메뉴 건너뛰기




Volumn 31, Issue 2, 2017, Pages 287-313

Active learning: an empirical study of common baselines

Author keywords

Active learning; Empirical evaluation; Query by committee; Uncertainty sampling

Indexed keywords

CLASSIFICATION (OF INFORMATION);

EID: 85012865975     PISSN: 13845810     EISSN: 1573756X     Source Type: Journal    
DOI: 10.1007/s10618-016-0469-7     Document Type: Article
Times cited : (90)

References (85)
  • 1
    • 0001025146 scopus 로고    scopus 로고
    • Query learning strategies using boosting and bagging. In: Proceedings of the international conference on machine learning (ICML)
    • Abe N, Mamitsuka H (1998) Query learning strategies using boosting and bagging. In: Proceedings of the international conference on machine learning (ICML), pp 1–9
    • (1998) pp 1–9
    • Abe, N.1    Mamitsuka, H.2
  • 2
    • 84908212433 scopus 로고    scopus 로고
    • Active learning with model selection. In: Proceedings of the AAAI conference on artificial intelligence
    • Ali A, Caruana R, Kapoor A (2014) Active learning with model selection. In: Proceedings of the AAAI conference on artificial intelligence, pp 1673–1679
    • (2014) pp 1673–1679
    • Ali, A.1    Caruana, R.2    Kapoor, A.3
  • 3
    • 85012906154 scopus 로고    scopus 로고
    • Estimating annotation cost for active learning in a multiannotator environment. In: NAACL HLT Workshop on Active Learning for Natural Language Processing
    • Arora S, Nyberg E, Rose C (2009) Estimating annotation cost for active learning in a multiannotator environment. In: NAACL HLT Workshop on Active Learning for Natural Language Processing, pp 18–26
    • (2009) pp 18–26
    • Arora, S.1    Nyberg, E.2    Rose, C.3
  • 4
    • 78049349178 scopus 로고    scopus 로고
    • A unified approach to active dual supervision for labeling features and examples. In: Proceedings of the European conference on machine learning (ECML)
    • Attenberg J, Melville P, Provost F (2010) A unified approach to active dual supervision for labeling features and examples. In: Proceedings of the European conference on machine learning (ECML), pp 40–55
    • (2010) pp 40–55
    • Attenberg, J.1    Melville, P.2    Provost, F.3
  • 5
    • 84860640656 scopus 로고    scopus 로고
    • The true sample complexity of active learning. In: Proceedings of the conference on learning theory (COLT)
    • Balcan MF, Hanneke S, Wortman J (2008) The true sample complexity of active learning. In: Proceedings of the conference on learning theory (COLT), pp 45–56
    • (2008) pp 45–56
    • Balcan, M.F.1    Hanneke, S.2    Wortman, J.3
  • 6
    • 85012866794 scopus 로고    scopus 로고
    • Active learning and the total cost of annotation. In: Proceedings of the conference on empirical methods in natural language processing
    • Baldridge J, Osborne M (2004) Active learning and the total cost of annotation. In: Proceedings of the conference on empirical methods in natural language processing, pp 9–16
    • (2004) pp 9–16
    • Baldridge, J.1    Osborne, M.2
  • 7
    • 33750939148 scopus 로고    scopus 로고
    • The UCI KDD archive of large data sets for data mining research and experimentation
    • Bay SD, Kibler DF, Pazzani MJ, Smyth P (2000) The UCI KDD archive of large data sets for data mining research and experimentation. SIGKDD Explor 2:81
    • (2000) SIGKDD Explor , vol.2 , pp. 81
    • Bay, S.D.1    Kibler, D.F.2    Pazzani, M.J.3    Smyth, P.4
  • 9
    • 84866595961 scopus 로고    scopus 로고
    • Active query selection for learning rankers. In: Proceedings of the ACM SIGIR conference on research and development in information retrieval
    • Bilgic M, Bennett PN (2012) Active query selection for learning rankers. In: Proceedings of the ACM SIGIR conference on research and development in information retrieval, pp 1033–1034
    • (2012) pp 1033–1034
    • Bilgic, M.1    Bennett, P.N.2
  • 10
    • 65449149851 scopus 로고    scopus 로고
    • Effective label acquisition for collective classification. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining
    • Bilgic M, Getoor L (2008) Effective label acquisition for collective classification. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 43–51
    • (2008) pp 43–51
    • Bilgic, M.1    Getoor, L.2
  • 11
    • 72449142164 scopus 로고    scopus 로고
    • Reflect and correct: a misclassification prediction approach to active inference
    • Bilgic M, Getoor L (2009) Reflect and correct: a misclassification prediction approach to active inference. ACM Trans Knowl Discov Data 3(4):1–32
    • (2009) ACM Trans Knowl Discov Data , vol.3 , Issue.4 , pp. 1-32
    • Bilgic, M.1    Getoor, L.2
  • 12
    • 77958541035 scopus 로고    scopus 로고
    • Active inference for collective classification. In: Proceedings of the conference on artificial intelligence (AAAI NECTAR track)
    • Bilgic M, Getoor L (2010) Active inference for collective classification. In: Proceedings of the conference on artificial intelligence (AAAI NECTAR track), pp 1652–1655
    • (2010) pp 1652–1655
    • Bilgic, M.1    Getoor, L.2
  • 13
    • 80053415687 scopus 로고    scopus 로고
    • Value of information lattice: Exploiting probabilistic independence for effective feature subset acquisition
    • Bilgic M, Getoor L (2011) Value of information lattice: Exploiting probabilistic independence for effective feature subset acquisition. J Artif Intell Res (JAIR) 41:69–95
    • (2011) J Artif Intell Res (JAIR) , vol.41 , pp. 69-95
    • Bilgic, M.1    Getoor, L.2
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 16
    • 77951527476 scopus 로고    scopus 로고
    • Transparent active learning for robots. In: Proceedings of the ACM/IEEE international conference on human-robot interaction
    • Chao C, Cakmak M, Thomaz AL (2010) Transparent active learning for robots. In: Proceedings of the ACM/IEEE international conference on human-robot interaction, pp 317–324
    • (2010) pp 317–324
    • Chao, C.1    Cakmak, M.2    Thomaz, A.L.3
  • 17
    • 85012897577 scopus 로고    scopus 로고
    • Efficient resource-constrained retrospective analysis of long video sequences. In: Proceedings of the NIPS workshop on adaptive sensing, active learning and experimental design: theory
    • Chen D, Bilgic M, Getoor L, Jacobs D (2009) Efficient resource-constrained retrospective analysis of long video sequences. In: Proceedings of the NIPS workshop on adaptive sensing, active learning and experimental design: theory, methods and applications
    • (2009) methods and applications
    • Chen, D.1    Bilgic, M.2    Getoor, L.3    Jacobs, D.4
  • 20
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn D, Atlas L, Ladner R (1994) Improving generalization with active learning. Mach Learn 15(2):201–221
    • (1994) Mach Learn , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 22
    • 62449187253 scopus 로고    scopus 로고
    • Active learning to maximize area under the roc curve. In: Proceedings of the IEEE international conference on data mining (ICDM)
    • Culver M, Kun D, Scott S (2006) Active learning to maximize area under the roc curve. In: Proceedings of the IEEE international conference on data mining (ICDM), pp 149–158
    • (2006) pp 149–158
    • Culver, M.1    Kun, D.2    Scott, S.3
  • 23
    • 85152628923 scopus 로고
    • Committee-based sampling for training probabilistic classifiers. In: Proceedings of the international conference on machine learning (ICML)
    • Dagan I, Engelson SP (1995) Committee-based sampling for training probabilistic classifiers. In: Proceedings of the international conference on machine learning (ICML), pp 150–157
    • (1995) pp 150–157
    • Dagan, I.1    Engelson, S.P.2
  • 24
    • 85012883246 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm. In: Proceedings of the conference on advances in neural information processing systems (NIPS)
    • Dasgupta S, Monteleoni C, Hsu DJ (2007) A general agnostic active learning algorithm. In: Proceedings of the conference on advances in neural information processing systems (NIPS), pp 353–360
    • (2007) pp 353–360
    • Dasgupta, S.1    Monteleoni, C.2    Hsu, D.J.3
  • 26
    • 70350681833 scopus 로고    scopus 로고
    • Efficiently learning the accuracy of labeling sources for selective sampling. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining
    • Donmez P, Carbonell JG, Schneider J (2009) Efficiently learning the accuracy of labeling sources for selective sampling. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 259–268
    • (2009) pp 259–268
    • Donmez, P.1    Carbonell, J.G.2    Schneider, J.3
  • 27
    • 77949519575 scopus 로고    scopus 로고
    • Active learning by labeling features. In: Proceedings of the conference on empirical methods in natural language processing
    • Druck G, Settles B, McCallum A (2009) Active learning by labeling features. In: Proceedings of the conference on empirical methods in natural language processing, pp 81–90
    • (2009) pp 81–90
    • Druck, G.1    Settles, B.2    McCallum, A.3
  • 29
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund Y, Seung HS, Shamir E, Tishby N (1997) Selective sampling using the query by committee algorithm. Mach Learn 28(2):133–168
    • (1997) Mach Learn , vol.28 , Issue.2 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 30
    • 0026120634 scopus 로고
    • Letter recognition using holland-style adaptive classifiers
    • Frey PW, Slate DJ (1991) Letter recognition using holland-style adaptive classifiers. Mach Learn 6:161
    • (1991) Mach Learn , vol.6 , pp. 161
    • Frey, P.W.1    Slate, D.J.2
  • 31
    • 84876057388 scopus 로고    scopus 로고
    • A survey on instance selection for active learning
    • Fu Y, Zhu X, Li B (2012) A survey on instance selection for active learning. Knowl Inf Syst 35(2):249–283
    • (2012) Knowl Inf Syst , vol.35 , Issue.2 , pp. 249-283
    • Fu, Y.1    Zhu, X.2    Li, B.3
  • 33
    • 85012912312 scopus 로고    scopus 로고
    • Discriminative batch mode active learning. In: Proceedings of the conference on advances in neural information processing systems (NIPS)
    • Guo Y, Schuurmans D (2008) Discriminative batch mode active learning. In: Proceedings of the conference on advances in neural information processing systems (NIPS), pp 593–600
    • (2008) pp 593–600
    • Guo, Y.1    Schuurmans, D.2
  • 37
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 38
    • 34547983474 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning. In: Proceedings of the international conference on machine learning (ICML)
    • Hanneke S (2007) A bound on the label complexity of agnostic active learning. In: Proceedings of the international conference on machine learning (ICML), pp 353–360
    • (2007) pp 353–360
    • Hanneke, S.1
  • 39
    • 34250637963 scopus 로고    scopus 로고
    • Large-scale text categorization by batch mode active learning. In: Proceedings of the international conference on world wide web (WWW)
    • Hoi SC, Jin R, Lyu MR (2006a) Large-scale text categorization by batch mode active learning. In: Proceedings of the international conference on world wide web (WWW), pp 633–642
    • (2006) pp 633–642
    • Hoi, S.C.1    Jin, R.2    Lyu, M.R.3
  • 40
    • 34250745927 scopus 로고    scopus 로고
    • Batch mode active learning and its application to medical image classification. In: Proceedings of the international conference on machine learning (ICML)
    • Hoi SCH, Jin R, Zhu J, Lyu MR (2006b) Batch mode active learning and its application to medical image classification. In: Proceedings of the international conference on machine learning (ICML), pp 417–424
    • (2006) pp 417–424
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 41
    • 12244297396 scopus 로고    scopus 로고
    • Why collective inference improves relational classification. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining
    • Jensen D, Neville J, Gallagher B (2004) Why collective inference improves relational classification. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 93–598
    • (2004) pp 93–598
    • Jensen, D.1    Neville, J.2    Gallagher, B.3
  • 44
    • 84914170341 scopus 로고    scopus 로고
    • Dynamic bayesian network modeling of vascularization in engineered tissues. In: Proceedings of the 11th annual conference on uncertainty in artificial intelligence—workshop on bayesian modeling applications
    • Komurlu C, Shao J, Bilgic M (2014) Dynamic bayesian network modeling of vascularization in engineered tissues. In: Proceedings of the 11th annual conference on uncertainty in artificial intelligence—workshop on bayesian modeling applications, pp 89–98
    • (2014) pp 89–98
    • Komurlu, C.1    Shao, J.2    Bilgic, M.3
  • 45
    • 84964551758 scopus 로고    scopus 로고
    • Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the international conference on machine learning (ICML)
    • Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the international conference on machine learning (ICML), pp 282–289
    • (2001) pp 282–289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 46
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers. In: Proceedings of the ACM SIGIR conference on research and development in information retrieval
    • Lewis DD, Gale WA (1994) A sequential algorithm for training text classifiers. In: Proceedings of the ACM SIGIR conference on research and development in information retrieval, pp 3–12
    • (1994) pp 3–12
    • Lewis, D.D.1    Gale, W.A.2
  • 47
    • 77956039703 scopus 로고    scopus 로고
    • Active learning for ranking through expected loss optimization. In: Proceedings of the ACM SIGIR conference on research and development in information retrieval
    • Long B, Chapelle O, Zhang Y, Chang Y, Zheng Z, Tseng B (2010) Active learning for ranking through expected loss optimization. In: Proceedings of the ACM SIGIR conference on research and development in information retrieval, pp 267–274
    • (2010) pp 267–274
    • Long, B.1    Chapelle, O.2    Zhang, Y.3    Chang, Y.4    Zheng, Z.5    Tseng, B.6
  • 48
    • 84880757496 scopus 로고    scopus 로고
    • Active cost-sensitive learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI)
    • Margineantu DD (2005) Active cost-sensitive learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 1622–1623
    • (2005) pp 1622–1623
    • Margineantu, D.D.1
  • 49
    • 14344251601 scopus 로고    scopus 로고
    • Diverse ensembles for active learning. In: Proceedings of the international conference on machine learning (ICML)
    • Melville P, Mooney RJ (2004) Diverse ensembles for active learning. In: Proceedings of the international conference on machine learning (ICML), pp 584–591
    • (2004) pp 584–591
    • Melville, P.1    Mooney, R.J.2
  • 50
    • 85012882398 scopus 로고    scopus 로고
    • Active dual supervision: Reducing the cost of annotating examples and features. In: Proceedings of the NAACL HLT workshop on active learning for natural language processing
    • Melville P, Sindhwani V (2009) Active dual supervision: Reducing the cost of annotating examples and features. In: Proceedings of the NAACL HLT workshop on active learning for natural language processing, pp 49–57
    • (2009) pp 49–57
    • Melville, P.1    Sindhwani, V.2
  • 51
    • 19544373606 scopus 로고    scopus 로고
    • Active feature-value acquisition for classifier induction. In: Proceedings of the IEEE international conference on data mining (ICDM)
    • Melville P, Saar-Tsechansky M, Provost F, Mooney R (2004) Active feature-value acquisition for classifier induction. In: Proceedings of the IEEE international conference on data mining (ICDM), pp 483–486
    • (2004) pp 483–486
    • Melville, P.1    Saar-Tsechansky, M.2    Provost, F.3    Mooney, R.4
  • 53
    • 0031554144 scopus 로고    scopus 로고
    • Sparse spatial autoregressions
    • Pace RK, Barry R (1997) Sparse spatial autoregressions. Stat Probab Lett 33(3):291–297
    • (1997) Stat Probab Lett , vol.33 , Issue.3 , pp. 291-297
    • Pace, R.K.1    Barry, R.2
  • 56
    • 36448950134 scopus 로고    scopus 로고
    • An interactive algorithm for asking and incorporating feature feedback into support vector machines. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval
    • Raghavan H, Allan J (2007) An interactive algorithm for asking and incorporating feature feedback into support vector machines. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, pp 79–86
    • (2007) pp 79–86
    • Raghavan, H.1    Allan, J.2
  • 58
    • 84887449698 scopus 로고    scopus 로고
    • Towards anytime active learning: Interrupting experts to reduce annotation costs. In: Proceedings of the ACM SIGKDD workshop on interactive data exploration and analytics (IDEA)
    • Ramirez-Loaiza ME, Culotta A, Bilgic M (2013) Towards anytime active learning: Interrupting experts to reduce annotation costs. In: Proceedings of the ACM SIGKDD workshop on interactive data exploration and analytics (IDEA), pp 87–94
    • (2013) pp 87–94
    • Ramirez-Loaiza, M.E.1    Culotta, A.2    Bilgic, M.3
  • 59
    • 84908192631 scopus 로고    scopus 로고
    • Anytime active learning. In: Proceedings of the AAAI Conference on Artificial Intelligence
    • Ramirez-Loaiza ME, Culotta A, Bilgic M (2014) Anytime active learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2048–2054
    • (2014) 2048–2054
    • Ramirez-Loaiza, M.E.1    Culotta, A.2    Bilgic, M.3
  • 60
    • 49549110019 scopus 로고    scopus 로고
    • Exploiting network structure for active inference in collective classification. In: Proceedings of the international conference on machine learning workshop on mining graphs and complex structures
    • Rattigan M, Maier M, Jensen D (2007) Exploiting network structure for active inference in collective classification. In: Proceedings of the international conference on machine learning workshop on mining graphs and complex structures, pp 429–434
    • (2007) pp 429–434
    • Rattigan, M.1    Maier, M.2    Jensen, D.3
  • 61
    • 85012865996 scopus 로고    scopus 로고
    • Roy N, McCallum A (2001) Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the international conference on machine learning (ICML), pp 441–448
    • Roy N, McCallum A (2001) Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the international conference on machine learning (ICML), pp 441–448
  • 62
    • 1242285091 scopus 로고    scopus 로고
    • Active sampling for class probability estimation and ranking
    • Saar-Tsechansky M, Provost F (2004) Active sampling for class probability estimation and ranking. Mach Learn 54(2):153–178
    • (2004) Mach Learn , vol.54 , Issue.2 , pp. 153-178
    • Saar-Tsechansky, M.1    Provost, F.2
  • 63
    • 34548168342 scopus 로고    scopus 로고
    • Active learning for logistic regression: an evaluation
    • Schein AI, Ungar LH (2007) Active learning for logistic regression: an evaluation. Mach Learn 68(3):235–265
    • (2007) Mach Learn , vol.68 , Issue.3 , pp. 235-265
    • Schein, A.I.1    Ungar, L.H.2
  • 64
    • 84904806792 scopus 로고    scopus 로고
    • Online active learning methods for fast label-efficient spam filtering
    • Sculley D (2007) Online active learning methods for fast label-efficient spam filtering. In: Proceedings of the conference on email and anti-spam, vol 7, pp 173–180
    • (2007) Proceedings of the conference on email and anti-spam , vol.7 , pp. 173-180
    • Sculley, D.1
  • 67
    • 80053375448 scopus 로고    scopus 로고
    • An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the conference on empirical methods in natural language processing
    • Settles B, Craven M (2008) An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the conference on empirical methods in natural language processing, pp 1070–1079
    • (2008) pp 1070–1079
    • Settles, B.1    Craven, M.2
  • 69
    • 0026981853 scopus 로고
    • Query by committee. In: Proceedings of the conference on learning theory (COLT)
    • Seung HS, Opper M, Sompolinsky H (1992) Query by committee. In: Proceedings of the conference on learning theory (COLT), pp 287–294
    • (1992) pp 287–294
    • Seung, H.S.1    Opper, M.2    Sompolinsky, H.3
  • 70
    • 84894643883 scopus 로고    scopus 로고
    • Most-surely vs. least-surely uncertain. In: Proceedings of the IEEE international conference on data mining (ICDM)
    • Sharma M, Bilgic M (2013) Most-surely vs. least-surely uncertain. In: Proceedings of the IEEE international conference on data mining (ICDM), pp 667–676
    • (2013) pp 667–676
    • Sharma, M.1    Bilgic, M.2
  • 71
    • 85009493089 scopus 로고    scopus 로고
    • Evidence-based uncertainty sampling for active learning
    • Sharma M, Bilgic M (2016) Evidence-based uncertainty sampling for active learning. Data Min Knowl Discov 1–39
    • (2016) Data Min Knowl Discov , pp. 1-39
    • Sharma, M.1    Bilgic, M.2
  • 72
    • 84959878402 scopus 로고    scopus 로고
    • Active learning with rationales for text classification. In: North American chapter of the association for computational linguistics. Human Language Technologies
    • Sharma M, Zhuang D, Bilgic M (2015) Active learning with rationales for text classification. In: North American chapter of the association for computational linguistics. Human Language Technologies, pp 441–451
    • (2015) pp 441–451
    • Sharma, M.1    Zhuang, D.2    Bilgic, M.3
  • 73
    • 65449144451 scopus 로고    scopus 로고
    • Get another label? improving data quality and data mining using multiple, noisy labelers. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining
    • Sheng VS, Provost F, Ipeirotis PG (2008) Get another label? improving data quality and data mining using multiple, noisy labelers. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 614–622
    • (2008) pp 614–622
    • Sheng, V.S.1    Provost, F.2    Ipeirotis, P.G.3
  • 74
    • 71149105884 scopus 로고    scopus 로고
    • Uncertainty sampling and transductive experimental design for active dual supervision. In: Proceedings of the international conference on machine learning (ICML)
    • Sindhwani V, Melville P, Lawrence RD (2009) Uncertainty sampling and transductive experimental design for active dual supervision. In: Proceedings of the international conference on machine learning (ICML), pp 953–960
    • (2009) pp 953–960
    • Sindhwani, V.1    Melville, P.2    Lawrence, R.D.3
  • 75
    • 80053460449 scopus 로고    scopus 로고
    • The constrained weight space svm: learning with ranked features. In: Proceedings of the international conference on machine learning (ICML)
    • Small K, Wallace BC, Brodley CE, Trikalinos TA (2011) The constrained weight space svm: learning with ranked features. In: Proceedings of the international conference on machine learning (ICML), pp 865–872
    • (2011) pp 865–872
    • Small, K.1    Wallace, B.C.2    Brodley, C.E.3    Trikalinos, T.A.4
  • 76
    • 85012918691 scopus 로고    scopus 로고
    • Active learning for natural language parsing and information extraction. In: Proceedings of the international conference on machine learning (ICML)
    • Thompson CA, Califf ME, Mooney RJ (1999) Active learning for natural language parsing and information extraction. In: Proceedings of the international conference on machine learning (ICML), pp 406–414
    • (1999) pp 406–414
    • Thompson, C.A.1    Califf, M.E.2    Mooney, R.J.3
  • 77
    • 56649102769 scopus 로고    scopus 로고
    • An approach to text corpus construction which cuts annotation costs and maintains reusability of annotated data. In: Proceedings of the joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL)
    • Tomanek K, Wermter J, Hahn U (2007) An approach to text corpus construction which cuts annotation costs and maintains reusability of annotated data. In: Proceedings of the joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL), pp 486–495
    • (2007) pp 486–495
    • Tomanek, K.1    Wermter, J.2    Hahn, U.3
  • 78
    • 0034792634 scopus 로고    scopus 로고
    • Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM international conference on multimedia
    • Tong S, Chang E (2001) Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM international conference on multimedia, pp 107–118
    • (2001) pp 107–118
    • Tong, S.1    Chang, E.2
  • 79
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S, Koller D (2001) Support vector machine active learning with applications to text classification. J Mach Learn Res 2:45–66
    • (2001) J Mach Learn Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 80
    • 70450197013 scopus 로고    scopus 로고
    • What’s it going to cost you? predicting effort vs. informativeness for multi-label image annotations. In: Conference on computer vision and pattern recognition (CVPR)
    • Vijayanarasimhan S, Grauman K (2009) What’s it going to cost you? predicting effort vs. informativeness for multi-label image annotations. In: Conference on computer vision and pattern recognition (CVPR), pp 2262–2269
    • (2009) pp 2262–2269
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 81
    • 84874086932 scopus 로고    scopus 로고
    • Who should label what? Instance allocation in multiple expert active learning. In: Proceedings of the SIAM international conference on data mining (SDM)
    • Wallace BC, Small K, Brodley CE, Trikalinos TA (2011) Who should label what? Instance allocation in multiple expert active learning. In: Proceedings of the SIAM international conference on data mining (SDM), pp 176–187
    • (2011) pp 176–187
    • Wallace, B.C.1    Small, K.2    Brodley, C.E.3    Trikalinos, T.A.4
  • 82
    • 79551595391 scopus 로고    scopus 로고
    • Sufficient conditions for agnostic active learnable. In: Proceedings of the conference on advances in neural information processing systems (NIPS)
    • Wang L (2009) Sufficient conditions for agnostic active learnable. In: Proceedings of the conference on advances in neural information processing systems (NIPS), pp 1999–2007
    • (2009) pp 1999–2007
    • Wang, L.1
  • 83
    • 35248825961 scopus 로고    scopus 로고
    • Representative sampling for text classification using support vector machines
    • Xu Z, Yu K, Tresp V, Xu X, Wang J (2003) Representative sampling for text classification using support vector machines. Adv Inf Retr 393–407
    • (2003) Adv Inf Retr , pp. 393-407
    • Xu, Z.1    Yu, K.2    Tresp, V.3    Xu, X.4    Wang, J.5
  • 84
    • 77957858975 scopus 로고    scopus 로고
    • Using “annotator rationales” to improve machine learning for text categorization. In: Proceedings of annual conference of the north american chapter of the association for computational linguistics, Human Language Technologies
    • Zaidan O, Eisner J, Piatko CD (2007) Using “annotator rationales” to improve machine learning for text categorization. In: Proceedings of annual conference of the north american chapter of the association for computational linguistics, Human Language Technologies, pp 260–267
    • (2007) pp 260–267
    • Zaidan, O.1    Eisner, J.2    Piatko, C.D.3
  • 85
    • 0036613407 scopus 로고    scopus 로고
    • An active learning framework for content-based information retrieval
    • Zhang C, Chen T (2002) An active learning framework for content-based information retrieval. IEEE Trans Multimed 4(2):260–268
    • (2002) IEEE Trans Multimed , vol.4 , Issue.2 , pp. 260-268
    • Zhang, C.1    Chen, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.