메뉴 건너뛰기




Volumn 25, Issue 12, 2014, Pages 2275-2287

Mandatory leaf node prediction in hierarchical multilabel classification

Author keywords

Bayesian decision; hierarchical classification; integer linear program (ILP); multilabel classification.

Indexed keywords

DIRECTED GRAPHS; DYNAMIC PROGRAMMING; FORECASTING; FORESTRY; INTEGER PROGRAMMING; SEMANTICS; TREES (MATHEMATICS);

EID: 84913528724     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2309437     Document Type: Article
Times cited : (20)

References (44)
  • 1
    • 52949141834 scopus 로고    scopus 로고
    • Decision trees for hierarchical multi-label classification
    • C. Vens, J. Struyf, L. Schietgat, S. Dvzeroski, and H. Blockeel, "Decision trees for hierarchical multi-label classification," Mach. Learn., vol. 73, no. 2, pp. 185-214, 2008.
    • (2008) Mach. Learn , vol.73 , Issue.2 , pp. 185-214
    • Vens, C.1    Struyf, J.2    Schietgat, L.3    Dvzeroski, S.4    Blockeel, H.5
  • 2
    • 85007181436 scopus 로고    scopus 로고
    • A hierarchical approach to automatic musical genre classification
    • London, U.K. Sep
    • J. Burred and A. Lerch, "A hierarchical approach to automatic musical genre classification," in Proc. 6th Int. Conf. Digit. Audio Effects, London, U.K., Sep. 2003.
    • (2003) Proc. 6th Int. Conf. Digit. Audio Effects
    • Burred, J.1    Lerch, A.2
  • 3
    • 33745768424 scopus 로고    scopus 로고
    • Kernelbased learning of hierarchical multilabel classification models
    • Dec
    • J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, "Kernelbased learning of hierarchical multilabel classification models," J. Mach. Learn. Res., vol. 7, pp. 1601-1626, Dec. 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1601-1626
    • Rousu, J.1    Saunders, C.2    Szedmak, S.3    Shawe-Taylor, J.4
  • 4
    • 80053440655 scopus 로고    scopus 로고
    • Multi-label classification on tree-and DAGstructured hierarchies
    • Bellevue, WA, USA
    • W. Bi and J.-T. Kwok, "Multi-label classification on tree-and DAGstructured hierarchies," in Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA, 2011, pp. 17-24.
    • (2011) Proc. 28th Int. Conf. Mach. Learn , pp. 17-24
    • Bi, W.1    Kwok, J.-T.2
  • 5
    • 29644434908 scopus 로고    scopus 로고
    • Incremental algorithms for hierarchical classification
    • Dec
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, "Incremental algorithms for hierarchical classification," J. Mach. Learn. Res., vol. 7, pp. 31-54, Dec. 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 31-54
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 6
    • 33749264456 scopus 로고    scopus 로고
    • Hierarchical classification: Combining Bayes with SVM
    • Pittsburgh, PA, USA
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, "Hierarchical classification: Combining Bayes with SVM," in Proc. 23rd Int. Conf. Mach. Learn., Pittsburgh, PA, USA, 2006, pp. 177-184.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn , pp. 177-184
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 7
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • Z. Barutcuoglu and O. Troyanskaya, "Hierarchical multi-label prediction of gene function," Bioinformatics, vol. 22, no. 7, pp. 830-836, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Troyanskaya, O.2
  • 8
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • C. Silla and A. Freitas, "A survey of hierarchical classification across different application domains," Data Mining Knowl. Discovery, vol. 22, no. 1, pp. 31-72, 2011.
    • (2011) Data Mining Knowl. Discovery , vol.22 , Issue.1 , pp. 31-72
    • Silla, C.1    Freitas, A.2
  • 9
    • 33749582181 scopus 로고    scopus 로고
    • Automatically learning document taxonomies for hierarchical classification
    • Chiba, Japan
    • K. Punera, S. Rajan, and J. Ghosh, "Automatically learning document taxonomies for hierarchical classification," in Proc. 14th Int. Conf. World Wide Web, Chiba, Japan, 2005, pp. 1010-1011.
    • (2005) Proc. 14th Int. Conf. World Wide Web , pp. 1010-1011
    • Punera, K.1    Rajan, S.2    Ghosh, J.3
  • 10
    • 77956201769 scopus 로고    scopus 로고
    • Multi-label learning by exploiting label dependency
    • Washington, DC, USA
    • M.-L. Zhang and K. Zhang, "Multi-label learning by exploiting label dependency," in Proc. 16th Int. Conf. Knowl. Discovery Data Mining, Washington, DC, USA, 2010, pp. 999-1008.
    • Proc. 16th Int. Conf. Knowl. Discovery Data Mining , vol.2010 , pp. 999-1008
    • Zhang, M.-L.1    Zhang, K.2
  • 11
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • S. Bengio, J. Weston, and D. Grangier, "Label embedding trees for large multi-class tasks," in Proc. Adv. NIPS, vol. 23. 2010, pp. 163-171.
    • Proc. Adv. NIPS , vol.23 , Issue.2010 , pp. 163-171
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 12
    • 85162353669 scopus 로고    scopus 로고
    • Fast and balanced: Efficient label tree learning for large scale object recognition
    • J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei, "Fast and balanced: Efficient label tree learning for large scale object recognition," in Proc. Adv. NIPS, vol. 24. 2011, pp. 567-575.
    • (2011) Proc. Adv. NIPS , vol.24 , pp. 567-575
    • Deng, J.1    Satheesh, S.2    Berg, A.3    Fei-Fei, L.4
  • 13
    • 84856444732 scopus 로고    scopus 로고
    • Adapting nonhierarchical multilabel classification methods for hierarchical multilabel classification
    • R. Cerri, A. C. P. L. F. De Carvalho, and A. A. Freitas, "Adapting nonhierarchical multilabel classification methods for hierarchical multilabel classification," Intell. Data Anal., vol. 15, no. 6, pp. 861-887, 2011.
    • (2011) Intell. Data Anal , vol.15 , Issue.6 , pp. 861-887
    • Cerri, R.1    De Carvalho, A.C.P.L.F.2    Freitas, A.A.3
  • 14
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • Warsaw, Poland
    • G. Tsoumakas and I. Vlahavas, "Random k-labelsets: An ensemble method for multilabel classification," in Proc. 18th Eur. Conf. Mach. Learn., Warsaw, Poland, 2007, pp. 406-417.
    • (2007) Proc. 18th Eur. Conf. Mach. Learn , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2
  • 15
    • 0002346866 scopus 로고    scopus 로고
    • Hierarchically classifying documents using very few words
    • Nashville, TN, USA
    • D. Koller and M. Sahami, "Hierarchically classifying documents using very few words," in Proc. 14th Int. Conf. Mach. Learn., Nashville, TN, USA, 1997, pp. 170-178.
    • (1997) Proc. 14th Int. Conf. Mach. Learn , pp. 170-178
    • Koller, D.1    Sahami, M.2
  • 16
    • 80053457157 scopus 로고    scopus 로고
    • Hierarchical classification via orthogonal transfer
    • Bellevue, WA, USA
    • D. Zhou, L. Xiao, and M. Wu, "Hierarchical classification via orthogonal transfer," in Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA, 2011, pp. 801-808.
    • (2011) Proc. 28th Int. Conf. Mach. Learn , pp. 801-808
    • Zhou, D.1    Xiao, L.2    Wu, M.3
  • 17
    • 77957819193 scopus 로고    scopus 로고
    • Incorporating the loss function into discriminative clustering of structured outputs
    • Oct
    • W.-L. Zhong, W. Pan, J.-Y. Kwok, and I.-H. Tsang, "Incorporating the loss function into discriminative clustering of structured outputs," IEEE Trans. Neural Netw., vol. 21, no. 10, pp. 1564-1575, Oct. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.10 , pp. 1564-1575
    • Zhong, W.-L.1    Pan, W.2    Kwok, J.-Y.3    Tsang, I.-H.4
  • 18
    • 77956522919 scopus 로고    scopus 로고
    • Bayes optimal multilabel classification via probabilistic classifier chains
    • Haifa, Israel
    • K. Dembczynski, W. Cheng, and E. Hüllermeier, "Bayes optimal multilabel classification via probabilistic classifier chains," in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, 2010, pp. 279-286.
    • (2010) Proc. 27th Int. Conf. Mach. Learn , pp. 279-286
    • Dembczynski, K.1    Cheng, W.2    Hüllermeier, E.3
  • 19
    • 84880887867 scopus 로고    scopus 로고
    • Exploiting known taxonomies in learning overlapping concepts
    • Pasadena, CA, USA
    • L. Cai and T. Hofmann, "Exploiting known taxonomies in learning overlapping concepts," in Proc. 20th Int. Joint Conf. Artif. Intell., Pasadena, CA, USA, 2007, pp. 714-719.
    • (2007) Proc. 20th Int. Joint Conf. Artif. Intell , pp. 714-719
    • Cai, L.1    Hofmann, T.2
  • 20
    • 84877781634 scopus 로고    scopus 로고
    • Mandatory leaf node prediction in hierarchical multi-label classification
    • W. Bi and J.-T. Kwok, "Mandatory leaf node prediction in hierarchical multi-label classification," in Proc. Adv. NIPS, vol. 25. 2012, pp. 153-161.
    • Proc. Adv. NIPS , vol.25 , Issue.2012 , pp. 153-161
    • Bi, W.1    Kwok, J.-T.2
  • 21
    • 34748873053 scopus 로고    scopus 로고
    • Multi-label classification: An overview
    • G. Tsoumakas and I. Katakis, "Multi-label classification: An overview," Int. J. Data Warehousing Mining, vol. 3, no. 3, pp. 1-13, 2007.
    • (2007) Int. J. Data Warehousing Mining , vol.3 , Issue.3 , pp. 1-13
    • Tsoumakas, G.1    Katakis, I.2
  • 22
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," J. Mach. Learn. Res., vol. 6, no. 2, p. 1453, 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , Issue.2 , pp. 1453
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 23
    • 77956163078 scopus 로고    scopus 로고
    • Mining multi-label data
    • O. Maimon and L. Rokach, Eds., 2nd ed. New York, NY, USA: Springer-Verlag
    • G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining multi-label data," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds., 2nd ed. New York, NY, USA: Springer-Verlag, 2010, pp. 667-685.
    • (2010) Data Mining and Knowledge Discovery Handbook , pp. 667-685
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 24
    • 33846242982 scopus 로고    scopus 로고
    • Automatic genre classification of musical signals
    • J. Barbedo and A. Lopes, "Automatic genre classification of musical signals," EURASIP J. Appl. Signal Process., vol. 2007, no. 1, p. 157, 2007.
    • (2007) EURASIP J. Appl. Signal Process , vol.2007 , Issue.1 , pp. 157
    • Barbedo, J.1    Lopes, A.2
  • 25
    • 79951752250 scopus 로고    scopus 로고
    • Large scale multi-label classification via metalabeler
    • Madrid, Spain
    • L. Tang, S. Rajan, and V. Narayanan, "Large scale multi-label classification via metalabeler," in Proc. 18th Int. Conf. World Wide Web, Madrid, Spain, 2009, pp. 211-220.
    • (2009) Proc. 18th Int. Conf. World Wide Web , pp. 211-220
    • Tang, L.1    Rajan, S.2    Narayanan, V.3
  • 26
    • 84881047364 scopus 로고    scopus 로고
    • Bayesian chain classifiers for multidimensional classification
    • Barcelona, Spain
    • J. Zaragoza, L. Sucar, and E. Morales, "Bayesian chain classifiers for multidimensional classification," in Proc. 22nd Int. Joint Conf. Artif. Intell., Barcelona, Spain, 2011, pp. 2192-2197.
    • (2011) Proc. 22nd Int. Joint Conf. Artif. Intell , pp. 2192-2197
    • Zaragoza, J.1    Sucar, L.2    Morales, E.3
  • 27
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press
    • J. C. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press, 1999, pp. 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 28
    • 79952831194 scopus 로고    scopus 로고
    • True path rule hierarchical ensembles for genomewide gene function prediction
    • Jun
    • G. Valentini, "True path rule hierarchical ensembles for genomewide gene function prediction," IEEE/ACM Trans. Comput. Biol. Bioinformat., vol. 8, no. 3, pp. 832-847, Jun. 2011.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinformat , vol.8 , Issue.3 , pp. 832-847
    • Valentini, G.1
  • 29
    • 0028483915 scopus 로고
    • Finding MAPs for belief networks is NP-hard
    • S. Shimony, "Finding MAPs for belief networks is NP-hard," Artif. Intell., vol. 68, no. 2, pp. 399-410, 1994.
    • (1994) Artif. Intell , vol.68 , Issue.2 , pp. 399-410
    • Shimony, S.1
  • 30
    • 78650324852 scopus 로고    scopus 로고
    • An overview of composite likelihood methods
    • C. Varin, N. Reid, and D. Firth, "An overview of composite likelihood methods," Statist. Sinica, vol. 21, no. 1, pp. 5-42, 2011.
    • (2011) Statist. Sinica , vol.21 , Issue.1 , pp. 5-42
    • Varin, C.1    Reid, N.2    Firth, D.3
  • 31
    • 84954201141 scopus 로고    scopus 로고
    • A composite likelihood view for multilabel classification
    • Ft. Lauderdale, FL, USA
    • Y. Zhang and J. Schneider, "A composite likelihood view for multilabel classification," in Proc. 15th Int. Conf. Artif. Intell. Statist., Ft. Lauderdale, FL, USA, 2012, pp. 1407-1415.
    • Proc. 15th Int. Conf. Artif. Intell. Statist , vol.2012 , pp. 1407-1415
    • Zhang, Y.1    Schneider, J.2
  • 33
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Dec
    • D. Lewis, Y. Yang, T. Rose, and F. Li, "RCV1: A new benchmark collection for text categorization research," J. Mach. Learn. Res., vol. 5, pp. 361-397, Dec. 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 35
    • 33845399232 scopus 로고    scopus 로고
    • Collaborative creation of communal hierarchical taxonomies in social tagging systems
    • Stanford, CA, USA, Tech. Rep. 2006-10, Apr
    • P. Heymann and H. Garcia-Molina, "Collaborative creation of communal hierarchical taxonomies in social tagging systems," Stanford InfoLab, Stanford, CA, USA, Tech. Rep. 2006-10, Apr. 2006.
    • (2006) Stanford InfoLab
    • Heymann, P.1    Garcia-Molina, H.2
  • 36
    • 22944464423 scopus 로고    scopus 로고
    • The Enron corpus: A new dataset for email classification research
    • Pisa, Italy
    • B. Klimt and Y. Yang, "The Enron corpus: A new dataset for email classification research," in Proc. 18th Eur. Conf. Mach. Learn., Pisa, Italy, 2004, pp. 217-226.
    • (2004) Proc. 18th Eur. Conf. Mach. Learn , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 38
    • 34948904828 scopus 로고    scopus 로고
    • Caltech-256 object category dataset
    • Pasadena, CA, USA, Tech. Rep. CNS-TR-2007-001
    • G. Griffin, A. Holub, and P. Perona, "Caltech-256 object category dataset," California Inst. Technol., Pasadena, CA, USA, Tech. Rep. CNS-TR-2007-001, 2007.
    • (2007) California Inst. Technol
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 40
    • 85162354773 scopus 로고    scopus 로고
    • Submodular multi-label learning
    • J. Petterson and T. Caetano, "Submodular multi-label learning," in Proc. Adv. NIPS, 2011, pp. 1512-1520.
    • (2011) Proc. Adv. NIPS , pp. 1512-1520
    • Petterson, J.1    Caetano, T.2
  • 42
    • 79952857163 scopus 로고    scopus 로고
    • Hierarchical cost-sensitive algorithms for genome-wide gene function prediction
    • Mar
    • G. Cesa-Bianchi and N. Valentini, "Hierarchical cost-sensitive algorithms for genome-wide gene function prediction," J. Mach. Learn. Res., vol. 8, pp. 14-29, Mar. 2010.
    • (2010) J. Mach. Learn. Res , vol.8 , pp. 14-29
    • Cesa-Bianchi, G.1    Valentini, N.2
  • 43
    • 58149287952 scopus 로고    scopus 로고
    • An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons
    • S. Garca and F. Herrera, "An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons," J. Mach. Learn. Res., vol. 9, no. 12, pp. 2677-2694, 2008.
    • (2008) J. Mach. Learn. Res , vol.9 , Issue.12 , pp. 2677-2694
    • Garca, S.1    Herrera, F.2
  • 44
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Jan
    • J. Demvsar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1-30
    • Demvsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.