-
1
-
-
84909592940
-
Visualmethods for analyzing probabilistic classification data
-
B. Alsallakh, A. Hanbury, H. Hauser, S. Miksch, and A. Rauber. Visualmethods for analyzing probabilistic classification data. IEEE Transactions on Visualization and Computer Graphics, 20(12): 1703-1712, 2014.
-
(2014)
IEEE Transactions on Visualization and Computer Graphics
, vol.20
, Issue.12
, pp. 1703-1712
-
-
Alsallakh, B.1
Hanbury, A.2
Hauser, H.3
Miksch, S.4
Rauber, A.5
-
2
-
-
84946584360
-
ModelTracker: Redesigning performance analysis tools for machine learning
-
ACM
-
S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, andJ. Suh. ModelTracker: Redesigning performance analysis tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 337-346. ACM, 2015.
-
(2015)
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
, pp. 337-346
-
-
Amershi, S.1
Chickering, M.2
Drucker, S.M.3
Lee, B.4
Simard, P.5
Suh, J.6
-
4
-
-
84940560152
-
On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
-
S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Muller, and W. Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.
-
(2015)
PloS One
, vol.10
, Issue.7
, pp. e0130140
-
-
Bach, S.1
Binder, A.2
Montavon, G.3
Klauschen, F.4
Muller, K.-R.5
Samek, W.6
-
6
-
-
84979066943
-
Matrix reordering methods for table and network visualization
-
M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete. Matrix reordering methods for table and network visualization. Computer Graphics Forum, 35(3):693-716, 2016.
-
(2016)
Computer Graphics Forum
, vol.35
, Issue.3
, pp. 693-716
-
-
Behrisch, M.1
Bach, B.2
Henry Riche, N.3
Schreck, T.4
Fekete, J.-D.5
-
10
-
-
84962788659
-
FeatureInsight: Visual support for error-driven feature ideation in text classification
-
IEEE
-
M. Brooks, S. Amershi, B. Lee, S. M. Drucker, A. Kapoor, and P. Simard. FeatureInsight: Visual support for error-driven feature ideation in text classification. In Visual Analytics Science and Technology (VAST), 2015 IEEE Conference on, pages 105-112. IEEE, 2015.
-
(2015)
Visual Analytics Science and Technology (VAST 2015 IEEE Conference on
, pp. 105-112
-
-
Brooks, M.1
Amershi, S.2
Lee, B.3
Drucker, S.M.4
Kapoor, A.5
Simard, P.6
-
12
-
-
84978726818
-
Untangle map: Visual analysis of prob-abilistic multi-label data
-
N. Cao, Y.-R. Lin, and D. Gotz. Untangle map: Visual analysis of prob-abilistic multi-label data. IEEE Transactions on Visualization and Computer Graphics, 22(2):1149-1163, 2016.
-
(2016)
IEEE Transactions on Visualization and Computer Graphics
, vol.22
, Issue.2
, pp. 1149-1163
-
-
Cao, N.1
Lin, Y.-R.2
Gotz, D.3
-
13
-
-
85039069859
-
Re-VACNN: Steering convolutional neural network via real-time visual analytics
-
S. Chung, C. Park, S. Suh, K. Kang, J. Choo, and B. C. Kwon. Re-VACNN: Steering convolutional neural network via real-time visual analytics. In NIPS Workshop-The Future ofInteractive Machine Learning,pages 577-585, 2016.
-
(2016)
NIPS Workshop-The Future OfInteractive Machine Learning
, pp. 577-585
-
-
Chung, S.1
Park, C.2
Suh, S.3
Kang, K.4
Choo, J.5
Kwon, B.C.6
-
15
-
-
78149302207
-
-
Springer
-
J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us In European Conference on Computer Vision (ECCV), pages 71-84. Springer, 2010.
-
(2010)
What Does Classifying More Than 10,000 Image Categories Tell Us in European Conference on Computer Vision (ECCV
, pp. 71-84
-
-
Deng, J.1
Berg, A.C.2
Li, K.3
Fei-Fei, L.4
-
16
-
-
85198028989
-
Ima-geNet: A large-scale hierarchical image database
-
IEEE
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Ima-geNet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 248-255. IEEE, 2009.
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
17
-
-
84919881041
-
DeCAF: A deep convolutional activation feature for genericvisual recognition
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convolutional activation feature for genericvisual recognition.In International Conference on Machine Learning (ICML), volume 32, pages 647-655, 2014.
-
(2014)
International Conference on Machine Learning (ICML
, vol.32
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
19
-
-
49749126416
-
Zame: Interactive large-scale graph visualization
-
IEEE
-
N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete. Zame: Interactive large-scale graph visualization. In Visualization Symposium, 2008. PacificVIS'08. IEEE Pacific, pages 215-222. IEEE, 2008.
-
(2008)
Visualization Symposium, 2008. PacificVIS'08. IEEE Pacific
, pp. 215-222
-
-
Elmqvist, N.1
Do, T.-N.2
Goodell, H.3
Henry, N.4
Fekete, J.-D.5
-
20
-
-
77949522811
-
Why does unsupervised pre-training help deep learning
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning Journal of Machine Learning Research, 11(Feb):625-660,2010
-
(2010)
Journal of Machine Learning Research, 11(Feb
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
21
-
-
79961226155
-
The difficulty of training deep architectures and the effect of unsupervised pre-training
-
D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent. The difficulty of training deep architectures and the effect of unsupervised pre-training. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), volume 5, pages 153-160, 2009.
-
(2009)
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS
, vol.5
, pp. 153-160
-
-
Erhan, D.1
Manzagol, P.-A.2
Bengio, Y.3
Bengio, S.4
Vincent, P.5
-
22
-
-
84925310875
-
Chalearn looking at people challenge 2014: Dataset and results
-
Springer
-
S. Escalera, X. Baro, J. Gonzalez, M. A. Bautista, M. Madadi, M. Reyes, V. Ponce-Lopez, H. J. Escalante, J. Shotton, and I. Guyon. Chalearn looking at people challenge 2014: Dataset and results. In Workshop at the European Conference on Computer Vision (ICCV), pages 459-473. Springer, 2014.
-
(2014)
Workshop at the European Conference on Computer Vision (ICCV
, pp. 459-473
-
-
Escalera, S.1
Baro, X.2
Gonzalez, J.3
Bautista, M.A.4
Madadi, M.5
Reyes, M.6
Ponce-Lopez, V.7
Escalante, H.J.8
Shotton, J.9
Guyon, I.10
-
24
-
-
85009863466
-
A taxonomy and library for visualizing learned features in convolutional neural networks
-
F. Griin, C. Rupprecht, N. Navab, and F. Tombari. A taxonomy and library for visualizing learned features in convolutional neural networks. In ICML Workshop on Visualization for Deep Learning, page 8, 2016.
-
(2016)
ICML Workshop on Visualization for Deep Learning
, pp. 8
-
-
Griin, F.1
Rupprecht, C.2
Navab, N.3
Tombari, F.4
-
28
-
-
85004844311
-
Some applications of graph theory and related non-metric techniques to problems of approximate seriation: The case of symmetric proximity measures
-
L. Hubert. Some applications of graph theory and related non-metric techniques to problems of approximate seriation: The case of symmetric proximity measures. British Journal of Mathematical and Statistical Psychology, 27(2):133-153, 1974.
-
(1974)
British Journal of Mathematical and Statistical Psychology
, vol.27
, Issue.2
, pp. 133-153
-
-
Hubert, L.1
-
29
-
-
85015423411
-
-
arXiv preprint arXiv 1603.01250
-
Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M. Brown, and A. Criminisi. Decision forests, convolutional networks and the models in-between. ArXiv preprint arXiv:1603.01250, 2016.
-
(2016)
Decision Forests, Convolutional Networks and the Models In-between
-
-
Ioannou, Y.1
Robertson, D.2
Zikic, D.3
Kontschieder, P.4
Shotton, J.5
Brown, M.6
Criminisi, A.7
-
31
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings ofthe 22nd ACM international conference on Multimedia, pages 675-678. ACM, 2014.
-
(2014)
Proceedings Ofthe 22nd ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
32
-
-
84866702739
-
Scalable active learning for multiclass image classification
-
A. J. Joshi, F. Porikli, and N. P. Papanikolopoulos. Scalable active learning for multiclass image classification. IEEE transactions on Pattern Analysis and Machine Intelligence, 34(11):2259-2273, 2012.
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.11
, pp. 2259-2273
-
-
Joshi, A.J.1
Porikli, F.2
Papanikolopoulos, N.P.3
-
33
-
-
77953996903
-
Interactive optimization for steering machine classification
-
ACM
-
A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive optimization for steering machine classification. In Proceedings of the SIGCHI Conference on Human Factors in ComputingSystems, pages 1343-1352. ACM, 2010.
-
(2010)
Proceedings of the SIGCHI Conference on Human Factors in ComputingSystems
, pp. 1343-1352
-
-
Kapoor, A.1
Lee, B.2
Tan, D.3
Horvitz, E.4
-
35
-
-
15844378127
-
Icicle plots: Better displays for hierarchical clustering
-
J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for hierarchical clustering. The American Statistician, 37(2):162-168, 1983.
-
(1983)
The American Statistician
, vol.37
, Issue.2
, pp. 162-168
-
-
Kruskal, J.B.1
Landwehr, J.M.2
-
36
-
-
84930630277
-
-
Y. LeCun, Y. Bengio, and G. Hinton.Deep learning.Nature, 521(7553):436-444, 2015.
-
(2015)
Deep Learning.Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
37
-
-
0032203257
-
Gradient-based learning applied to documentrecognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to documentrecognition. Proceedings ofthe IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings Ofthe IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
38
-
-
84872543023
-
Efficient backprop
-
Springer
-
Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Muller. Efficient backprop. In Neural networks: Tricks ofthe trade, pages 9-48. Springer, 2012.
-
(2012)
Neural Networks: Tricks Ofthe Trade
, pp. 9-48
-
-
LeCun, Y.A.1
Bottou, L.2
Orr, G.B.3
Muller, K.-R.4
-
39
-
-
84999288596
-
Towards better analysis of deep convolutional neural networks
-
M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of deep convolutional neural networks. IEEE Transactions on Visualization and Computer Graphics, 23(1):91-100, 2017.
-
(2017)
IEEE Transactions on Visualization and Computer Graphics
, vol.23
, Issue.1
, pp. 91-100
-
-
Liu, M.1
Shi, J.2
Li, Z.3
Li, C.4
Zhu, J.5
Liu, S.6
-
40
-
-
85066750614
-
Towards better analysis of machine learning models: A visual analytics perspective
-
S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics, 2017.
-
(2017)
Visual Informatics
-
-
Liu, S.1
Wang, X.2
Liu, M.3
Zhu, J.4
-
43
-
-
84969850969
-
Visualizing deep convolutional neural networks using natural pre-images
-
A. Mahendran and A. Vedaldi. Visualizing deep convolutional neural networks using natural pre-images. International Journal ofComputer Vision, 120(3):233-255, 2016.
-
(2016)
International Journal OfComputer Vision
, vol.120
, Issue.3
, pp. 233-255
-
-
Mahendran, A.1
Vedaldi, A.2
-
44
-
-
27944450440
-
The barycenter heuristic and the reorderable matrix
-
E. Makinen and H. Siirtola. The barycenter heuristic and the reorderable matrix. Informatica (Slovenia), 29(3):357-364, 2005.
-
(2005)
Informatica (Slovenia
, vol.29
, Issue.3
, pp. 357-364
-
-
Makinen, E.1
Siirtola, H.2
-
45
-
-
84976702763
-
WordNet: A lexical database for english
-
G. A. Miller. WordNet: A lexical database for english. Communications of the ACM, 38(11):39-41, 1995.
-
(1995)
Communications of the ACM
, vol.38
, Issue.11
, pp. 39-41
-
-
Miller, G.A.1
-
46
-
-
84986322626
-
Deep decision network for multi-class image classification
-
V. N. Murthy, V. Singh, T. Chen, R. Manmatha, and D. Comaniciu. Deep decision network for multi-class image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2240-2248, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, pp. 2240-2248
-
-
Murthy, V.N.1
Singh, V.2
Chen, T.3
Manmatha, R.4
Comaniciu, D.5
-
47
-
-
85019234593
-
Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
-
A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In Advances in Neurallnformation Processing Systems (NIPS), pages 3387-3395, 2016.
-
(2016)
Advances in Neurallnformation Processing Systems (NIPS
, pp. 3387-3395
-
-
Nguyen, A.1
Dosovitskiy, A.2
Yosinski, J.3
Brox, T.4
Clune, J.5
-
49
-
-
84988351612
-
Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks
-
A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. In ICML Workshop on Visualization for Deep Learning, 2016.
-
(2016)
ICML Workshop on Visualization for Deep Learning
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
50
-
-
84856985618
-
Visual boosting in pixel-based visualizations
-
Wiley Online Library
-
D. Oelke, H. Janetzko, S. Simon, K. Neuhaus, and D. A. Keim. Visual boosting in pixel-based visualizations. In Computer Graphics Forum volume 30, pages 871-880. Wiley Online Library, 2011.
-
(2011)
Computer Graphics Forum Volume
, vol.30
, pp. 871-880
-
-
Oelke, D.1
Janetzko, H.2
Simon, S.3
Neuhaus, K.4
Keim, D.A.5
-
51
-
-
84986266755
-
Deep metric learning via lifted structured feature embedding
-
H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric learning via lifted structured feature embedding. In Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4004-4012, 2016.
-
(2016)
Proceedings Ofthe IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, pp. 4004-4012
-
-
Oh Song, H.1
Xiang, Y.2
Jegelka, S.3
Savarese, S.4
-
52
-
-
78649593360
-
Gestalt: Integrated support for implementation and analysis in machine learning
-
ACM
-
K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay. Gestalt: integrated support for implementation and analysis in machine learning. In Proceedings of the 23nd annual ACM symposium on User Interface Software and Technology (UIST), pages 37-46. ACM, 2010.
-
(2010)
Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology (UIST
, pp. 37-46
-
-
Patel, K.1
Bancroft, N.2
Drucker, S.M.3
Fogarty, J.4
Ko, A.J.5
Landay, J.6
-
53
-
-
84998953869
-
Visualizing the hidden activity of artificial neural networks
-
P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea. Visualizing the hidden activity of artificial neural networks. IEEE Transactions on Visualization and Computer Graphics, 23(1):101-110, 2017.
-
(2017)
IEEE Transactions on Visualization and Computer Graphics
, vol.23
, Issue.1
, pp. 101-110
-
-
Rauber, P.E.1
Fadel, S.G.2
Falcao, A.X.3
Telea, A.C.4
-
54
-
-
84998817113
-
Squares: Supporting interactive performance analysis for multiclass classifiers
-
D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares: Supporting interactive performance analysis for multiclass classifiers. IEEE Transactions on Visualization and Computer Graphics, 23(1):61-70, 2017.
-
(2017)
IEEE Transactions on Visualization and Computer Graphics
, vol.23
, Issue.1
, pp. 61-70
-
-
Ren, D.1
Amershi, S.2
Lee, B.3
Suh, J.4
Williams, J.D.5
-
56
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. ImageNet large scale visual recognition challenge. International Journal ofComputer Vision, 115(3):211-252, 2015.
-
(2015)
International Journal OfComputer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
57
-
-
85018398567
-
Convolutional neural networks: An illustration in TensorFlow
-
A. Saxena. Convolutional neural networks: An illustration in TensorFlow. XRDS: Crossroads, The ACM Magazine for Students, 22(4):56-58, 2016.
-
(2016)
XRDS: Crossroads, the ACM Magazine for Students
, vol.22
, Issue.4
, pp. 56-58
-
-
Saxena, A.1
-
59
-
-
85039059567
-
Direct manipulation visualization of deep networks
-
D. Smilkov, S. Carter, D. Sculley, F. B. Viegas, and M. Wattenberg. Direct manipulation visualization of deep networks. In ICML Workshop on Visualization for Deep Learning, 2016.
-
(2016)
ICML Workshop on Visualization for Deep Learning
-
-
Smilkov, D.1
Carter, S.2
Sculley, D.3
Viegas, F.B.4
Wattenberg, M.5
-
61
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929-1958, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhut-Dinov, R.5
-
63
-
-
85025822329
-
Visual analysis of hidden state dynamics in recurrent neural networks
-
H. Strobelt, S. Gehrmann, B. Huber, H. Pfister, and A. M. Rush. Visual analysis of hidden state dynamics in recurrent neural networks. In Visualization in Data Science Symposium (VDS), 2016.
-
(2016)
Visualization in Data Science Symposium (VDS
-
-
Strobelt, H.1
Gehrmann, S.2
Huber, B.3
Pfister, H.4
Rush, A.M.5
-
64
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-9, 2015.
-
(2015)
Proceedings Ofthe IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
65
-
-
84879707297
-
EnsembleMatrix: Interactive visualization to support machine learning with multiple classifiers
-
ACM
-
J. Talbot, B. Lee, A. Kapoor, and D. S. Tan. EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers. In Proceedings ofthe SIGCHI Conference on Human Factors in Computing Systems, pages 1283-1292. ACM, 2009.
-
(2009)
Proceedings Ofthe SIGCHI Conference on Human Factors in Computing Systems
, pp. 1283-1292
-
-
Talbot, J.1
Lee, B.2
Kapoor, A.3
Tan, D.S.4
-
66
-
-
84973322569
-
Towards implicit complexity control using variable-depth deep neural networks for automatic speech recognition
-
IEEE
-
S. Tan and K. C. Sim. Towards implicit complexity control using variable-depth deep neural networks for automatic speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5965-5969. IEEE, 2016.
-
(2016)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
, pp. 5965-5969
-
-
Tan, S.1
Sim, K.C.2
-
67
-
-
33749429989
-
Opening the black box-data driven visualization of neural networks
-
F.-Y. Tzeng and K.-L. Ma. Opening the black box-data driven visualization of neural networks. In IEEE Visualization, pages 383-390, 2005.
-
(2005)
IEEE Visualization
, pp. 383-390
-
-
Tzeng, F.-Y.1
Ma, K.-L.2
-
70
-
-
34547317826
-
Classification visualization with shaded similarity matrix
-
J. Wang, B. Yu, and L. Gasser. Classification visualization with shaded similarity matrix. In IEEE Visualization, 2002.
-
(2002)
IEEE Visualization
-
-
Wang, J.1
Yu, B.2
Gasser, L.3
-
72
-
-
84973905350
-
HD-CNN: Hierarchical deep convolutional neural networks for large scale visual recognition
-
Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di, and Y. Yu. HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. In Proceedings ofthe IEEE International Conference on Computer Vision (ICCV), pages 2740-2748, 2015.
-
(2015)
Proceedings Ofthe IEEE International Conference on Computer Vision (ICCV
, pp. 2740-2748
-
-
Yan, Z.1
Zhang, H.2
Piramuthu, R.3
Jagadeesh, V.4
DeCoste, D.5
Di, W.6
Yu, Y.7
-
74
-
-
84959091021
-
Understanding neural networks through deep visualization
-
J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through deep visualization. In ICML Workshop on Deep Learning, 2015.
-
(2015)
ICML Workshop on Deep Learning
-
-
Yosinski, J.1
Clune, J.2
Nguyen, A.3
Fuchs, T.4
Lipson, H.5
-
77
-
-
85083952996
-
Object detectors emerge in deep scene CNNs
-
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep scene CNNs. In International Conference on Learning Representations (ICLR), 2015.
-
(2015)
International Conference on Learning Representations (ICLR
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
|