-
1
-
-
52949141834
-
Decision trees for hierarchical multi-label classification
-
C. Vens, J. Struyf, L. Schietgat, S. Dvzeroski, and H. Blockeel, "Decision trees for hierarchical multi-label classification," Mach. Learn., vol. 73, no. 2, pp. 185-214, 2008.
-
(2008)
Mach. Learn
, vol.73
, Issue.2
, pp. 185-214
-
-
Vens, C.1
Struyf, J.2
Schietgat, L.3
Dvzeroski, S.4
Blockeel, H.5
-
2
-
-
85007181436
-
A hierarchical approach to automatic musical genre classification
-
London, U.K. Sep
-
J. Burred and A. Lerch, "A hierarchical approach to automatic musical genre classification," in Proc. 6th Int. Conf. Digit. Audio Effects, London, U.K., Sep. 2003.
-
(2003)
Proc. 6th Int. Conf. Digit. Audio Effects
-
-
Burred, J.1
Lerch, A.2
-
3
-
-
33745768424
-
Kernelbased learning of hierarchical multilabel classification models
-
Dec
-
J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, "Kernelbased learning of hierarchical multilabel classification models," J. Mach. Learn. Res., vol. 7, pp. 1601-1626, Dec. 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1601-1626
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
4
-
-
80053440655
-
Multi-label classification on tree-and DAGstructured hierarchies
-
Bellevue, WA, USA
-
W. Bi and J.-T. Kwok, "Multi-label classification on tree-and DAGstructured hierarchies," in Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA, 2011, pp. 17-24.
-
(2011)
Proc. 28th Int. Conf. Mach. Learn
, pp. 17-24
-
-
Bi, W.1
Kwok, J.-T.2
-
5
-
-
29644434908
-
Incremental algorithms for hierarchical classification
-
Dec
-
N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, "Incremental algorithms for hierarchical classification," J. Mach. Learn. Res., vol. 7, pp. 31-54, Dec. 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 31-54
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Zaniboni, L.3
-
6
-
-
33749264456
-
Hierarchical classification: Combining Bayes with SVM
-
Pittsburgh, PA, USA
-
N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, "Hierarchical classification: Combining Bayes with SVM," in Proc. 23rd Int. Conf. Mach. Learn., Pittsburgh, PA, USA, 2006, pp. 177-184.
-
(2006)
Proc. 23rd Int. Conf. Mach. Learn
, pp. 177-184
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Zaniboni, L.3
-
7
-
-
33645323768
-
Hierarchical multi-label prediction of gene function
-
Z. Barutcuoglu and O. Troyanskaya, "Hierarchical multi-label prediction of gene function," Bioinformatics, vol. 22, no. 7, pp. 830-836, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.7
, pp. 830-836
-
-
Barutcuoglu, Z.1
Troyanskaya, O.2
-
8
-
-
78651375098
-
A survey of hierarchical classification across different application domains
-
C. Silla and A. Freitas, "A survey of hierarchical classification across different application domains," Data Mining Knowl. Discovery, vol. 22, no. 1, pp. 31-72, 2011.
-
(2011)
Data Mining Knowl. Discovery
, vol.22
, Issue.1
, pp. 31-72
-
-
Silla, C.1
Freitas, A.2
-
9
-
-
33749582181
-
Automatically learning document taxonomies for hierarchical classification
-
Chiba, Japan
-
K. Punera, S. Rajan, and J. Ghosh, "Automatically learning document taxonomies for hierarchical classification," in Proc. 14th Int. Conf. World Wide Web, Chiba, Japan, 2005, pp. 1010-1011.
-
(2005)
Proc. 14th Int. Conf. World Wide Web
, pp. 1010-1011
-
-
Punera, K.1
Rajan, S.2
Ghosh, J.3
-
10
-
-
77956201769
-
Multi-label learning by exploiting label dependency
-
Washington, DC, USA
-
M.-L. Zhang and K. Zhang, "Multi-label learning by exploiting label dependency," in Proc. 16th Int. Conf. Knowl. Discovery Data Mining, Washington, DC, USA, 2010, pp. 999-1008.
-
Proc. 16th Int. Conf. Knowl. Discovery Data Mining
, vol.2010
, pp. 999-1008
-
-
Zhang, M.-L.1
Zhang, K.2
-
11
-
-
85162050606
-
Label embedding trees for large multi-class tasks
-
S. Bengio, J. Weston, and D. Grangier, "Label embedding trees for large multi-class tasks," in Proc. Adv. NIPS, vol. 23. 2010, pp. 163-171.
-
Proc. Adv. NIPS
, vol.23
, Issue.2010
, pp. 163-171
-
-
Bengio, S.1
Weston, J.2
Grangier, D.3
-
12
-
-
85162353669
-
Fast and balanced: Efficient label tree learning for large scale object recognition
-
J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei, "Fast and balanced: Efficient label tree learning for large scale object recognition," in Proc. Adv. NIPS, vol. 24. 2011, pp. 567-575.
-
(2011)
Proc. Adv. NIPS
, vol.24
, pp. 567-575
-
-
Deng, J.1
Satheesh, S.2
Berg, A.3
Fei-Fei, L.4
-
13
-
-
84856444732
-
Adapting nonhierarchical multilabel classification methods for hierarchical multilabel classification
-
R. Cerri, A. C. P. L. F. De Carvalho, and A. A. Freitas, "Adapting nonhierarchical multilabel classification methods for hierarchical multilabel classification," Intell. Data Anal., vol. 15, no. 6, pp. 861-887, 2011.
-
(2011)
Intell. Data Anal
, vol.15
, Issue.6
, pp. 861-887
-
-
Cerri, R.1
De Carvalho, A.C.P.L.F.2
Freitas, A.A.3
-
14
-
-
38049123909
-
Random k-labelsets: An ensemble method for multilabel classification
-
Warsaw, Poland
-
G. Tsoumakas and I. Vlahavas, "Random k-labelsets: An ensemble method for multilabel classification," in Proc. 18th Eur. Conf. Mach. Learn., Warsaw, Poland, 2007, pp. 406-417.
-
(2007)
Proc. 18th Eur. Conf. Mach. Learn
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
15
-
-
0002346866
-
Hierarchically classifying documents using very few words
-
Nashville, TN, USA
-
D. Koller and M. Sahami, "Hierarchically classifying documents using very few words," in Proc. 14th Int. Conf. Mach. Learn., Nashville, TN, USA, 1997, pp. 170-178.
-
(1997)
Proc. 14th Int. Conf. Mach. Learn
, pp. 170-178
-
-
Koller, D.1
Sahami, M.2
-
16
-
-
80053457157
-
Hierarchical classification via orthogonal transfer
-
Bellevue, WA, USA
-
D. Zhou, L. Xiao, and M. Wu, "Hierarchical classification via orthogonal transfer," in Proc. 28th Int. Conf. Mach. Learn., Bellevue, WA, USA, 2011, pp. 801-808.
-
(2011)
Proc. 28th Int. Conf. Mach. Learn
, pp. 801-808
-
-
Zhou, D.1
Xiao, L.2
Wu, M.3
-
17
-
-
77957819193
-
Incorporating the loss function into discriminative clustering of structured outputs
-
Oct
-
W.-L. Zhong, W. Pan, J.-Y. Kwok, and I.-H. Tsang, "Incorporating the loss function into discriminative clustering of structured outputs," IEEE Trans. Neural Netw., vol. 21, no. 10, pp. 1564-1575, Oct. 2010.
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.10
, pp. 1564-1575
-
-
Zhong, W.-L.1
Pan, W.2
Kwok, J.-Y.3
Tsang, I.-H.4
-
18
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
Haifa, Israel
-
K. Dembczynski, W. Cheng, and E. Hüllermeier, "Bayes optimal multilabel classification via probabilistic classifier chains," in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, 2010, pp. 279-286.
-
(2010)
Proc. 27th Int. Conf. Mach. Learn
, pp. 279-286
-
-
Dembczynski, K.1
Cheng, W.2
Hüllermeier, E.3
-
19
-
-
84880887867
-
Exploiting known taxonomies in learning overlapping concepts
-
Pasadena, CA, USA
-
L. Cai and T. Hofmann, "Exploiting known taxonomies in learning overlapping concepts," in Proc. 20th Int. Joint Conf. Artif. Intell., Pasadena, CA, USA, 2007, pp. 714-719.
-
(2007)
Proc. 20th Int. Joint Conf. Artif. Intell
, pp. 714-719
-
-
Cai, L.1
Hofmann, T.2
-
20
-
-
84877781634
-
Mandatory leaf node prediction in hierarchical multi-label classification
-
W. Bi and J.-T. Kwok, "Mandatory leaf node prediction in hierarchical multi-label classification," in Proc. Adv. NIPS, vol. 25. 2012, pp. 153-161.
-
Proc. Adv. NIPS
, vol.25
, Issue.2012
, pp. 153-161
-
-
Bi, W.1
Kwok, J.-T.2
-
21
-
-
34748873053
-
Multi-label classification: An overview
-
G. Tsoumakas and I. Katakis, "Multi-label classification: An overview," Int. J. Data Warehousing Mining, vol. 3, no. 3, pp. 1-13, 2007.
-
(2007)
Int. J. Data Warehousing Mining
, vol.3
, Issue.3
, pp. 1-13
-
-
Tsoumakas, G.1
Katakis, I.2
-
22
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," J. Mach. Learn. Res., vol. 6, no. 2, p. 1453, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, Issue.2
, pp. 1453
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
23
-
-
77956163078
-
Mining multi-label data
-
O. Maimon and L. Rokach, Eds., 2nd ed. New York, NY, USA: Springer-Verlag
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining multi-label data," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds., 2nd ed. New York, NY, USA: Springer-Verlag, 2010, pp. 667-685.
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
24
-
-
33846242982
-
Automatic genre classification of musical signals
-
J. Barbedo and A. Lopes, "Automatic genre classification of musical signals," EURASIP J. Appl. Signal Process., vol. 2007, no. 1, p. 157, 2007.
-
(2007)
EURASIP J. Appl. Signal Process
, vol.2007
, Issue.1
, pp. 157
-
-
Barbedo, J.1
Lopes, A.2
-
25
-
-
79951752250
-
Large scale multi-label classification via metalabeler
-
Madrid, Spain
-
L. Tang, S. Rajan, and V. Narayanan, "Large scale multi-label classification via metalabeler," in Proc. 18th Int. Conf. World Wide Web, Madrid, Spain, 2009, pp. 211-220.
-
(2009)
Proc. 18th Int. Conf. World Wide Web
, pp. 211-220
-
-
Tang, L.1
Rajan, S.2
Narayanan, V.3
-
26
-
-
84881047364
-
Bayesian chain classifiers for multidimensional classification
-
Barcelona, Spain
-
J. Zaragoza, L. Sucar, and E. Morales, "Bayesian chain classifiers for multidimensional classification," in Proc. 22nd Int. Joint Conf. Artif. Intell., Barcelona, Spain, 2011, pp. 2192-2197.
-
(2011)
Proc. 22nd Int. Joint Conf. Artif. Intell
, pp. 2192-2197
-
-
Zaragoza, J.1
Sucar, L.2
Morales, E.3
-
27
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press
-
J. C. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA, USA: MIT Press, 1999, pp. 61-74.
-
(1999)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.C.1
-
28
-
-
79952831194
-
True path rule hierarchical ensembles for genomewide gene function prediction
-
Jun
-
G. Valentini, "True path rule hierarchical ensembles for genomewide gene function prediction," IEEE/ACM Trans. Comput. Biol. Bioinformat., vol. 8, no. 3, pp. 832-847, Jun. 2011.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinformat
, vol.8
, Issue.3
, pp. 832-847
-
-
Valentini, G.1
-
29
-
-
0028483915
-
Finding MAPs for belief networks is NP-hard
-
S. Shimony, "Finding MAPs for belief networks is NP-hard," Artif. Intell., vol. 68, no. 2, pp. 399-410, 1994.
-
(1994)
Artif. Intell
, vol.68
, Issue.2
, pp. 399-410
-
-
Shimony, S.1
-
30
-
-
78650324852
-
An overview of composite likelihood methods
-
C. Varin, N. Reid, and D. Firth, "An overview of composite likelihood methods," Statist. Sinica, vol. 21, no. 1, pp. 5-42, 2011.
-
(2011)
Statist. Sinica
, vol.21
, Issue.1
, pp. 5-42
-
-
Varin, C.1
Reid, N.2
Firth, D.3
-
31
-
-
84954201141
-
A composite likelihood view for multilabel classification
-
Ft. Lauderdale, FL, USA
-
Y. Zhang and J. Schneider, "A composite likelihood view for multilabel classification," in Proc. 15th Int. Conf. Artif. Intell. Statist., Ft. Lauderdale, FL, USA, 2012, pp. 1407-1415.
-
Proc. 15th Int. Conf. Artif. Intell. Statist
, vol.2012
, pp. 1407-1415
-
-
Zhang, Y.1
Schneider, J.2
-
32
-
-
77950244328
-
Model-based compressive sensing
-
Apr
-
R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, "Model-based compressive sensing," IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1982-2001, Apr. 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.4
, pp. 1982-2001
-
-
Baraniuk, R.1
Cevher, V.2
Duarte, M.3
Hegde, C.4
-
33
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
Dec
-
D. Lewis, Y. Yang, T. Rose, and F. Li, "RCV1: A new benchmark collection for text categorization research," J. Mach. Learn. Res., vol. 5, pp. 361-397, Dec. 2004.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 361-397
-
-
Lewis, D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
34
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Effective and efficient multilabel classification in domains with large number of labels," in Proc. ECML/PKDD Workshop MMD, Antwerp, Belgium, 2008, pp. 30-44.
-
(2008)
Proc. ECML/PKDD Workshop MMD, Antwerp, Belgium
, pp. 30-44
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
35
-
-
33845399232
-
Collaborative creation of communal hierarchical taxonomies in social tagging systems
-
Stanford, CA, USA, Tech. Rep. 2006-10, Apr
-
P. Heymann and H. Garcia-Molina, "Collaborative creation of communal hierarchical taxonomies in social tagging systems," Stanford InfoLab, Stanford, CA, USA, Tech. Rep. 2006-10, Apr. 2006.
-
(2006)
Stanford InfoLab
-
-
Heymann, P.1
Garcia-Molina, H.2
-
36
-
-
22944464423
-
The Enron corpus: A new dataset for email classification research
-
Pisa, Italy
-
B. Klimt and Y. Yang, "The Enron corpus: A new dataset for email classification research," in Proc. 18th Eur. Conf. Mach. Learn., Pisa, Italy, 2004, pp. 217-226.
-
(2004)
Proc. 18th Eur. Conf. Mach. Learn
, pp. 217-226
-
-
Klimt, B.1
Yang, Y.2
-
37
-
-
33144466753
-
One-shot learning of object categories
-
Apr
-
L. Fei-Fei, R. Fergus, and P. Perona, "One-shot learning of object categories," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 594-611, Apr. 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.28
, Issue.4
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
38
-
-
34948904828
-
Caltech-256 object category dataset
-
Pasadena, CA, USA, Tech. Rep. CNS-TR-2007-001
-
G. Griffin, A. Holub, and P. Perona, "Caltech-256 object category dataset," California Inst. Technol., Pasadena, CA, USA, Tech. Rep. CNS-TR-2007-001, 2007.
-
(2007)
California Inst. Technol
-
-
Griffin, G.1
Holub, A.2
Perona, P.3
-
39
-
-
70349968175
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification," in Proc. Eur. Conf. Mach. Learn., 2009, pp. 254-269.
-
(2009)
Proc. Eur. Conf. Mach. Learn
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
40
-
-
85162354773
-
Submodular multi-label learning
-
J. Petterson and T. Caetano, "Submodular multi-label learning," in Proc. Adv. NIPS, 2011, pp. 1512-1520.
-
(2011)
Proc. Adv. NIPS
, pp. 1512-1520
-
-
Petterson, J.1
Caetano, T.2
-
41
-
-
84866011352
-
-
Phoenix, AZ, USA: Arizona State Univ
-
J. Zhou, J. Chen, and J. Ye, MALSAR: Multi-tAsk Learning via StructurAl Regularization. Phoenix, AZ, USA: Arizona State Univ., 2011.
-
(2011)
MALSAR: Multi-tAsk Learning Via StructurAl Regularization
-
-
Zhou, J.1
Chen, J.2
Ye, J.3
-
42
-
-
79952857163
-
Hierarchical cost-sensitive algorithms for genome-wide gene function prediction
-
Mar
-
G. Cesa-Bianchi and N. Valentini, "Hierarchical cost-sensitive algorithms for genome-wide gene function prediction," J. Mach. Learn. Res., vol. 8, pp. 14-29, Mar. 2010.
-
(2010)
J. Mach. Learn. Res
, vol.8
, pp. 14-29
-
-
Cesa-Bianchi, G.1
Valentini, N.2
-
43
-
-
58149287952
-
An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons
-
S. Garca and F. Herrera, "An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons," J. Mach. Learn. Res., vol. 9, no. 12, pp. 2677-2694, 2008.
-
(2008)
J. Mach. Learn. Res
, vol.9
, Issue.12
, pp. 2677-2694
-
-
Garca, S.1
Herrera, F.2
-
44
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Jan
-
J. Demvsar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1-30
-
-
Demvsar, J.1
|