-
1
-
-
84946584360
-
ModelTracker: Redesigning performance analysis tools for machine learning
-
ACM
-
Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice Simard, and Jina Suh. 2015. ModelTracker: Redesigning Performance Analysis Tools for Machine Learning. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). ACM, 337-346.
-
(2015)
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15)
, pp. 337-346
-
-
Amershi, S.1
Chickering, M.2
Drucker, S.M.3
Lee, B.4
Simard, P.5
Suh, J.6
-
4
-
-
0037534150
-
Using neural network rule extraction and decision tables for credit-risk evaluation
-
(March 2003)
-
Bart Baesens, Rudy Setiono, Christophe Mues, and Jan Vanthienen. 2003. Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation. Manage. Sci. 49, 3 (March 2003), 312-329.
-
(2003)
Manage. Sci.
, vol.49
, Issue.3
, pp. 312-329
-
-
Baesens, B.1
Setiono, R.2
Mues, C.3
Vanthienen, J.4
-
5
-
-
0035478854
-
Random forests
-
(Oct. 2001)
-
Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct. 2001), 5-32.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
84954180053
-
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission
-
ACM
-
Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. 2015. Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15). ACM, 1721-1730.
-
(2015)
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15)
, pp. 1721-1730
-
-
Caruana, R.1
Lou, Y.2
Gehrke, J.3
Koch, P.4
Sturm, M.5
Elhadad, N.6
-
8
-
-
84906334449
-
Comprehensible classification models: A position paper
-
(2014)
-
Alex A Freitas. 2014. Comprehensible classification models: a position paper. ACM SIGKDD explorations newsletter 15, 1 (2014), 1-10.
-
(2014)
ACM SIGKDD Explorations Newsletter
, vol.15
, Issue.1
, pp. 1-10
-
-
Freitas, A.A.1
-
9
-
-
85030164208
-
-
(2017). [Online; accessed 2017-April-7]
-
David Gunning. 2017. Explainable Artificial Intelligence (XAI). http://www.darpa.mil/program/explainable-artificial-intelligence. (2017). [Online; accessed 2017-April-7].
-
(2017)
Explainable Artificial Intelligence (XAI)
-
-
Gunning, D.1
-
11
-
-
84910066488
-
INFUSE: Interactive feature selection for predictive modeling of high dimensional data
-
(Dec 2014)
-
Josua Krause, Adam Perer, and Enrico Bertini. 2014. INFUSE: Interactive Feature Selection for Predictive Modeling of High Dimensional Data. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec 2014), 1614-1623.
-
(2014)
IEEE Transactions on Visualization and Computer Graphics
, vol.20
, Issue.12
, pp. 1614-1623
-
-
Krause, J.1
Perer, A.2
Bertini, E.3
-
14
-
-
84999288596
-
Towards better analysis of deep convolutional neural networks
-
(2017)
-
Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu. 2017. Towards Better Analysis of Deep Convolutional Neural Networks. IEEE Transactions on Visualization and Computer Graphics 23, 1 (2017), 91-100.
-
(2017)
IEEE Transactions on Visualization and Computer Graphics
, vol.23
, Issue.1
, pp. 91-100
-
-
Liu, M.1
Shi, J.2
Li, Z.3
Li, C.4
Zhu, J.5
Liu, S.6
-
16
-
-
34447292534
-
Comprehensible credit scoring models using rule extraction from support vector machines
-
(2007)
-
David Martens, Bart Baesens, Tony Van Gestel, and Jan Vanthienen. 2007. Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research 183, 3 (2007), 1466 - 1476.
-
(2007)
European Journal of Operational Research
, vol.183
, Issue.3
, pp. 1466-1476
-
-
Martens, D.1
Baesens, B.2
Van-Gestel, T.3
Vanthienen, J.4
-
17
-
-
84919337364
-
Explaining data-driven document classifications
-
(March 2014)
-
David Martens and Foster Provost. 2014. Explaining Data-driven Document Classifications. MIS Q. 38, 1 (March 2014), 73-100.
-
(2014)
MIS Q.
, vol.38
, Issue.1
, pp. 73-100
-
-
Martens, D.1
Provost, F.2
-
18
-
-
84915819887
-
An approach to supporting incremental visual data classification
-
(Jan. 2015)
-
Jose Gustavo S Paiva, Sao Carlos, and Rosane Minghim. 2015. An approach to supporting incremental visual data classification. IEEE Transactions on Visualization and Computer Graphics 21, 1 (Jan. 2015), 4-17.
-
(2015)
IEEE Transactions on Visualization and Computer Graphics
, vol.21
, Issue.1
, pp. 4-17
-
-
Paiva, J.G.S.1
Carlos, S.2
Minghim, R.3
-
19
-
-
84998953869
-
Visualizing the hidden activity of artificial neural networks
-
(Jan. 2017)
-
Paulo E. Rauber, Samuel G. Fadel, Alexandre X. Falcao, and Alexandru C. Telea. 2017. Visualizing the Hidden Activity of Artificial Neural Networks. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 101-110.
-
(2017)
IEEE Transactions on Visualization and Computer Graphics
, vol.23
, Issue.1
, pp. 101-110
-
-
Rauber, P.E.1
Fadel, S.G.2
Falcao, A.X.3
Telea, A.C.4
-
21
-
-
84999287019
-
An analysis of machineand human-analytics in classification
-
(2017)
-
Gary K. L. Tam, Vivek Kothari, and Min Chen. 2017. An Analysis of Machineand Human-Analytics in Classification. IEEE Trans. Vis. Comput. Graph. 23, 1 (2017), 71-80.
-
(2017)
IEEE Trans. Vis. Comput. Graph.
, vol.23
, Issue.1
, pp. 71-80
-
-
Tam, G.K.L.1
Kothari, V.2
Chen, M.3
-
24
-
-
84947754719
-
Making machine learning models interpretable
-
Alfredo Vellido, Joséd. Martín-guerrero, and Paulo J. G. Lisboa. 2012. Making machine learning models interpretable. In In Proc. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Vol. 12. 163-172.
-
(2012)
Proc. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
, vol.12
, pp. 163-172
-
-
Vellido, A.1
Joséd, M.-G.2
Lisboa, P.J.G.3
|