-
2
-
-
77950244328
-
Model-based compressive sensing
-
Baraniuk, R.G., Cevher, V., Duarte, M.F., and Hegde, C. Model-based compressive sensing. IEEE Transactions on Information Theory, 56(4):1982-2001, 2010.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.4
, pp. 1982-2001
-
-
Baraniuk, R.G.1
Cevher, V.2
Duarte, M.F.3
Hegde, C.4
-
3
-
-
0028312573
-
A signal-dependent time-frequency representation: Fast algorithm for optimal kernel design
-
January
-
Baraniuk, Richard G. and Jones, Douglas L. A signal-dependent time-frequency representation: Fast algorithm for optimal kernel design. IEEE Transactions on Signal Processing, 42(1):134-146, January 1994.
-
(1994)
IEEE Transactions on Signal Processing
, vol.42
, Issue.1
, pp. 134-146
-
-
Baraniuk, R.G.1
Jones, D.L.2
-
4
-
-
33645323768
-
Hierarchical multi-label prediction of gene function
-
Barutcuoglu, Z. and Troyanskaya, O.G. Hierarchical multi-label prediction of gene function. Bioinformatics, 22(7), 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.7
-
-
Barutcuoglu, Z.1
Troyanskaya, O.G.2
-
5
-
-
77949529159
-
Decision trees for hierarchical multilabel classification: A case study in functional genomics
-
Berlin, Germany
-
Blockeel, H., Schietgat, L., Struyf, J., Dzeroski, S., and Clare, A. Decision trees for hierarchical multilabel classification: A case study in functional genomics. In PKDD, Berlin, Germany, 2006.
-
(2006)
PKDD
-
-
Blockeel, H.1
Schietgat, L.2
Struyf, J.3
Dzeroski, S.4
Clare, A.5
-
6
-
-
29644434908
-
Incremental algorithms for hierarchical classification
-
Cesa-Bianchi, N., Gentile, C., and Zaniboni, L. Incremental algorithms for hierarchical classification. Journal of Machine Learning Research, 7:31-54, 2006. (Pubitemid 43022941)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 31-54
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Zaniboni, L.3
-
8
-
-
77956528679
-
Multi-label prediction via compressed sensing
-
MIT Press
-
Hsu, D., Kakade, S.M., Langford, J., and Zhang, T. Multi-label prediction via compressed sensing. In NIPS 22, pp. 772-780. MIT Press, 2009.
-
(2009)
NIPS 22
, pp. 772-780
-
-
Hsu, D.1
Kakade, S.M.2
Langford, J.3
Zhang, T.4
-
9
-
-
60949085230
-
Multi-label literature classification based on the gene ontology graph
-
Jin, B., Muller, B., Zhai, C., and Lu, X. Multi-label literature classification based on the gene ontology graph. BMC Bioinformatics, 9, 2008.
-
(2008)
BMC Bioinformatics
, pp. 9
-
-
Jin, B.1
Muller, B.2
Zhai, C.3
Lu, X.4
-
10
-
-
33745768424
-
Kernel-based learning of hierarchical multilabel classification models
-
Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. Kernel-based learning of hierarchical multilabel classification models. Journal of Machine Learning Research, 7:1601-1626, 2006. (Pubitemid 44024589)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1601-1626
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
11
-
-
78651375098
-
A survey of hierarchical classification across different application domains
-
Silla, C.N. and Freitas, A.A. A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1-2):31-72, 2010.
-
(2010)
Data Mining and Knowledge Discovery
, vol.22
, Issue.1-2
, pp. 31-72
-
-
Silla, C.N.1
Freitas, A.A.2
-
12
-
-
84861452189
-
Multi-label classification with principle label space transformation
-
Tai, F. and Lin, H.T. Multi-label classification with principle label space transformation. In Proceedings of the 2nd International Workshop on Learning from Multi-Label Data, Haifa, Israel, 2010.
-
Proceedings of the 2nd International Workshop on Learning from Multi-Label Data, Haifa, Israel, 2010
-
-
Tai, F.1
Lin, H.T.2
-
13
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
December
-
Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6:1453-1484, December 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
14
-
-
77956163078
-
Mining multi-label data
-
Maimon, O. and Rokach, L. (eds.), Springer, 2nd edition
-
Tsoumakas, G., Katakis, I., and Vlahavas, I. Mining multi-label data. In Maimon, O. and Rokach, L. (eds.), Data Mining and Knowledge Discovery Handbook. Springer, 2nd edition, 2010.
-
(2010)
Data Mining and Knowledge Discovery Handbook
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
15
-
-
52949141834
-
Decision trees for hierarchical multilabel classification
-
Vens, C., Struyf, J., Schietgat, L., Džeroski, S., and Blockeel, H. Decision trees for hierarchical multilabel classification. Machine Learning, 73(2):185-214, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.2
, pp. 185-214
-
-
Vens, C.1
Struyf, J.2
Schietgat, L.3
Džeroski, S.4
Blockeel, H.5
-
16
-
-
84898971943
-
Kernel dependency estimation
-
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., and Vapnik, V. Kernel dependency estimation. In NIPS 15, 2003.
-
(2003)
NIPS 15
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Schölkopf, B.4
Vapnik, V.5
-
17
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
Zhang, M.-L. and Zhou, Z.-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
|