-
1
-
-
84911417279
-
Multiscale combinatorial grouping
-
P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marqués, and J. Malik. Multiscale combinatorial grouping. In CVPR, 2014.
-
(2014)
CVPR
-
-
Arbelaez, P.1
Pont-Tuset, J.2
Barron, J.3
Marqués, F.4
Malik, J.5
-
7
-
-
56049086147
-
Semantic object classes in video: A high-definition ground truth database
-
G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A high-definition ground truth database. Pattern Recognition Letters, 30(2):88-97, 2009.
-
(2009)
Pattern Recognition Letters
, vol.30
, Issue.2
, pp. 88-97
-
-
Brostow, G.J.1
Fauqueur, J.2
Cipolla, R.3
-
9
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
10
-
-
84959224495
-
Multi-instance object segmentation with occlusion handling
-
Y.-T. Chen, X. Liu, and M.-H. Yang. Multi-instance object segmentation with occlusion handling. In CVPR, 2015.
-
(2015)
CVPR
-
-
Chen, Y.-T.1
Liu, X.2
Yang, M.-H.3
-
11
-
-
84959216100
-
Convolutional feature masking for joint object and stuff segmentation
-
J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Dai, J.1
He, K.2
Sun, J.3
-
12
-
-
84857435937
-
Pedestrian detection: An evaluation of the state of the art
-
P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. Trans. PAMI, 34(4):743-761, 2012.
-
(2012)
Trans. PAMI
, vol.34
, Issue.4
, pp. 743-761
-
-
Dollár, P.1
Wojek, C.2
Schiele, B.3
Perona, P.4
-
14
-
-
84921069139
-
The PASCAL visual object classes challenge: A retrospective
-
M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL visual object classes challenge: A retrospective. IJCV, 111(1):98-136, 2015.
-
(2015)
IJCV
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.M.A.2
Van Gool, L.3
Williams, C.K.I.4
Winn, J.5
Zisserman, A.6
-
15
-
-
77955422240
-
Object detection with discriminatively trained partbased models
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. Trans. PAMI, 32(9):1627-1645, 2010.
-
(2010)
Trans. PAMI
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
16
-
-
84897504350
-
Making Bertha see
-
U. Franke, D. Pfeiffer, C. Rabe, C. Knöppel, M. Enzweiler, F. Stein, and R. G. Herrtwich. Making Bertha see. In ICCV Workshops, 2013.
-
(2013)
ICCV Workshops
-
-
Franke, U.1
Pfeiffer, D.2
Rabe, C.3
Knöppel, C.4
Enzweiler, M.5
Stein, F.6
Herrtwich, R.G.7
-
17
-
-
84892380130
-
Toward automated driving in cities using close-to-market sensors: An overview of the V-Charge project
-
P. Furgale, U. Schwesinger, M. Rufli, W. Derendarz, H. Grimmett, P. Mühlfellner, S. Wonneberger, B. Li, et al. Toward automated driving in cities using close-to-market sensors: An overview of the V-Charge project. In IV Symposium, 2013.
-
(2013)
IV Symposium
-
-
Furgale, P.1
Schwesinger, U.2
Rufli, M.3
Derendarz, W.4
Grimmett, H.5
Mühlfellner, P.6
Wonneberger, S.7
Li, B.8
-
18
-
-
84900538282
-
3D traffic scene understanding from movable platforms
-
A. Geiger, M. Lauer, C.Wojek, C. Stiller, and R. Urtasun. 3D traffic scene understanding from movable platforms. Trans. PAMI, 36(5):1012-1025, 2014.
-
(2014)
Trans. PAMI
, vol.36
, Issue.5
, pp. 1012-1025
-
-
Geiger, A.1
Lauer, M.2
Wojek, C.3
Stiller, C.4
Urtasun, R.5
-
19
-
-
84884231503
-
Vision meets robotics: The KITTI dataset
-
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI dataset. IJRR, 32(11), 2013.
-
(2013)
IJRR
, vol.32
, Issue.11
-
-
Geiger, A.1
Lenz, P.2
Stiller, C.3
Urtasun, R.4
-
20
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
21
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
22
-
-
84959218293
-
Displets: Resolving stereo ambiguities using object knowledge
-
F. Gueney and A. Geiger. Displets: Resolving stereo ambiguities using object knowledge. In CVPR, 2015.
-
(2015)
CVPR
-
-
Gueney, F.1
Geiger, A.2
-
24
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbeláez, P.A.2
Girshick, R.B.3
Malik, J.4
-
25
-
-
84959238601
-
Learning scene-specific pedestrian detectors without real data
-
H. Hattori, V. N. Boddeti, K. M. Kitani, and T. Kanade. Learning scene-specific pedestrian detectors without real data. In CVPR, 2015.
-
(2015)
CVPR
-
-
Hattori, H.1
Boddeti, V.N.2
Kitani, K.M.3
Kanade, T.4
-
26
-
-
84911430631
-
An exemplar-based CRF for multiinstance object segmentation
-
X. He and S. Gould. An exemplar-based CRF for multiinstance object segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
He, X.1
Gould, S.2
-
28
-
-
84963773434
-
What makes for effective detection proposals?
-
J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What makes for effective detection proposals? Trans. PAMI, 38(4):814-830, 2015.
-
(2015)
Trans. PAMI
, vol.38
, Issue.4
, pp. 814-830
-
-
Hosang, J.1
Benenson, R.2
Dollár, P.3
Schiele, B.4
-
29
-
-
84893816789
-
Nonparametric semantic segmentation for 3D street scenes
-
H. Hu and B. Upcroft. Nonparametric semantic segmentation for 3D street scenes. In IROS, 2013.
-
(2013)
IROS
-
-
Hu, H.1
Upcroft, B.2
-
30
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
32
-
-
84938236141
-
Joint semantic segmentation and 3D reconstruction from monocular video
-
A. Kundu, Y. Li, F. Dellaert, F. Li, and J. Rehg. Joint semantic segmentation and 3D reconstruction from monocular video. In ECCV, 2014.
-
(2014)
ECCV
-
-
Kundu, A.1
Li, Y.2
Dellaert, F.3
Li, F.4
Rehg, J.5
-
36
-
-
39749124915
-
Robust object detection with interleaved categorization and segmentation
-
B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 77(1-3):259-289, 2008.
-
(2008)
IJCV
, vol.77
, Issue.1-3
, pp. 259-289
-
-
Leibe, B.1
Leonardis, A.2
Schiele, B.3
-
37
-
-
84986261676
-
Efficient piecewise training of deep structured models for semantic segmentation
-
G. Lin, C. Shen, A. van den Hengel, and I. Reid. Efficient piecewise training of deep structured models for semantic segmentation. In CVPR, 2016, to appear.
-
CVPR, 2016, to Appear
-
-
Lin, G.1
Shen, C.2
Hengel Den A.Van3
Reid, I.4
-
38
-
-
85009931853
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
40
-
-
84973860883
-
Semantic image segmentation via deep parsing network
-
Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In ICCV, 2015.
-
(2015)
ICCV
-
-
Liu, Z.1
Li, X.2
Luo, P.3
Loy, C.C.4
Tang, X.5
-
41
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
42
-
-
84856631928
-
Object detection and segmentation from joint embedding of parts and pixels
-
M. Maire, S. X. Yu, and P. Perona. Object detection and segmentation from joint embedding of parts and pixels. In ICCV, 2011.
-
(2011)
ICCV
-
-
Maire, M.1
Yu, S.X.2
Perona, P.3
-
43
-
-
84959201998
-
Watch and learn: Semi-supervised learning for object detectors from video
-
I. Misra, A. Shrivastava, and M. Hebert. Watch and learn: Semi-supervised learning for object detectors from video. In CVPR, 2015.
-
(2015)
CVPR
-
-
Misra, I.1
Shrivastava, A.2
Hebert, M.3
-
45
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. In CVPR, 2014.
-
(2014)
CVPR
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.-G.4
Lee, S.-W.5
Fidler, S.6
Urtasun, R.7
Yuille, A.8
-
46
-
-
0035328421
-
Modeling the shape of the scene: A holistic representation of the spatial envelope
-
A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 42(3):145-175, 2001.
-
(2001)
IJCV
, vol.42
, Issue.3
, pp. 145-175
-
-
Oliva, A.1
Torralba, A.2
-
47
-
-
84953933150
-
Is object localization for free? Weakly-supervised learning with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? Weakly-supervised learning with convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
48
-
-
84965124068
-
Weakly-and semi-supervised learning of a DCNN for semantic image segmentation
-
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a DCNN for semantic image segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
49
-
-
84973922870
-
Constrained convolutional neural networks for weakly supervised segmentation
-
D. Pathak, P. Kraehenbuehl, and T. Darrell. Constrained convolutional neural networks for weakly supervised segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Pathak, D.1
Kraehenbuehl, P.2
Darrell, T.3
-
50
-
-
85083952720
-
Fully convolutional multi-class multiple instance learning
-
D. Pathak, E. Shelhamer, J. Long, and T. Darrell. Fully convolutional multi-class multiple instance learning. In ICLR, 2015.
-
(2015)
ICLR
-
-
Pathak, D.1
Shelhamer, E.2
Long, J.3
Darrell, T.4
-
52
-
-
84919790220
-
Recurrent convolutional neural networks for scene parsing
-
P. H. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene parsing. In ICML, 2014.
-
(2014)
ICML
-
-
Pinheiro, P.H.1
Collobert, R.2
-
53
-
-
84959200585
-
From image-level to pixellevel labeling with convolutional networks
-
P. H. Pinheiro and R. Collobert. From image-level to pixellevel labeling with convolutional networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Pinheiro, P.H.1
Collobert, R.2
-
54
-
-
84973926509
-
Boosting object proposals: From Pascal to COCO
-
J. Pont-Tuset and L. Van Gool. Boosting object proposals: From Pascal to COCO. In ICCV, 2015.
-
(2015)
ICCV
-
-
Pont-Tuset, J.1
Van Gool, L.2
-
55
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
57
-
-
84877739254
-
Hough regions for joining instance localization and segmentation
-
H. Riemenschneider, S. Sternig, M. Donoser, P. M. Roth, and H. Bischof. Hough regions for joining instance localization and segmentation. In ECCV, 2012.
-
(2012)
ECCV
-
-
Riemenschneider, H.1
Sternig, S.2
Donoser, M.3
Roth, P.M.4
Bischof, H.5
-
58
-
-
84925427787
-
Vision-based offline-online perception paradigm for autonomous driving
-
G. Ros, S. Ramos, M. Granados, D. Vazquez, and A. M. Lopez. Vision-based offline-online perception paradigm for autonomous driving. In WACV, 2015.
-
(2015)
WACV
-
-
Ros, G.1
Ramos, S.2
Granados, M.3
Vazquez, D.4
Lopez, A.M.5
-
59
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV, 115(3):211-252, 2015.
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
60
-
-
39749186006
-
LabelMe: A database and web-based tool for image annotation
-
B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: A database and web-based tool for image annotation. IJCV, 77(1-3):157-173, 2008.
-
(2008)
IJCV
, vol.77
, Issue.1-3
, pp. 157-173
-
-
Russell, B.C.1
Torralba, A.2
Murphy, K.P.3
Freeman, W.T.4
-
62
-
-
84925395131
-
Stixmantics: A medium-level model for real-time semantic scene understanding
-
T. Scharwächter, M. Enzweiler, U. Franke, and S. Roth. Stixmantics: A medium-level model for real-time semantic scene understanding. In ECCV, 2014.
-
(2014)
ECCV
-
-
Scharwächter, T.1
Enzweiler, M.2
Franke, U.3
Roth, S.4
-
65
-
-
84872291529
-
Automatic dense visual semantic mapping from street-level imagery
-
S. Sengupta, P. Sturgess, L. Ladicky, and P. H. S. Torr. Automatic dense visual semantic mapping from street-level imagery. In IROS, 2012.
-
(2012)
IROS
-
-
Sengupta, S.1
Sturgess, P.2
Ladicky, L.3
Torr, P.H.S.4
-
66
-
-
85083951635
-
OverFeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
-
(2014)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
67
-
-
84959193198
-
Deep hierarchical parsing for semantic segmentation
-
A. Sharma, O. Tuzel, and D. W. Jacobs. Deep hierarchical parsing for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Sharma, A.1
Tuzel, O.2
Jacobs, D.W.3
-
69
-
-
84957966034
-
Sun RGB-D: A RGB-D scene understanding benchmark suite
-
S. Song, S. P. Lichtenberg, and J. Xiao. Sun RGB-D: A RGB-D scene understanding benchmark suite. In CVPR, 2015.
-
(2015)
CVPR
-
-
Song, S.1
Lichtenberg, S.P.2
Xiao, J.3
-
70
-
-
84873190838
-
Superparsing
-
J. Tighe and S. Lazebnik. Superparsing. IJCV, 101(2):329-349, 2013.
-
(2013)
IJCV
, vol.101
, Issue.2
, pp. 329-349
-
-
Tighe, J.1
Lazebnik, S.2
-
71
-
-
84925505971
-
Scene parsing with object instance inference using regions and perexemplar detectors
-
J. Tighe, M. Niethammer, and S. Lazebnik. Scene parsing with object instance inference using regions and perexemplar detectors. IJCV, 112(2):150-171, 2015.
-
(2015)
IJCV
, vol.112
, Issue.2
, pp. 150-171
-
-
Tighe, J.1
Niethammer, M.2
Lazebnik, S.3
-
72
-
-
84881160857
-
Selective search for object recognition
-
J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A.W. M. Smeulders. Selective search for object recognition. International journal of computer vision, 104(2):154-171, 2013.
-
(2013)
International Journal of Computer Vision
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.R.1
De Van Sande, A.K.E.2
Gevers, T.3
Smeulders, A.W.M.4
-
73
-
-
84938253380
-
Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction
-
V. Vineet, O. Miksik, M. Lidegaard, M. Niessner, S. Golodetz, V. A. Prisacariu, O. Kahler, D. W. Murray, S. Izadi, P. Perez, and P. H. S. Torr. Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction. In ICRA, 2015.
-
(2015)
ICRA
-
-
Vineet, V.1
Miksik, O.2
Lidegaard, M.3
Niessner, M.4
Golodetz, S.5
Prisacariu, V.A.6
Kahler, O.7
Murray, D.W.8
Izadi, S.9
Perez, P.10
Torr, P.H.S.11
-
74
-
-
84984915793
-
-
arXiv:1509.03150v1 [cs.CV]
-
Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, Y. Zhao, and S. Yan. STC: A simple to complex framework for weakly-supervised semantic segmentation. arXiv:1509.03150v1 [cs.CV], 2015.
-
(2015)
STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation
-
-
Wei, Y.1
Liang, X.2
Chen, Y.3
Shen, X.4
Cheng, M.-M.5
Zhao, Y.6
Yan, S.7
-
75
-
-
84986281459
-
Semantic instance annotation of street scenes by 3D to 2D label transfer
-
J. Xie, M. Kiefel, M.-T. Sun, and A. Geiger. Semantic instance annotation of street scenes by 3D to 2D label transfer. In CVPR, 2016, to appear.
-
CVPR, 2016, to Appear
-
-
Xie, J.1
Kiefel, M.2
Sun, M.-T.3
Geiger, A.4
-
76
-
-
84959218681
-
Learning to segment under various forms of weak supervision
-
J. Xu, A. G. Schwing, and R. Urtasun. Learning to segment under various forms of weak supervision. In CVPR, 2015.
-
(2015)
CVPR
-
-
Xu, J.1
Schwing, A.G.2
Urtasun, R.3
-
77
-
-
85083085979
-
Information fusion on oversegmented images: An application for urban scene understanding
-
P. Xu, F. Davoine, J.-B. Bordes, H. Zhao, and T. Denoeux. Information fusion on oversegmented images: An application for urban scene understanding. In MVA, 2013.
-
(2013)
MVA
-
-
Xu, P.1
Davoine, F.2
Bordes, J.-B.3
Zhao, H.4
Denoeux, T.5
-
78
-
-
84866687133
-
Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
-
J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR, 2012.
-
(2012)
CVPR
-
-
Yao, J.1
Fidler, S.2
Urtasun, R.3
-
79
-
-
85083952059
-
Multi-scale context aggregation by dilated convolutions
-
F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016, to appear.
-
ICLR, 2016, to Appear
-
-
Yu, F.1
Koltun, V.2
-
80
-
-
84973891613
-
Monocular object instance segmentation and depth ordering with CNNs
-
Z. Zhang, A. Schwing, S. Fidler, and R. Urtasun. Monocular object instance segmentation and depth ordering with CNNs. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zhang, Z.1
Schwing, A.2
Fidler, S.3
Urtasun, R.4
-
81
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr. Conditional random fields as recurrent neural networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.S.8
-
82
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
-
(2014)
NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|