-
2
-
-
0029679131
-
Active learning with statistical models
-
Cohn, D., Ghahramani, Z., and Jordan, M. Active learning with statistical models. Journal of Artificial Intelligence Research, 4:129-145, 1996. (Pubitemid 126646151)
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
3
-
-
0002629270
-
Maximum likelihood estimation from incomplete data
-
Dempster, A., Laird, N., and Rubin, D. Maximum likelihood estimation from incomplete data. Journal of the Royal Statistical Society (B), 39(1), 1977.
-
(1977)
Journal of the Royal Statistical Society (B)
, vol.39
, Issue.1
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
5
-
-
0031209604
-
Selective Sampling Using the Query by Committee Algorithm
-
Freund, Y., Seung, S., Shamir, E., and Tishby, N. Selective sampling using the query by committee algorithm. Machine Learning, 2-3:133-168, 1997. (Pubitemid 127506338)
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
7
-
-
84893405732
-
Data clustering: A review
-
Jain, A. K., Murty, M. N., and Flynn, P. J. Data clustering: a review. ACM Computing Surveys, 31(3):264-323, 1999.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
8
-
-
79952398813
-
CoBayes: Bayesian knowledge corroboration with assessors of unknown areas of expertise
-
Kasneci, G., Gael, J. van, Stem, D., and Graepel, T. CoBayes: Bayesian knowledge corroboration with assessors of unknown areas of expertise. In Conference on Web Search and Data Mining, pp. 465-474, 2011.
-
(2011)
Conference on Web Search and Data Mining
, pp. 465-474
-
-
Kasneci, G.1
Van Gael, J.2
Stem, D.3
Graepel, T.4
-
9
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
Lewis, D. and Gale, W. A sequential algorithm for training text classifiers. In SIGIR, pp. 3-12, 1994.
-
(1994)
SIGIR
, pp. 3-12
-
-
Lewis, D.1
Gale, W.2
-
10
-
-
0001249987
-
On a measure of the information provided by an experiment
-
Lindley, D. On a measure of the information provided by an experiment. Ann. Math. Stat, 27:986-1005, 1956.
-
(1956)
Ann. Math. Stat
, vol.27
, pp. 986-1005
-
-
Lindley, D.1
-
11
-
-
0000695404
-
Information-based objective functions for active data selection
-
MacKay, D. Information-based objective functions for active data selection. Neural Computation, 4:590-604, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 590-604
-
-
MacKay, D.1
-
13
-
-
33745834241
-
-
Newman, D.J., Hettich, S., Blake, C.L., and Merz, C.J. UCI repository of machine learning databases, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.J.4
-
15
-
-
0038614486
-
Automated star/ galaxy discrimination with neural networks
-
Odewahn, S., Stockwell, E., Pennington, R., Hummphreys, R., and Zumach, W. Automated star/ galaxy discrimination with neural networks. Astronomical J., 103(1):318-331, 1992.
-
(1992)
Astronomical J.
, vol.103
, Issue.1
, pp. 318-331
-
-
Odewahn, S.1
Stockwell, E.2
Pennington, R.3
Hummphreys, R.4
Zumach, W.5
-
16
-
-
84901500766
-
Vuvuzelas and active learning for online classification
-
Paquet, U., van Gael, J., Stern, D., Kasneci, G., Herbrich, R., and Graepel, T. Vuvuzelas and active learning for online classification. In NIPS Workshop on Comp. Social Science and the Wisdom of Crowds, 2010.
-
NIPS Workshop on Comp. Social Science and the Wisdom of Crowds, 2010
-
-
Paquet, U.1
Van Gael, J.2
Stern, D.3
Kasneci, G.4
Herbrich, R.5
Graepel, T.6
-
17
-
-
71149084080
-
Supervised learning from multiple experts: Whom to trust when everyone lies a bit
-
Raykar, V. C., Yu, S., Zhao, L., Jerebko, A., Florin, C., Hermosillo-Valadez, G., Bogoni, L., and Moy, L. Supervised learning from multiple experts: Whom to trust when everyone lies a bit. In International Conference on Machine Learning, pp. 889-896, 2009.
-
(2009)
International Conference on Machine Learning
, pp. 889-896
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.3
Jerebko, A.4
Florin, C.5
Hermosillo-Valadez, G.6
Bogoni, L.7
Moy, L.8
-
18
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
Roy, N. and McCallum, A. Toward optimal active learning through sampling estimation of error reduction. In 18th International Conference on Machine Learning, pp. 444-448, 2001.
-
(2001)
18th International Conference on Machine Learning
, pp. 444-448
-
-
Roy, N.1
McCallum, A.2
-
19
-
-
67049158342
-
How to get the most out of your curation effort
-
Rzhetsky, A., Shatkay, H., and Wilbur, W. I. How to get the most out of your curation effort. PLoS Computational Biology, 5(5): e1000391, 2009.
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.5
-
-
Rzhetsky, A.1
Shatkay, H.2
Wilbur, W.I.3
-
20
-
-
0026981853
-
Query by committee
-
Seung, S., Opper, M., and Sompolinsky, H. Query by committee. In Fifth Workshop on Computational Learning Theory, pp. 287-94, 1992.
-
(1992)
Fifth Workshop on Computational Learning Theory
, pp. 287-294
-
-
Seung, S.1
Opper, M.2
Sompolinsky, H.3
-
21
-
-
65449144451
-
Get another label? Improving data quality and data mining using multiple, noisy labelers
-
Sheng, V. S., Provost, F., and Ipeirotis, P. G. Get another label? Improving data quality and data mining using multiple, noisy labelers. In Knowledge Discovery and Data Mining (KDD), pp. 614-622, 2008.
-
(2008)
Knowledge Discovery and Data Mining (KDD)
, pp. 614-622
-
-
Sheng, V.S.1
Provost, F.2
Ipeirotis, P.G.3
-
22
-
-
85153964878
-
Inferring ground truth from subjective labeling of Venus images
-
Smyth, P., Fayyad, U., Burl, M., Perona, P., and Baldi, P. Inferring ground truth from subjective labeling of Venus images. In Advances in Neural Information Processing Systems, volume 7, pp. 1085-1092, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 1085-1092
-
-
Smyth, P.1
Fayyad, U.2
Burl, M.3
Perona, P.4
Baldi, P.5
-
23
-
-
80053360508
-
Cheap and fast - But is it good? Evaluating non-expert annotations for natural language tasks
-
Snow, R., O'Connor, B., Jurafsky, D., and Ng, A. Cheap and fast - but is it good? Evaluating non-expert annotations for natural language tasks. In Conference on Empirical Methods on Natural Language Processing (EMNLP), pp. 254-263, 2008.
-
(2008)
Conference on Empirical Methods on Natural Language Processing (EMNLP)
, pp. 254-263
-
-
Snow, R.1
O'Connor, B.2
Jurafsky, D.3
Ng, A.4
-
24
-
-
80052400610
-
Modeling annotator expertise: Learning when everybody knows a bit of something
-
Yan, Y., Rosales, R., Fung, G., Schmidt, M., Hermosillo, G., Bogoni, L., Moy, L., and Dy, J. Modeling annotator expertise: Learning when everybody knows a bit of something. In Int'l Conf. on Artificial Intelligence and Statistics, pp. 932-939, 2010.
-
(2010)
Int'l Conf. on Artificial Intelligence and Statistics
, pp. 932-939
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Schmidt, M.4
Hermosillo, G.5
Bogoni, L.6
Moy, L.7
Dy, J.8
|