메뉴 건너뛰기




Volumn 24, Issue 1, 2018, Pages 298-308

Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study

Author keywords

Active Learning; Classification; Dimensionality Reduction; Evaluation; Experiment; Information Visualization; Labeling; Machine Learning; Visual Analytics; Visual Interactive Labeling

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA STRUCTURES; DATA VISUALIZATION; ENCODING (SYMBOLS); EXPERIMENTS; INFORMATION SYSTEMS; LABELING; LEARNING SYSTEMS; VISUALIZATION;

EID: 85028696903     PISSN: 10772626     EISSN: None     Source Type: Journal    
DOI: 10.1109/TVCG.2017.2744818     Document Type: Article
Times cited : (146)

References (72)
  • 2
    • 84929454424 scopus 로고    scopus 로고
    • Feedback-driven interactive exploration of large multidimensional data supported by visual classifier
    • M. Behrisch, F. Korkmaz, L. Shao, and T. Schreck. Feedback-driven interactive exploration of large multidimensional data supported by visual classifier. In IEEE Visual Analytics Science and Technology (VAST), pp. 43-52, 2014. doi: 10.1109/VAST.2014.7042480
    • (2014) IEEE Visual Analytics Science and Technology (VAST , pp. 43-52
    • Behrisch, M.1    Korkmaz, F.2    Shao, L.3    Schreck, T.4
  • 3
  • 5
    • 84957878454 scopus 로고    scopus 로고
    • User-based visual-interactive similarity definition for mixed data objects-concept and first implementation
    • J. Bernard, D. Sessler, T. Ruppert, J. Davey, A. Kuijper, and J. Kohlhammer. User-based visual-interactive similarity definition for mixed data objects-concept and first implementation. In WSCG, vol. 22. Eurographics, 2014.
    • (2014) WSCG. 22. Eurographics
    • Bernard, J.1    Sessler, D.2    Ruppert, T.3    Davey, J.4    Kuijper, A.5    Kohlhammer, J.6
  • 7
    • 85121736439 scopus 로고    scopus 로고
    • A unified process for visual-interactive labeling
    • In M. Sedlmair and C. Tominski, eds., EuroVis Workshop on Visual Analytics (EuroVA
    • J. Bernard, M. Zeppelzauer, M. Sedlmair, and W. Aigner. A Unified Process for Visual-Interactive Labeling. In M. Sedlmair and C. Tominski, eds., EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association, 2017. doi: 10.2312/eurova.20171123
    • (2017) The Eurographics Association
    • Bernard, J.1    Zeppelzauer, M.2    Sedlmair, M.3    Aigner, W.4
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 84971439118 scopus 로고    scopus 로고
    • Constructing grounded theory
    • K. Charmaz. Constructing grounded theory. Sage, 2014.
    • (2014) Sage
    • Charmaz, K.1
  • 12
    • 18744394353 scopus 로고    scopus 로고
    • Clustermap: Labeling clusters in large datasets via visualization
    • ACM, New York, NY, USA
    • K. Chen and L. Liu. Clustermap: Labeling clusters in large datasets via visualization. In ACM Conference on Information and Knowledge Management (CIKM), pp. 285-293. ACM, New York, NY, USA, 2004. doi: 10.1145/1031171.1031233
    • (2004) ACM Conference on Information and Knowledge Management (CIKM , pp. 285-293
    • Chen, K.1    Liu, L.2
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 29344432464 scopus 로고    scopus 로고
    • Reducing labeling effort for structured prediction tasks
    • AAAI Press
    • A. Culotta and A. McCallum. Reducing labeling effort for structured prediction tasks. In Conference on Artificial Intelligence (AAAI), pp. 746-751. AAAI Press, 2005.
    • (2005) Conference on Artificial Intelligence (AAAI , pp. 746-751
    • Culotta, A.1    McCallum, A.2
  • 15
    • 14844300794 scopus 로고    scopus 로고
    • Inference by eye: Confidence intervals and how to read pictures of data
    • G. Cumming and S. Finch. Inference by eye: confidence intervals and how to read pictures of data. American Psychologist, 60(2):170, 2005. doi: 10. 1002/sim.3471
    • (2005) American Psychologist , vol.60 , Issue.2 , pp. 170
    • Cumming, G.1    Finch, S.2
  • 16
    • 85152628923 scopus 로고
    • Committee-based sampling for training probabilistic classifiers
    • Morgan Kaufmann Pub
    • I. Dagan and S. P. Engelson. Committee-based sampling for training probabilistic classifiers. In Conference on Machine Learning (ICML), pp. 150-157. Morgan Kaufmann Pub., 1995.
    • (1995) Conference on Machine Learning (ICML , pp. 150-157
    • Dagan, I.1    Engelson, S.P.2
  • 17
    • 33746634025 scopus 로고    scopus 로고
    • Leveraging active learning for relevance feedback using an information theoretic diversity measure
    • Springer
    • C. K. Dagli, S. Rajaram, and T. S. Huang. Leveraging active learning for relevance feedback using an information theoretic diversity measure. In Conference on Image and Video Retrieval, pp. 123-132. Springer, 2006. doi: 10.1007/11788034.13
    • (2006) Conference on Image and Video Retrieval , pp. 123-132
    • Dagli, C.K.1    Rajaram, S.2    Huang, T.S.3
  • 19
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classification
    • C. Ferri, J. Hernandez-Orallo, and R. Modroiu. An experimental comparison of performance measures for classification. Pattern Recogn. Lett., 30(1):27-38, 2009. doi: 10.1016/j.patrec.2008.08.010
    • (2009) Pattern Recogn. Lett , vol.30 , Issue.1 , pp. 27-38
    • Ferri, C.1    Hernandez-Orallo, J.2    Modroiu, R.3
  • 20
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. FISHER. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179-188, 1936. doi: 10.1469-1809.1936. Tb02137.x
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 24
    • 34250637963 scopus 로고    scopus 로고
    • Large-scale text categorization by batch mode active learning
    • ACM
    • S. C. Hoi, R. Jin, and M. R. Lyu. Large-scale text categorization by batch mode active learning. In World Wide Web, pp. 633-642. ACM, 2006. doi: 10.1145/1135777.1135870
    • (2006) World Wide Web , pp. 633-642
    • Hoi, S.C.1    Jin, R.2    Lyu, M.R.3
  • 25
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359-366, 1989. doi: 10.1016/0893-6080(89)90020-8
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 29
    • 84910066488 scopus 로고    scopus 로고
    • Infuse: Interactive feature selection for predictive modeling of high dimensional data
    • J. Krause, A. Perer, and E. Bertini. Infuse: Interactive feature selection for predictive modeling of high dimensional data. IEEE Trans on Vis. & Comp. Graph., 20(12):1614-1623, 2014. doi: 10.1109/TVCG.2014. 2346482
    • (2014) IEEE Trans on Vis. & Comp. Graph , vol.20 , Issue.12 , pp. 1614-1623
    • Krause, J.1    Perer, A.2    Bertini, E.3
  • 30
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964. doi: 10. 1007/BF02289565
    • (1964) Psychometrika , vol.29 , Issue.1 , pp. 1-27
    • Kruskal, J.B.1
  • 31
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • N. Landwehr, M. Hall, and E. Frank. Logistic model trees. Machine Learning, 59(1-2):161-205, 2005. doi: 10.1007/s10994-005-0466-3
    • (2005) Machine Learning , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 32
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 35
    • 84879759981 scopus 로고    scopus 로고
    • User-driven feature space transformation
    • G. M. Mamani, F. M. Fatore, L. G. Nonato, and F. V. Paulovich. User-driven feature space transformation. In CGF, pp. 291-299, 2013. doi: 10. 1111/cgf.12116
    • (2013) CGF , pp. 291-299
    • Mamani, G.M.1    Fatore, F.M.2    Nonato, L.G.3    Paulovich, F.V.4
  • 37
    • 0000314722 scopus 로고    scopus 로고
    • Employing em and pool-based active learning for text classification
    • Morgan Kaufmann Pub., San Francisco, CA, USA
    • A. McCallum and K. Nigam. Employing em and pool-based active learning for text classification. In Conference on Machine Learning (ICML), pp. 350-358. Morgan Kaufmann Pub., San Francisco, CA, USA, 1998.
    • (1998) Conference on Machine Learning (ICML , pp. 350-358
    • McCallum, A.1    Nigam, K.2
  • 41
    • 41549127079 scopus 로고    scopus 로고
    • The projection explorer: A flexible tool for projection-based multidimensional visualization
    • IEEE Computer Society, Washington, DC, USA
    • F. V. Paulovich, M. C. F. Oliveira, and R. Minghim. The projection explorer: A flexible tool for projection-based multidimensional visualization. In Symposium on Computer Graphics and Image Processing (SIBGRAPI), pp. 27-36. IEEE Computer Society, Washington, DC, USA, 2007. doi: 10. 1109/SIBGRAPI.2007.21
    • (2007) Symposium on Computer Graphics and Image Processing (SIBGRAPI , pp. 27-36
    • Paulovich, F.V.1    Oliveira, M.C.F.2    Minghim, R.3
  • 42
    • 69549086366 scopus 로고    scopus 로고
    • Two-dimensional multilabel active learning with an efficient online adaptation model for image classification
    • G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang. Two-dimensional multilabel active learning with an efficient online adaptation model for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(10):1880-1897, 2009. doi: 10.1109/TPAMI.2008.218
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , Issue.10 , pp. 1880-1897
    • Qi, G.-J.1    Hua, X.-S.2    Rui, Y.3    Tang, J.4    Zhang, H.-J.5
  • 45
    • 0003268218 scopus 로고    scopus 로고
    • Improving retrieval performance by relevance feedback
    • G. Salton and C. Buckley. Improving retrieval performance by relevance feedback. Readings in Information Retrieval, 24:5, 1997. doi: 10.1002/(SICI)1097-4571(199006)41:4288::AID-ASI83.0.CO;2-H
    • (1997) Readings in Information Retrieval , vol.24 , pp. 5
    • Salton, G.1    Buckley, C.2
  • 46
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans. Comput., 18(5):401-409, 1969. doi: 10.1109/T-C.1969.222678
    • (1969) IEEE Trans. Comput , vol.18 , Issue.5 , pp. 401-409
    • Sammon, J.W.1
  • 48
    • 84958546669 scopus 로고    scopus 로고
    • Active hidden markov models for information extraction
    • Springer-Verlag, London, UK, UK
    • T. Scheffer, C. Decomain, and S. Wrobel. Active hidden markov models for information extraction. In Conference on Advances in Intelligent Data Analysis (IDA), pp. 309-318. Springer-Verlag, London, UK, UK, 2001. doi: 10.1007/3-540-44816-0.31
    • (2001) Conference on Advances in Intelligent Data Analysis (IDA , pp. 309-318
    • Scheffer, T.1    Decomain, C.2    Wrobel, S.3
  • 49
    • 34249063650 scopus 로고    scopus 로고
    • A new metaphor for projection-based visual analysis and data exploration
    • T. Schreck and C. Panse. A new metaphor for projection-based visual analysis and data exploration. In Visualization and Data Analysis 2007, SPIE Proceedings, pp. 64950L-64950L-12, 2007. doi: 10.1117/12.697879
    • (2007) Visualization and Data Analysis 2007, SPIE Proceedings , pp. 64950L-64950L12
    • Schreck, T.1    Panse, C.2
  • 50
    • 84861304263 scopus 로고    scopus 로고
    • Butterfly plots for visual analysis of large point cloud data
    • University of West Bohemia, Plzen
    • T. Schreck, M. Schler, F. Zeilfelder, and K. Worm. Butterfly plots for visual analysis of large point cloud data. In WSCG, pp. 33-40. University of West Bohemia, Plzen, 2008.
    • (2008) WSCG , pp. 33-40
    • Schreck, T.1    Schler, M.2    Zeilfelder, F.3    Worm, K.4
  • 51
    • 77956685977 scopus 로고    scopus 로고
    • Techniques for precision-based visual analysis of projected data
    • T. Schreck, T. von Landesberger, and S. Bremm. Techniques for precision-based visual analysis of projected data. Information Visualization, 9(3):181-193, 2010. doi: 10.1057/ivs.2010.2
    • (2010) Information Visualization , vol.9 , Issue.3 , pp. 181-193
    • Schreck, T.1    Von Landesberger, T.2    Bremm, S.3
  • 53
    • 84875863474 scopus 로고    scopus 로고
    • A taxonomy of visual cluster separation factors
    • M. Sedlmair, A. Tatu, T. Munzner, and M. Tory. A taxonomy of visual cluster separation factors. Computer Graphics Forum, 31(3pt4):1335-1344, 2012. doi: 10.1111/j.1467-8659.2012.03125.x
    • (2012) Computer Graphics Forum , vol.31 , Issue.3 , pp. 1335-1344
    • Sedlmair, M.1    Tatu, A.2    Munzner, T.3    Tory, M.4
  • 57
    • 80053225377 scopus 로고    scopus 로고
    • Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances
    • Computational Linguistics
    • B. Settles. Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances. In Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1467-1478. Computational Linguistics, 2011.
    • (2011) Conference on Empirical Methods in Natural Language Processing (EMNLP , pp. 1467-1478
    • Settles, B.1
  • 58
    • 80053375448 scopus 로고    scopus 로고
    • An analysis of active learning strategies for sequence labeling tasks
    • Computational Linguistics
    • B. Settles and M. Craven. An analysis of active learning strategies for sequence labeling tasks. In Empirical Methods in Natural Language Processing, pp. 1070-1079. Computational Linguistics, 2008.
    • (2008) Empirical Methods in Natural Language Processing , pp. 1070-1079
    • Settles, B.1    Craven, M.2
  • 62
    • 33344464667 scopus 로고
    • Measurement of diversity
    • E. Simpson. Measurement of diversity. Nature, 163(4148):688-688, 1949. doi: doi:10.1038/163688a0
    • (1949) Nature , vol.163 , Issue.4148 , pp. 688
    • Simpson, E.1
  • 63
    • 68549110238 scopus 로고    scopus 로고
    • Selecting good views of high-dimensional data using class consistency
    • M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum, 28(3):831-838, 2009. doi: 10.1111/j.1467-8659.2009.01467.x
    • (2009) Computer Graphics Forum , vol.28 , Issue.3 , pp. 831-838
    • Sips, M.1    Neubert, B.2    Lewis, J.P.3    Hanrahan, P.4
  • 64
    • 84946607174 scopus 로고    scopus 로고
    • Probing projections: Interaction techniques for interpreting arrangements and errors of dimensionality reductions
    • J. Stahnke, M. Drk, B. Mller, and A. Thom. Probing projections: Interaction techniques for interpreting arrangements and errors of dimensionality reductions. IEEE Transactions on Visualization and Computer Graphics (TVCG), 22(1):629-638, 2016. doi: 10.1109/TVCG.2015.2467717
    • (2016) IEEE Transactions on Visualization and Computer Graphics (TVCG , vol.22 , Issue.1 , pp. 629-638
    • Stahnke, J.1    Drk, M.2    Mller, B.3    Thom, A.4
  • 65
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari. A survey of active learning algorithms for supervised remote sensing image classification. IEEE Selected Topics in Signal Proc., 5(3):606-617, 2011. doi: 10. 1109/JSTSP.2011.2139193
    • (2011) IEEE Selected Topics in Signal Proc , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 68
    • 79952368651 scopus 로고    scopus 로고
    • Active learning in multimedia annotation and retrieval: A survey
    • M. Wang and X.-S. Hua. Active learning in multimedia annotation and retrieval: A survey. ACM Trans. Intell. Syst. Technol., 2(2):10:1-10:21, 2011. doi: 10.1145/1899412.1899414
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.2 , pp. 101-1021
    • Wang, M.1    Hua, X.-S.2
  • 70
    • 0035470418 scopus 로고    scopus 로고
    • Interactive machine learning: Letting users build classifiers
    • M. Ware, E. Frank, G. Holmes, M. Hall, and I. H. Witten. Interactive machine learning: letting users build classifiers. Human-Computer Studies, pp. 281-292, 2001. doi: 10.1006/ijhc.2001.0499
    • (2001) Human-Computer Studies , pp. 281-292
    • Ware, M.1    Frank, E.2    Holmes, G.3    Hall, M.4    Witten, I.H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.