메뉴 건너뛰기




Volumn , Issue , 2014, Pages 213-222

Hierarchical multi-label classification of social text streams

Author keywords

Structural SVM; Topic modeling; Tweet classification; Twitter

Indexed keywords

CLASSIFICATION (OF INFORMATION); INFORMATION RETRIEVAL; PROBABILITY DISTRIBUTIONS; TEXT PROCESSING;

EID: 84904539634     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2600428.2609561     Document Type: Conference Paper
Times cited : (49)

References (46)
  • 1
    • 84904578914 scopus 로고    scopus 로고
    • Handling concept drift: Importance challenges and solutions
    • B. Albert, G. Joao, P. Mykola, and Z. Indre. Handling concept drift: importance challenges and solutions. In PAKDD, 2011.
    • (2011) PAKDD
    • Albert, B.1    Joao, G.2    Mykola, P.3    Indre, Z.4
  • 2
    • 84904555600 scopus 로고    scopus 로고
    • Overview of RepLab 2012: Evaluating online reputation management systems
    • E. Amigó, A. Corujo, J. Gonzalo, E. Meij, and M. de Rijke. Overview of RepLab 2012: Evaluating online reputation management systems. In CLEF, 2012.
    • (2012) CLEF
    • Amigó, E.1    Corujo, A.2    Gonzalo, J.3    Meij, E.4    De Rijke, M.5
  • 4
    • 80053440655 scopus 로고    scopus 로고
    • Multi-label classification on tree-and dag-structured hierarchies
    • W. Bi and J. T. Kwok. Multi-label classification on tree-and dag-structured hierarchies. In ICML, 2011.
    • (2011) ICML
    • Bi, W.1    Kwok, J.T.2
  • 5
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models
    • D. Blei and J. Lafferty. Dynamic topic models. In ICML, 2006.
    • (2006) ICML
    • Blei, D.1    Lafferty, J.2
  • 7
    • 84904581463 scopus 로고    scopus 로고
    • Decision trees for hierarchical multilabel classification
    • H. Blockeel, L. Schietgat, and J. Struyf. Decision trees for hierarchical multilabel classification. In ECML, 2006.
    • (2006) ECML
    • Blockeel, H.1    Schietgat, L.2    Struyf, J.3
  • 8
    • 35348903881 scopus 로고    scopus 로고
    • Measuring semantic similarity between words using web search engines
    • D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring semantic similarity between words using web search engines. WWW, 2007.
    • (2007) WWW
    • Bollegala, D.1    Matsuo, Y.2    Ishizuka, M.3
  • 9
    • 84874727608 scopus 로고    scopus 로고
    • Microblog language identification: Overcoming the limitations of short, unedited and idiomatic text
    • S. Carter, W. Weerkamp, and M. Tsagkias. Microblog language identification: Overcoming the limitations of short, unedited and idiomatic text. LREC, 2013.
    • (2013) LREC
    • Carter, S.1    Weerkamp, W.2    Tsagkias, M.3
  • 10
    • 29644434908 scopus 로고    scopus 로고
    • Incremental algorithms for hierarchical classification
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Incremental algorithms for hierarchical classification. JMLR, 2006.
    • (2006) JMLR
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 11
    • 84889605074 scopus 로고    scopus 로고
    • Community question topic categorization via hierarchical kernelized classification
    • W. Chan, W. Yang, J. Tang, J. Du, X. Zhou, and W. Wang. Community question topic categorization via hierarchical kernelized classification. In CIKM, 2013.
    • (2013) CIKM
    • Chan, W.1    Yang, W.2    Tang, J.3    Du, J.4    Zhou, X.5    Wang, W.6
  • 12
    • 84904572747 scopus 로고    scopus 로고
    • Cost-sensitive learning for large-scale hierarchical classification of commercial products
    • J. Chen and D. Warren. Cost-sensitive learning for large-scale hierarchical classification of commercial products. In CIKM, 2013.
    • (2013) CIKM
    • Chen, J.1    Warren, D.2
  • 13
    • 84866630031 scopus 로고    scopus 로고
    • Short text classification improved by learning multi-granularity topics
    • M. Chen, X. Jin, and D. Shen. Short text classification improved by learning multi-granularity topics. In IJCAI, 2011.
    • (2011) IJCAI
    • Chen, M.1    Jin, X.2    Shen, D.3
  • 15
    • 27344433526 scopus 로고    scopus 로고
    • Lexrank: Graph-based lexical centrality as salience in text summarization
    • G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as salience in text summarization. J. Artif. Intell., 2004.
    • (2004) J. Artif. Intell.
    • Erkan, G.1    Radev, D.R.2
  • 16
    • 56449113929 scopus 로고    scopus 로고
    • Training structural svms when exact inference is intractable
    • T. Finley and T. Joachims. Training structural svms when exact inference is intractable. In ICML, 2008.
    • (2008) ICML
    • Finley, T.1    Joachims, T.2
  • 17
    • 79960190095 scopus 로고    scopus 로고
    • Classifying text streams in the presence of concept drifting
    • G. P. C. Fung, J. X. Yu, and H. Lu. Classifying text streams in the presence of concept drifting. In PAKDD, 2004.
    • (2004) PAKDD
    • Fung, G.P.C.1    Yu, J.X.2    Lu, H.3
  • 18
    • 84861443014 scopus 로고    scopus 로고
    • Multi-label classification using conditional dependency networks
    • Y. Guo and S. Gu. Multi-label classification using conditional dependency networks. In IJCAI, 2011.
    • (2011) IJCAI
    • Guo, Y.1    Gu, S.2
  • 19
    • 0002346866 scopus 로고    scopus 로고
    • Hierarchically classifying documents using very few words
    • D. Koller and M. Sahami. Hierarchically classifying documents using very few words. In ICML, 1997.
    • (1997) ICML
    • Koller, D.1    Sahami, M.2
  • 20
    • 85016778932 scopus 로고    scopus 로고
    • Multi-label classification by mining label and instance correlations from heterogeneous information networks
    • X. Kong, B. Cao, and P. S. Yu. Multi-label classification by mining label and instance correlations from heterogeneous information networks. In KDD, 2013.
    • (2013) KDD
    • Kong, X.1    Cao, B.2    Yu, P.S.3
  • 21
    • 56449131132 scopus 로고    scopus 로고
    • Local likelihood modeling of temporal text streams
    • G. Lebanon and Y. Zhao. Local likelihood modeling of temporal text streams. In ICML, 2008.
    • (2008) ICML
    • Lebanon, G.1    Zhao, Y.2
  • 22
    • 84865623418 scopus 로고    scopus 로고
    • Enhancing diversity, coverage and balance for summarization through structure learning
    • L. Li, K. Zhou, G.-R. Xue, H. Zha, and Y. Yu. Enhancing diversity, coverage and balance for summarization through structure learning. In WWW, 2009.
    • (2009) WWW
    • Li, L.1    Zhou, K.2    Xue, G.-R.3    Zha, H.4    Yu, Y.5
  • 23
    • 84870470566 scopus 로고    scopus 로고
    • Video summarization via transferrable structured learning
    • L. Li, K. Zhou, G.-R. Xue, H. Zha, and Y. Yu. Video summarization via transferrable structured learning. In WWW, 2011.
    • (2011) WWW
    • Li, L.1    Zhou, K.2    Xue, G.-R.3    Zha, H.4    Yu, Y.5
  • 24
    • 79951870792 scopus 로고
    • The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem
    • J. S. Liu. The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. JASA, 1994.
    • (1994) JASA
    • Liu, J.S.1
  • 25
    • 84904305482 scopus 로고    scopus 로고
    • Hydra: Large-scale social identity linkage via heterogeneous behavior modeling
    • S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan. Hydra: Large-scale social identity linkage via heterogeneous behavior modeling. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Liu, S.1    Wang, S.2    Zhu, F.3    Zhang, J.4    Krishnan, R.5
  • 26
    • 84904573994 scopus 로고    scopus 로고
    • Tcsst: Transfer classification of short & sparse text using external data
    • G. Long, L. Chen, X. Zhu, and C. Zhang. Tcsst: transfer classification of short & sparse text using external data. In CIKM, 2012.
    • (2012) CIKM
    • Long, G.1    Chen, L.2    Zhu, X.3    Zhang, C.4
  • 29
    • 84866607762 scopus 로고    scopus 로고
    • Improving tweet stream classification by detecting changes in word probability
    • K. Nishida, T. Hoshide, and K. Fujimura. Improving tweet stream classification by detecting changes in word probability. In SIGIR, 2012.
    • (2012) SIGIR
    • Nishida, K.1    Hoshide, T.2    Fujimura, K.3
  • 30
    • 84899992172 scopus 로고    scopus 로고
    • Feeding the second screen: Semantic linking based on subtitles
    • D. Odijk, E. Meij, and M. de Rijke. Feeding the second screen: Semantic linking based on subtitles. In OAIR, 2013.
    • (2013) OAIR
    • Odijk, D.1    Meij, E.2    De Rijke, M.3
  • 31
    • 85162354773 scopus 로고    scopus 로고
    • Submodular multi-label learning
    • J. Petterson and T. S. Caetano. Submodular multi-label learning. In NIPS, 2011.
    • (2011) NIPS
    • Petterson, J.1    Caetano, T.S.2
  • 32
    • 57349117605 scopus 로고    scopus 로고
    • Learning to classify short and sparse text & web with hidden topics from large-scale data collections
    • X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In WWW, 2008.
    • (2008) WWW
    • Phan, X.-H.1    Nguyen, L.-M.2    Horiguchi, S.3
  • 33
    • 84883106604 scopus 로고    scopus 로고
    • Personalized time-aware tweets summarization
    • Z. Ren, S. Liang, E. Meij, and M. de Rijke. Personalized time-aware tweets summarization. In SIGIR, 2013.
    • (2013) SIGIR
    • Ren, Z.1    Liang, S.2    Meij, E.3    De Rijke, M.4
  • 34
  • 35
    • 56449089882 scopus 로고    scopus 로고
    • Accurate max-margin training for structured output spaces
    • S. Sarawagi and R. Gupta. Accurate max-margin training for structured output spaces. In ICML, 2008.
    • (2008) ICML
    • Sarawagi, S.1    Gupta, R.2
  • 36
    • 33745800276 scopus 로고    scopus 로고
    • Efficient learning of label ranking by soft projections onto polyhedra
    • S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto polyhedra. JMLR, 2006.
    • (2006) JMLR
    • Shalev-Shwartz, S.1    Singer, Y.2
  • 38
    • 84866633289 scopus 로고    scopus 로고
    • Short text classification using very few words
    • A. Sun. Short text classification using very few words. In SIGIR, 2012.
    • (2012) SIGIR
    • Sun, A.1
  • 39
    • 4344619819 scopus 로고    scopus 로고
    • Handling concept drifts in incremental learning with support vector machines
    • N. A. Syed, H. Liu, and K. K. Sung. Handling concept drifts in incremental learning with support vector machines. In KDD, 1999.
    • (1999) KDD
    • Syed, N.A.1    Liu, H.2    Sung, K.K.3
  • 40
    • 79951752250 scopus 로고    scopus 로고
    • Large-scale mutli-label classification via metalabeler
    • L. Tang, S. Rajan, and V. K. Narayanan. Large-scale mutli-label classification via metalabeler. In WWW, 2009.
    • (2009) WWW
    • Tang, L.1    Rajan, S.2    Narayanan, V.K.3
  • 41
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 2005.
    • (2005) JMLR
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 43
    • 57349114676 scopus 로고    scopus 로고
    • Multi-document summarization using cluster-based link analysis
    • X. Wan and J. Yang. Multi-document summarization using cluster-based link analysis. In SIGIR, 2008.
    • (2008) SIGIR
    • Wan, X.1    Yang, J.2
  • 44
    • 57349094335 scopus 로고    scopus 로고
    • Improving similarity measures for short segments of text
    • W.-T. Yih and C. Meek. Improving similarity measures for short segments of text. In AAAI, 2007.
    • (2007) AAAI
    • Yih, W.-T.1    Meek, C.2
  • 45
    • 56449130129 scopus 로고    scopus 로고
    • Predicting diverse subsets using structural SVMs
    • Y. Yue and T. Joachims. Predicting diverse subsets using structural SVMs. In ICML, 2008.
    • (2008) ICML
    • Yue, Y.1    Joachims, T.2
  • 46
    • 84889610560 scopus 로고    scopus 로고
    • Short text classification by detecting information path
    • S. Zhang, X. Jin, D. Shen, B. Cao, X. Ding, and X. Zhang. Short text classification by detecting information path. In CIKM, 2013.
    • (2013) CIKM
    • Zhang, S.1    Jin, X.2    Shen, D.3    Cao, B.4    Ding, X.5    Zhang, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.