perth, Australia, 3-7 April
-
Badjatiya, P.; Gupta, S.; Gupta, M.; Varma, V. Deep learning for hate speech detection in tweets. In Proceedings of the 26th International Conference onWorldWideWeb Companion. InternationalWorld WideWeb Conferences Steering Committee, Perth, Australia, 3-7 April 2017; pp. 759-760.
-
(2017)
Proceedings of the 26th International Conference OnWorldWideWeb Companion. InternationalWorld WideWeb Conferences Steering Committee
, pp. 759-760
-
-
Badjatiya, P.1
Gupta, S.2
Gupta, M.3
Varma, V.4
-
163
-
-
85043288089
-
-
(accessed on 20 October 2017
-
Andriole, S. Unstructured Data: The Other Side of Analytics, 2015. Available online: http://www.forbes.com/sites/steveandriole/2015/03/05/the-other-side-of-Analytics (accessed on 20 October 2017).
-
(2015)
Unstructured Data: The other Side of Analytics
-
-
Andriole, S.1
-
164
-
-
84878457685
-
How much information is geospatially referenced? Networks and cognition
-
Hahmann, S.; Burghardt, D. How much information is geospatially referenced? Networks and cognition. Int. J. Geogr. Inf. Sci. 2013, 27, 1171-1189.
-
(2013)
Int. J. Geogr. Inf. Sci
, vol.27
, pp. 1171-1189
-
-
Hahmann, S.1
Burghardt, D.2
-
165
-
-
84960959784
-
-
arXiv, arXiv:1508.00092
-
Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land use classification in remote sensing images by convolutional neural networks. arXiv 2015, arXiv:1508.00092.
-
(2015)
Land Use Classification in Remote Sensing Images by Convolutional Neural Networks
-
-
Castelluccio, M.1
Poggi, G.2
Sansone, C.3
Verdoliva, L.4
-
166
-
-
85029659847
-
Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization
-
Tracewski, L.; Bastin, L.; Fonte, C.C. Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization. Geo-Spat. Inf. Sci. 2017, 20, 252-268.
-
(2017)
Geo-Spat. Inf. Sci
, vol.20
, pp. 252-268
-
-
Tracewski, L.1
Bastin, L.2
Fonte, C.C.3
-
167
-
-
84942848720
-
Extracting and understanding urban areas of interest using geotagged photos
-
Hu, Y.; Gao, S.; Janowicz, K.; Yu, B.; Li, W.; Prasad, S. Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst. 2015, 54, 240-254.
-
(2015)
Comput. Environ. Urban Syst
, vol.54
, pp. 240-254
-
-
Hu, Y.1
Gao, S.2
Janowicz, K.3
Yu, B.4
Li, W.5
Prasad, S.6
-
168
-
-
85029032529
-
Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale
-
Halifax, NS, Canada, 13-17 August
-
Albert, A.; Kaur, J.; Gonzalez, M.C. Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13-17 August 2017; pp. 1357-1366.
-
(2017)
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1357-1366
-
-
Albert, A.1
Kaur, J.2
Gonzalez, M.C.3
-
169
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
Montreal, QC, Canada, 8-13 December
-
Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; Oliva, A. Learning deep features for scene recognition using places database. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8-13 December 2014; pp. 487-495.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 487-495
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
-
170
-
-
84986255616
-
The cityscapes dataset for semantic urban scene understanding
-
Las Vegas, NV, USA, 26 June-1 July
-
Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016; pp. 3213-3223.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3213-3223
-
-
Cordts, M.1
Omran, M.2
Ramos, S.3
Rehfeld, T.4
Enzweiler, M.5
Benenson, R.6
Franke, U.7
Roth, S.8
Schiele, B.9
-
171
-
-
84913590208
-
Deep learning for content-based image retrieval: A comprehensive study
-
Orlando, FL, USA, 3-7 November
-
Wan, J.; Wang, D.; Hoi, S.C.H.; Wu, P.; Zhu, J.; Zhang, Y.; Li, J. Deep learning for content-based image retrieval: A comprehensive study. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3-7 November 2014; pp. 157-166.
-
(2014)
Proceedings of the 22nd ACM International Conference on Multimedia
, pp. 157-166
-
-
Wan, J.1
Wang, D.2
Hoi, S.C.H.3
Wu, P.4
Zhu, J.5
Zhang, Y.6
Li, J.7
-
172
-
-
84887356836
-
Cross-view image geolocalization
-
Portland, OR, USA, 23-28 June
-
Lin, T.Y.; Belongie, S.; Hays, J. Cross-view image geolocalization. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23-28 June 2013; pp. 891-898.
-
(2013)
Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 891-898
-
-
Lin, T.Y.1
Belongie, S.2
Hays, J.3
-
173
-
-
84959245070
-
Learning deep representations for ground-To-Aerial geolocalization
-
Boston, MA, USA, 7-12 June
-
Lin, T.Y.; Cui, Y.; Belongie, S.; Hays, J. Learning deep representations for ground-To-Aerial geolocalization. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 5007-5015.
-
(2015)
Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5007-5015
-
-
Lin, T.Y.1
Cui, Y.2
Belongie, S.3
Hays, J.4
-
175
-
-
85038107488
-
-
arXiv, arXiv:1608.03902
-
Nguyen, D.T.; Mannai, K.A.A.; Joty, S.; Sajjad, H.; Imran, M.; Mitra, P. Rapid Classification of Crisis-Related Data on Social Networks using Convolutional Neural Networks. arXiv 2016, arXiv:1608.03902.
-
(2016)
Rapid Classification of Crisis-Related Data on Social Networks Using Convolutional Neural Networks
-
-
Nguyen, D.T.1
Mannai, K.A.A.2
Joty, S.3
Sajjad, H.4
Imran, M.5
Mitra, P.6
-
176
-
-
85029455949
-
Robust classification of crisis-related data on social networks using convolutional neural networks
-
Montreal, QC, Canada, 15-18 May
-
Nguyen, D.T.; Al-Mannai, K.; Joty, S.R.; Sajjad, H.; Imran, M.; Mitra, P. Robust Classification of Crisis-Related Data on Social Networks Using Convolutional Neural Networks, In Proceedings of the Eleventh International AAAI Conference on Web and Social Media (ICWSM), Montreal, QC, Canada, 15-18 May 2017; pp. 632-635.
-
(2017)
Proceedings of the Eleventh International AAAI Conference on Web and Social Media (ICWSM)
, pp. 632-635
-
-
Nguyen, D.T.1
Al-Mannai, K.2
Joty, S.R.3
Sajjad, H.4
Imran, M.5
Mitra, P.6
-
177
-
-
84953807567
-
Twitter sentiment analysis with deep convolutional neural networks
-
Santiago, Chile, 9-13 August
-
Severyn, A.; Moschitti, A. Twitter sentiment analysis with deep convolutional neural networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9-13 August 2015; pp. 959-962.
-
(2015)
Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 959-962
-
-
Severyn, A.1
Moschitti, A.2
-
178
-
-
85011826663
-
-
arXiv, arXiv:1610.08815
-
Poria, S.; Cambria, E.; Hazarika, D.; Vij, P. A deeper look into sarcastic tweets using deep convolutional neural networks. arXiv 2016, arXiv:1610.08815.
-
(2016)
A Deeper Look into Sarcastic Tweets Using Deep Convolutional Neural Networks
-
-
Poria, S.1
Cambria, E.2
Hazarika, D.3
Vij, P.4
-
180
-
-
83455257005
-
The semantics of similarity in geographic information retrieval
-
Janowicz, K.; Raubal, M.; Kuhn, W. The semantics of similarity in geographic information retrieval. J. Spat. Inf. Sci. 2011, 2011, 29-57.
-
(2011)
J. Spat. Inf. Sci
, vol.2011
, pp. 29-57
-
-
Janowicz, K.1
Raubal, M.2
Kuhn, W.3
-
181
-
-
85041029948
-
Crowdsourcing the character of a place: Character-level convolutional networks for multilingual geographic text classification
-
Adams, B.; McKenzie, G. Crowdsourcing the Character of a Place: Character-Level Convolutional Networks for Multilingual Geographic Text Classification. Trans. GIS 2018. doi:10.1111/tgis.12317.
-
(2018)
Trans. GIS
-
-
Adams, B.1
McKenzie, G.2
-
182
-
-
84953314366
-
Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study
-
Cervone, G.; Sava, E.; Huang, Q.; Schnebele, E.; Harrison, J.; Waters, N. Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study. Int. J. Remote Sens. 2016, 37, 100-124.
-
(2016)
Int. J. Remote Sens
, vol.37
, pp. 100-124
-
-
Cervone, G.1
Sava, E.2
Huang, Q.3
Schnebele, E.4
Harrison, J.5
Waters, N.6
-
183
-
-
84895597100
-
Constructing gazetteers from volunteered big geo-data based on Hadoop
-
Gao, S.; Li, L.; Li, W.; Janowicz, K.; Zhang, Y. Constructing gazetteers from volunteered big geo-data based on Hadoop. Comput. Environ. Urban Syst. 2017, 61, 172-186.
-
(2017)
Comput. Environ. Urban Syst
, vol.61
, pp. 172-186
-
-
Gao, S.1
Li, L.2
Li, W.3
Janowicz, K.4
Zhang, Y.5
-
184
-
-
84944735469
-
-
MIT Press: Cambridge, MA, USA, (accessed on 10 October 2017)
-
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.deeplearningbook.org (accessed on 10 October 2017).
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
185
-
-
0010836411
-
Feature engineering for text classification
-
Scott, S.; Matwin, S. Feature engineering for text classification. ICML 1999, 99, 379-388.
-
(1999)
ICML
, vol.99
, pp. 379-388
-
-
Scott, S.1
Matwin, S.2
-
186
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798-1828.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
187
-
-
85084012304
-
Brainwash: A data system for feature engineering
-
Asilomar, CA, USA, 6-9 January
-
Anderson, M.R.; Antenucci, D.; Bittorf, V.; Burgess, M.; Cafarella, M.J.; Kumar, A.; Niu, F.; Park, Y.; Ré, C.; Zhang, C. Brainwash: A Data System for Feature Engineering. In Proceedings of the 6th Biennial Conference on Innovative Data Systems Research (CIDR '13), Asilomar, CA, USA, 6-9 January 2013.
-
(2013)
Proceedings of the 6th Biennial Conference on Innovative Data Systems Research (CIDR '13)
-
-
Anderson, M.R.1
Antenucci, D.2
Bittorf, V.3
Burgess, M.4
Cafarella, M.J.5
Kumar, A.6
Niu, F.7
Park, Y.8
Re, C.9
Zhang, C.10
-
189
-
-
0003684449
-
-
2nd ed. Springer: Berlin/Heidelberg, Germany
-
Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
190
-
-
85006335487
-
-
Springer: Berlin/Heidelberg, Germany
-
Herrera, F.; Charte, F.; Rivera, A.J.; Del Jesus, M.J. Multilabel Classification: Problem Analysis, Metrics and Techniques; Springer: Berlin/Heidelberg, Germany, 2016.
-
(2016)
Multilabel Classification: Problem Analysis, Metrics and Techniques
-
-
Herrera, F.1
Charte, F.2
Rivera, A.J.3
Del Jesus, M.J.4
-
191
-
-
84877770961
-
-
MIT press: Cambridge, MA, USA
-
Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT press: Cambridge, MA, USA, 2012.
-
(2012)
Foundations of Machine Learning
-
-
Mohri, M.1
Rostamizadeh, A.2
Talwalkar, A.3
-
192
-
-
0003890671
-
-
John Wiley & Sons: Hoboken, NJ, USA
-
Cherkassky, V.; Mulier, F.M. Learning From Data: Concepts, Theory, and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2007.
-
(2007)
Learning from Data: Concepts, Theory, and Methods
-
-
Cherkassky, V.1
Mulier, F.M.2
-
194
-
-
33745456231
-
-
Computer Sciences Technical Report 1530; University of Wisconsin: Madison, MI, USA
-
Zhu, X. Semi-Supervised Learning Literature Survey; Computer Sciences Technical Report 1530; University of Wisconsin: Madison, MI, USA, 2005.
-
(2005)
Semi-Supervised Learning Literature Survey
-
-
Zhu, X.1
-
195
-
-
85043279029
-
Intelligent behavior in humans and machines
-
(accessed on 29 December 2017)
-
Langley, P. Intelligent behavior in humans and machines. American Association for Artificial Intelligence. 2006. Available online: http://lyonesse.stanford.edu/~langley/papers/ai50.dart.pdf (accessed on 29 December 2017).
-
(2006)
American Association for Artificial Intelligence
-
-
Langley, P.1
-
196
-
-
34548084959
-
-
Technical Report CMU-ML-06-108; Carnegie Mellon University: Pittsburgh, PA, USA
-
Mitchell, T.M. The Discipline of Machine Learning; Technical Report CMU-ML-06-108; Carnegie Mellon University: Pittsburgh, PA, USA, 2006.
-
(2006)
The Discipline of Machine Learning
-
-
Mitchell, T.M.1
-
197
-
-
84973912724
-
Posenet: A convolutional network for real-Time 6-dof camera relocalization
-
Santiago, Chile, 7-13 December
-
Kendall, A.; Grimes, M.; Cipolla, R. Posenet: A convolutional network for real-Time 6-dof camera relocalization. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7-13 December 2015; pp. 2938-2946.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 2938-2946
-
-
Kendall, A.1
Grimes, M.2
Cipolla, R.3
-
198
-
-
85034577178
-
-
arXiv, arXiv:1702.06683
-
Gebru, T.; Krause, J.;Wang, Y.; Chen, D.; Deng, J.; Aiden, E.L.; Fei-Fei, L. Using deep learning and google street view to estimate the demographic makeup of the us. arXiv 2017, arXiv:1702.06683.
-
(2017)
Using Deep Learning and Google Street View to Estimate the Demographic Makeup of the Us
-
-
Gebru, T.1
Krause, J.2
Wang, Y.3
Chen, D.4
Deng, J.5
Aiden, E.L.6
Fei-Fei, L.7
-
200
-
-
85043231337
-
-
arXiv, arXiv:1703.03126
-
Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution. arXiv 2017, arXiv:1703.03126.
-
(2017)
DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution
-
-
Vandal, T.1
Kodra, E.2
Ganguly, S.3
Michaelis, A.4
Nemani, R.5
Ganguly, A.R.6
-
202
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-All schemes
-
Galar, M.; Fernández, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-All schemes. Pattern Recognit. 2011, 44, 1761-1776.
-
(2011)
Pattern Recognit
, vol.44
, pp. 1761-1776
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
203
-
-
65649138430
-
A systematic analysis of performance measures for classification tasks
-
Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427-437.
-
(2009)
Inf. Process. Manag
, vol.45
, pp. 427-437
-
-
Sokolova, M.1
Lapalme, G.2
-
204
-
-
57649216554
-
One against one" or "one against all": Which one is better for handwriting recognition with SVMs?
-
Suvisoft: La Baule, France, October
-
Milgram, J.; Cheriet, M.; Sabourin, R. "One against one" or "one against all": Which one is better for handwriting recognition with SVMs? In Tenth International Workshop on Frontiers in Handwriting Recognition; Suvisoft: La Baule, France, October 2006.
-
(2006)
Tenth International Workshop on Frontiers in Handwriting Recognition
-
-
Milgram, J.1
Cheriet, M.2
Sabourin, R.3
-
205
-
-
84941942720
-
The importance of the label hierarchy in hierarchical multi-label classification
-
Levatíc, J.; Kocev, D.; Džeroski, S. The importance of the label hierarchy in hierarchical multi-label classification. J. Intell. Inf. Syst. 2015, 45, 247-271.
-
(2015)
J. Intell. Inf. Syst
, vol.45
, pp. 247-271
-
-
Levatíc, J.1
Kocev, D.2
Džeroski, S.3
-
206
-
-
77956163078
-
Mining multi-label data
-
Springer: Berlin/Heidelberg, Germany
-
Tsoumakas, G.; Katakis, I.; Vlahavas, I. Mining multi-label data. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 667-685.
-
(2009)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
207
-
-
83155175374
-
Classifier chains for multi-label classification
-
Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains for multi-label classification. Mach. Learn. 2011, 85, 333-359.
-
(2011)
Mach. Learn
, vol.85
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
208
-
-
84897109377
-
A review on multi-label learning algorithms
-
Zhang, M.L.; Zhou, Z.H. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 2014, 26, 1819-1837.
-
(2014)
IEEE Trans. Knowl. Data Eng
, vol.26
, pp. 1819-1837
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
210
-
-
33746058639
-
Learning and evaluation in the presence of class hierarchies: Application to text categorization
-
Springer: Berlin/Heidelberg, Germany
-
Kiritchenko, S.; Matwin, S.; Nock, R.; Famili, A.F. Learning and evaluation in the presence of class hierarchies: Application to text categorization. In Canadian Conference on AI; Springer: Berlin/Heidelberg, Germany, 2006; Volume 2006, pp. 395-406.
-
(2006)
Canadian Conference on AI
, vol.2006
, pp. 395-406
-
-
Kiritchenko, S.1
Matwin, S.2
Nock, R.3
Famili, A.F.4
-
211
-
-
52949141834
-
Decision trees for hierarchical multi-label classification
-
Vens, C.; Struyf, J.; Schietgat, L.; Džeroski, S.; Blockeel, H. Decision trees for hierarchical multi-label classification. Mach. Learn. 2008, 73, 185-214.
-
(2008)
Mach. Learn
, vol.73
, pp. 185-214
-
-
Vens, C.1
Struyf, J.2
Schietgat, L.3
Džeroski, S.4
Blockeel, H.5
-
212
-
-
80053440655
-
Multi-label classification on tree-And dag-structured hierarchies
-
Bellevue, WA, USA, 28 June-2 July
-
Bi, W.; Kwok, J.T. Multi-label classification on tree-And dag-structured hierarchies. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June-2 July 2011; pp. 17-24.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 17-24
-
-
Bi, W.1
Kwok, J.T.2
-
213
-
-
84872693448
-
Extracting hierarchies from data clusters for better classification
-
Sapozhnikov, G.; Ulanov, A. Extracting Hierarchies from Data Clusters for Better Classification. Algorithms 2012, 5, 506-520.
-
(2012)
Algorithms
, vol.5
, pp. 506-520
-
-
Sapozhnikov, G.1
Ulanov, A.2
-
214
-
-
84872725801
-
Enhanced K-nearest neighbour algorithm for large-scale hierarchical multi-label classification
-
Athens, Greece, 5 September
-
Wang, X.; Zhao, H.; Lu, B. Enhanced K-Nearest Neighbour Algorithm for Large-scale Hierarchical Multi-label Classification. In Proceedings of the Joint ECML/PKDD PASCALWorkshop on Large-Scale Hierarchical Classification, Athens, Greece, 5 September 2011.
-
(2011)
Proceedings of the Joint ECML/PKDD PASCALWorkshop on Large-Scale Hierarchical Classification
-
-
Wang, X.1
Zhao, H.2
Lu, B.3
-
215
-
-
0032646228
-
Content-based hierarchical classification of vacation images
-
Austin, TX, USA, 7-11 June
-
Vailaya, A.; Figueiredo, M.; Jain, A.; Zhang, H.J. Content-based hierarchical classification of vacation images. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems, Austin, TX, USA, 7-11 June 1999; Volume 1, pp. 518-523.
-
(1999)
Proceedings of the IEEE International Conference on Multimedia Computing and Systems
, vol.1
, pp. 518-523
-
-
Vailaya, A.1
Figueiredo, M.2
Jain, A.3
Zhang, H.J.4
-
216
-
-
13444293728
-
Support vector machines with binary tree architecture for multi-class classification
-
Cheong, S.; Oh, S.H.; Lee, S.Y. Support vector machines with binary tree architecture for multi-class classification. Neural Inf. Process. Lett. Rev. 2004, 2, 47-51.
-
(2004)
Neural Inf. Process. Lett. Rev
, vol.2
, pp. 47-51
-
-
Cheong, S.1
Oh, S.H.2
Lee, S.Y.3
-
217
-
-
85043230681
-
-
arXiv, arXiv:1709.08267
-
Kowsari, K.; Brown, D.E.; Heidarysafa, M.; Meimandi, K.J.; Gerber, M.S.; Barnes, L.E. Hdltex: Hierarchical deep learning for text classification. arXiv 2017, arXiv:1709.08267.
-
(2017)
Hdltex: Hierarchical Deep Learning for Text Classification
-
-
Kowsari, K.1
Brown, D.E.2
Heidarysafa, M.3
Meimandi, K.J.4
Gerber, M.S.5
Barnes, L.E.6
-
218
-
-
84904539634
-
Hierarchical multi-label classification of social text streams
-
Gold Coast, Australia, 6-11 July
-
Ren, Z.; Peetz, M.H.; Liang, S.; Van Dolen, W.; De Rijke, M. Hierarchical multi-label classification of social text streams. In Proceedings of the 37th international ACM SIGIR Conference On Research & Development in Information Retrieval, Gold Coast, Australia, 6-11 July 2014; pp. 213-222.
-
(2014)
Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval
, pp. 213-222
-
-
Ren, Z.1
Peetz, M.H.2
Liang, S.3
Van Dolen, W.4
De Rijke, M.5
-
219
-
-
84957837518
-
Deep learning for visual understanding: A review
-
Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27-48.
-
(2016)
Neurocomputing
, vol.187
, pp. 27-48
-
-
Guo, Y.1
Liu, Y.2
Oerlemans, A.3
Lao, S.4
Wu, S.5
Lew, M.S.6
-
221
-
-
85043282912
-
-
(accessed on 10 October 2017)
-
Stanford NER Recognizer. Available online: https://nlp.stanford.edu/software/CRF-NER.shtml (accessed on 10 October 2017).
-
Stanford NER Recognizer
-
-
-
222
-
-
85043261799
-
-
(accessed on 10 October 2017)
-
Stanford Named Entity Tagger. Available online: http://nlp.stanford.edu:8080/ner (accessed on 10 October 2017).
-
Stanford Named Entity Tagger
-
-
-
223
-
-
0002442796
-
Machine learning in automated text categorization
-
Sebastiani, F. Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 2002, 34, 1-47.
-
(2002)
ACM Comput. Surv. (CSUR)
, vol.34
, pp. 1-47
-
-
Sebastiani, F.1
-
224
-
-
85024373635
-
A re-examination of text categorization methods
-
Berkeley, CA, USA, 15-19 August
-
Yang, Y.; Liu, X. A re-examination of text categorization methods. In Proceedings of the 22nd Annual International ACM SIGIR Conference On Research and Development in Information Retrieval, Berkeley, CA, USA, 15-19 August 1999; pp. 42-49.
-
(1999)
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 42-49
-
-
Yang, Y.1
Liu, X.2
-
225
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
Lake Tahoe, NV, USA, 5-10 December
-
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5-10 December 2013; pp. 3111-3119.
-
(2013)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
226
-
-
85083951332
-
-
arXiv, arXiv:1301.3781
-
Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781.
-
(2013)
Efficient Estimation of Word Representations in Vector Space
-
-
Mikolov, T.1
Chen, K.2
Corrado, G.3
Dean, J.4
-
227
-
-
84961289992
-
Glove: Global vectors for word representation
-
Doha, Qatar, 25-29 October
-
Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25-29 October 2014; pp. 1532-1543.
-
(2014)
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
, pp. 1532-1543
-
-
Pennington, J.1
Socher, R.2
Manning, C.3
-
228
-
-
84906930943
-
Don't count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors
-
Baroni, M.; Dinu, G.; Kruszewski, G. Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. ACL 2014, 1, 238-247.
-
(2014)
ACL
, vol.1
, pp. 238-247
-
-
Baroni, M.1
Dinu, G.2
Kruszewski, G.3
|