메뉴 건너뛰기




Volumn 24, Issue 1, 2018, Pages 152-165

Do Convolutional Neural Networks Learn Class Hierarchy?

Author keywords

confusion matrix; Convolutional Neural Networks; deep learning; image classification; large scale classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; DATA VISUALIZATION; DEEP LEARNING; IMAGE CLASSIFICATION; IMAGE RECOGNITION; NETWORK LAYERS; NEURAL NETWORKS; NEURONS; PERSONNEL TRAINING; VISUALIZATION;

EID: 85028725738     PISSN: 10772626     EISSN: None     Source Type: Journal    
DOI: 10.1109/TVCG.2017.2744683     Document Type: Article
Times cited : (230)

References (77)
  • 4
    • 84940560152 scopus 로고    scopus 로고
    • On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
    • S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Muller, and W. Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.
    • (2015) PloS One , vol.10 , Issue.7 , pp. e0130140
    • Bach, S.1    Binder, A.2    Montavon, G.3    Klauschen, F.4    Muller, K.-R.5    Samek, W.6
  • 28
    • 85004844311 scopus 로고
    • Some applications of graph theory and related non-metric techniques to problems of approximate seriation: The case of symmetric proximity measures
    • L. Hubert. Some applications of graph theory and related non-metric techniques to problems of approximate seriation: The case of symmetric proximity measures. British Journal of Mathematical and Statistical Psychology, 27(2):133-153, 1974.
    • (1974) British Journal of Mathematical and Statistical Psychology , vol.27 , Issue.2 , pp. 133-153
    • Hubert, L.1
  • 35
    • 15844378127 scopus 로고
    • Icicle plots: Better displays for hierarchical clustering
    • J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for hierarchical clustering. The American Statistician, 37(2):162-168, 1983.
    • (1983) The American Statistician , vol.37 , Issue.2 , pp. 162-168
    • Kruskal, J.B.1    Landwehr, J.M.2
  • 37
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to documentrecognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to documentrecognition. Proceedings ofthe IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings Ofthe IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 40
    • 85066750614 scopus 로고    scopus 로고
    • Towards better analysis of machine learning models: A visual analytics perspective
    • S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics, 2017.
    • (2017) Visual Informatics
    • Liu, S.1    Wang, X.2    Liu, M.3    Zhu, J.4
  • 43
    • 84969850969 scopus 로고    scopus 로고
    • Visualizing deep convolutional neural networks using natural pre-images
    • A. Mahendran and A. Vedaldi. Visualizing deep convolutional neural networks using natural pre-images. International Journal ofComputer Vision, 120(3):233-255, 2016.
    • (2016) International Journal OfComputer Vision , vol.120 , Issue.3 , pp. 233-255
    • Mahendran, A.1    Vedaldi, A.2
  • 44
    • 27944450440 scopus 로고    scopus 로고
    • The barycenter heuristic and the reorderable matrix
    • E. Makinen and H. Siirtola. The barycenter heuristic and the reorderable matrix. Informatica (Slovenia), 29(3):357-364, 2005.
    • (2005) Informatica (Slovenia , vol.29 , Issue.3 , pp. 357-364
    • Makinen, E.1    Siirtola, H.2
  • 45
    • 84976702763 scopus 로고
    • WordNet: A lexical database for english
    • G. A. Miller. WordNet: A lexical database for english. Communications of the ACM, 38(11):39-41, 1995.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 49
    • 84988351612 scopus 로고    scopus 로고
    • Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks
    • A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. In ICML Workshop on Visualization for Deep Learning, 2016.
    • (2016) ICML Workshop on Visualization for Deep Learning
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 57
    • 85018398567 scopus 로고    scopus 로고
    • Convolutional neural networks: An illustration in TensorFlow
    • A. Saxena. Convolutional neural networks: An illustration in TensorFlow. XRDS: Crossroads, The ACM Magazine for Students, 22(4):56-58, 2016.
    • (2016) XRDS: Crossroads, the ACM Magazine for Students , vol.22 , Issue.4 , pp. 56-58
    • Saxena, A.1
  • 66
    • 84973322569 scopus 로고    scopus 로고
    • Towards implicit complexity control using variable-depth deep neural networks for automatic speech recognition
    • IEEE
    • S. Tan and K. C. Sim. Towards implicit complexity control using variable-depth deep neural networks for automatic speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5965-5969. IEEE, 2016.
    • (2016) IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP , pp. 5965-5969
    • Tan, S.1    Sim, K.C.2
  • 67
    • 33749429989 scopus 로고    scopus 로고
    • Opening the black box-data driven visualization of neural networks
    • F.-Y. Tzeng and K.-L. Ma. Opening the black box-data driven visualization of neural networks. In IEEE Visualization, pages 383-390, 2005.
    • (2005) IEEE Visualization , pp. 383-390
    • Tzeng, F.-Y.1    Ma, K.-L.2
  • 70
    • 34547317826 scopus 로고    scopus 로고
    • Classification visualization with shaded similarity matrix
    • J. Wang, B. Yu, and L. Gasser. Classification visualization with shaded similarity matrix. In IEEE Visualization, 2002.
    • (2002) IEEE Visualization
    • Wang, J.1    Yu, B.2    Gasser, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.