메뉴 건너뛰기




Volumn 47, Issue 1, 2017, Pages 14-26

Exploring Representativeness and Informativeness for Active Learning

Author keywords

Active learning; classification informative and representative; informativeness; representativeness

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; CHARACTER RECOGNITION; CLASSIFICATION (OF INFORMATION); IMAGE RECOGNITION; IMAGE SEGMENTATION; ITERATIVE METHODS; OPTIMIZATION; RADIAL BASIS FUNCTION NETWORKS; TEXT PROCESSING;

EID: 85027542157     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2015.2496974     Document Type: Article
Times cited : (190)

References (62)
  • 1
    • 84978764118 scopus 로고    scopus 로고
    • Structure-preserving binary representations for RGB-D action recognition
    • M. Yu, L. Liu, and L. Shao, "Structure-preserving binary representations for RGB-D action recognition, " IEEE Trans. Pattern Anal. Mach. Intell., Doi: 10. 1109/TPAMI. 2015. 2491925.
    • IEEE Trans. Pattern Anal. Mach. Intell.
    • Yu, M.1    Liu, L.2    Shao, L.3
  • 2
    • 84957107416 scopus 로고    scopus 로고
    • A fast single image haze removal algorithm using color attenuation prior
    • Nov.
    • Q. Zhu, J. Mai, and L. Shao, "A fast single image haze removal algorithm using color attenuation prior, " IEEE Trans. Image Process., vol. 24, no. 11, pp. 3522-3533, Nov. 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.11 , pp. 3522-3533
    • Zhu, Q.1    Mai, J.2    Shao, L.3
  • 3
    • 84962090090 scopus 로고    scopus 로고
    • Classification with noisy labels by importance reweighting
    • T. Liu and D. Tao, "Classification with noisy labels by importance reweighting, " IEEE Trans. Pattern Anal. Mach. Intell., Doi: 10. 1109/TPAMI. 2015. 2456899.
    • IEEE Trans. Pattern Anal. Mach. Intell.
    • Liu, T.1    Tao, D.2
  • 4
    • 84960497436 scopus 로고    scopus 로고
    • Multi-view intact space learning
    • Dec.
    • C. Xu, D. Tao, and C. Xu, "Multi-view intact space learning, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 12, pp. 2531-2544, Dec. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.12 , pp. 2531-2544
    • Xu, C.1    Tao, D.2    Xu, C.3
  • 6
    • 84926214098 scopus 로고    scopus 로고
    • Principal component 2-D long shortterm memory for font recognition on single Chinese characters
    • D. Tao, X. Lin, L. Jin, and X. Li, "Principal component 2-D long shortterm memory for font recognition on single Chinese characters, " IEEE Trans. Cybern., Doi: 10. 1109/TCYB. 2015. 2414920.
    • IEEE Trans. Cybern.
    • Tao, D.1    Lin, X.2    Jin, L.3    Li, X.4
  • 7
    • 84944145006 scopus 로고    scopus 로고
    • Unsupervised local feature hashing for image similarity search
    • L. Liu, M. Yu, and L. Shao, "Unsupervised local feature hashing for image similarity search, " IEEE Trans. Cybern., Doi: 10. 1109/TCYB. 2015. 2480966.
    • IEEE Trans. Cybern.
    • Liu, L.1    Yu, M.2    Shao, L.3
  • 8
    • 84902279254 scopus 로고    scopus 로고
    • Weakly-supervised cross-domain dictionary learning for visual recognition
    • F. Zhu and L. Shao, "Weakly-supervised cross-domain dictionary learning for visual recognition, " Int. J. Comput. Vision, vol. 109, nos. 1-2, pp. 42-59, 2014.
    • (2014) Int. J. Comput. Vision , vol.109 , Issue.1-2 , pp. 42-59
    • Zhu, F.1    Shao, L.2
  • 9
    • 84930628204 scopus 로고    scopus 로고
    • Multiview alignment hashing for efficient image search
    • L. Liu, M. Yu, and L. Shao, "Multiview alignment hashing for efficient image search, " IEEE Trans. Image Process., vol. 24, no. 3, pp. 956-966, 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.3 , pp. 956-966
    • Liu, L.1    Yu, M.2    Shao, L.3
  • 10
    • 84877898929 scopus 로고    scopus 로고
    • Hessian regularized support vector machines for mobile image annotation on the cloud
    • D. Tao, L. Jin, W. Liu, and X. Li., "Hessian regularized support vector machines for mobile image annotation on the cloud, " IEEE Trans. Multimedia, vol. 15, no. 4, pp. 833-844, 2013.
    • (2013) IEEE Trans. Multimedia , vol.15 , Issue.4 , pp. 833-844
    • Tao, D.1    Jin, L.2    Liu, W.3    Li, X.4
  • 11
    • 68949137209 scopus 로고    scopus 로고
    • Dept. Comput. Sci., Univ. Wisconson-Madison, Madison, WI, USA, Tech. Rep. 1648
    • B. Settles, "Active learning literature survey, " Dept. Comput. Sci., Univ. Wisconson-Madison, Madison, WI, USA, Tech. Rep. 1648, 2009.
    • (2009) Active Learning Literature Survey
    • Settles, B.1
  • 12
    • 72949097899 scopus 로고    scopus 로고
    • Laplacian regularized D-optimal design for active learning and its application to image retrieval
    • Jan.
    • X. He, "Laplacian regularized D-optimal design for active learning and its application to image retrieval, " IEEE Trans. Image Process., vol. 19, no. 1, pp. 254-263, Jan. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.1 , pp. 254-263
    • He, X.1
  • 13
    • 80051991360 scopus 로고    scopus 로고
    • Active learning based on locally linear reconstruction
    • Oct.
    • L. Zhang et al., "Active learning based on locally linear reconstruction, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 10, pp. 2026-2038, Oct. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.10 , pp. 2026-2038
    • Zhang, L.1
  • 15
    • 80052686950 scopus 로고    scopus 로고
    • Online active inference and learning
    • San Diego, CA, USA
    • J. Attenberg and F. Provost, "Online active inference and learning, " in Proc. ACM SIGKDD, San Diego, CA, USA, 2011, pp. 186-194.
    • (2011) Proc. ACM SIGKDD , pp. 186-194
    • Attenberg, J.1    Provost, F.2
  • 16
    • 84886466626 scopus 로고    scopus 로고
    • Knowledge transfer for multi-labeler active learning
    • Prague, Czech Republic
    • M. Fang, J. Yin, and X. Zhu, "Knowledge transfer for multi-labeler active learning, " in Proc. ECML-PKDD, Prague, Czech Republic, 2013, pp. 273-288.
    • (2013) Proc. ECML-PKDD , pp. 273-288
    • Fang, M.1    Yin, J.2    Zhu, X.3
  • 17
    • 84907024748 scopus 로고    scopus 로고
    • Active collaborative permutation learning
    • New York, NY, USA
    • J. Wang, N. Srebro, and J. Evans, "Active collaborative permutation learning, " in Proc. ACM SIGKDD, New York, NY, USA, 2014, pp. 502-511.
    • (2014) Proc. ACM SIGKDD , pp. 502-511
    • Wang, J.1    Srebro, N.2    Evans, J.3
  • 18
    • 84885429252 scopus 로고    scopus 로고
    • OligoIS: Scalable instance selection for class-imbalanced data sets
    • Feb.
    • N. García-Pedrajas, J. Prez-Rodríguez, and A. de Haro-García, "OligoIS: Scalable instance selection for class-imbalanced data sets, " IEEE Trans. Cybern., vol. 43, no. 1, pp. 332-346, Feb. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.1 , pp. 332-346
    • García-Pedrajas, N.1    Prez-Rodríguez, J.2    De Haro-García, A.3
  • 19
    • 67649410207 scopus 로고    scopus 로고
    • Unsupervised active learning based on hierarchical graph-theoretic clustering
    • Oct.
    • W. Hu, W. Hu, N. Xie, and S. Maybank, "Unsupervised active learning based on hierarchical graph-theoretic clustering, " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 5, pp. 1147-1161, Oct. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.39 , Issue.5 , pp. 1147-1161
    • Hu, W.1    Hu, W.2    Xie, N.3    Maybank, S.4
  • 20
    • 77949772591 scopus 로고    scopus 로고
    • Active learning of plans for safety and reachability goals with partial observability
    • Apr.
    • W. Nam and R. Alur, "Active learning of plans for safety and reachability goals with partial observability, " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 2, pp. 412-420, Apr. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.40 , Issue.2 , pp. 412-420
    • Nam, W.1    Alur, R.2
  • 21
    • 85027958625 scopus 로고    scopus 로고
    • Active learning with imbalanced multiple noisy labeling
    • Aug.
    • J. Zhang, X. Wu, and V. S. Sheng, "Active learning with imbalanced multiple noisy labeling, " IEEE Trans. Cybern., vol. 45, no. 5, pp. 1081-1093, Aug. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.5 , pp. 1081-1093
    • Zhang, J.1    Wu, X.2    Sheng, V.S.3
  • 22
    • 78649975675 scopus 로고    scopus 로고
    • Active learning from stream data using optimal weight classifier ensemble
    • Dec.
    • X. Zhu, P. Zhang, Y. Shi, and X. Lin, "Active learning from stream data using optimal weight classifier ensemble, " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 6, pp. 1607-1621, Dec. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.40 , Issue.6 , pp. 1607-1621
    • Zhu, X.1    Zhang, P.2    Shi, Y.3    Lin, X.4
  • 23
    • 84911449013 scopus 로고    scopus 로고
    • Hierarchical subquery evaluation for active learning on a graph
    • Columbus, OH, USA
    • O. M. Aodha, N. D. F. Campbell, J. Kautz, and G. J. Brostow, "Hierarchical subquery evaluation for active learning on a graph, " in Proc. CVPR, Columbus, OH, USA, 2014, pp. 564-571.
    • (2014) Proc. CVPR , pp. 564-571
    • Aodha, O.M.1    Campbell, N.D.F.2    Kautz, J.3    Brostow, G.J.4
  • 24
    • 84898808985 scopus 로고    scopus 로고
    • A convex optimization framework for active learning
    • Sydney, NSW, Australia
    • E. Elhamifar, G. Sapiro, A. Yang, and S. S. Sastry, "A convex optimization framework for active learning, " in Proc. ICCV, Sydney, NSW, Australia, 2013, pp. 209-216.
    • (2013) Proc. ICCV , pp. 209-216
    • Elhamifar, E.1    Sapiro, G.2    Yang, A.3    Sastry, S.S.4
  • 25
    • 84890425291 scopus 로고    scopus 로고
    • Active learning with optimal instance subset selection
    • Apr.
    • Y. Fu, X. Zhu, and A. K. Elmagarmid, "Active learning with optimal instance subset selection, " IEEE Trans. Cybern., vol. 43, no. 2, pp. 464-475, Apr. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.2 , pp. 464-475
    • Fu, Y.1    Zhu, X.2    Elmagarmid, A.K.3
  • 26
    • 84893248227 scopus 로고    scopus 로고
    • Active learning for multi-objective optimization
    • Atlanta, GA, USA
    • M. Zuluaga, G. Sergent, A. Krause, and M. Püschel, "Active learning for multi-objective optimization, " in Proc. ICML, Atlanta, GA, USA, 2013, pp. 462-470.
    • (2013) Proc. ICML , pp. 462-470
    • Zuluaga, M.1    Sergent, G.2    Krause, A.3    Püschel, M.4
  • 27
    • 84897564027 scopus 로고    scopus 로고
    • Efficient active learning of halfspaces: An aggressive approach
    • Atlanta, GA, USA
    • A. Gonen, S. Sabato, and S. Shalev-Shwartz, "Efficient active learning of halfspaces: An aggressive approach, " in Proc. ICML, Atlanta, GA, USA, 2013, pp. 480-488.
    • (2013) Proc. ICML , pp. 480-488
    • Gonen, A.1    Sabato, S.2    Shalev-Shwartz, S.3
  • 28
    • 84922580023 scopus 로고    scopus 로고
    • Active learning by querying informative and representative examples
    • Oct.
    • S. J. Huang, R. Jin, and Z. H. Zhou, "Active learning by querying informative and representative examples, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 10, pp. 1936-1949, Oct. 2014.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.10 , pp. 1936-1949
    • Huang, S.J.1    Jin, R.2    Zhou, Z.H.3
  • 29
    • 84876133796 scopus 로고    scopus 로고
    • Sparse coding from a Bayesian perspective
    • Jun.
    • X. Lu, Y. Wang, and Y. Yuan, "Sparse coding from a Bayesian perspective, " IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 6, pp. 929-939, Jun. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.6 , pp. 929-939
    • Lu, X.1    Wang, Y.2    Yuan, Y.3
  • 30
    • 84896314517 scopus 로고    scopus 로고
    • Double constrained NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, and Y. Yuan, "Double constrained NMF for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2746-2758, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2746-2758
    • Lu, X.1    Wu, H.2    Yuan, Y.3
  • 31
    • 84880066314 scopus 로고    scopus 로고
    • Graph-regularized low-rank representation for destriping of hyperspectral images
    • Jul.
    • X. Lu, Y. Wang, and Y. Yuan, "Graph-regularized low-rank representation for destriping of hyperspectral images, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 4009-4018, Jul. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.7 , pp. 4009-4018
    • Lu, X.1    Wang, Y.2    Yuan, Y.3
  • 32
    • 84897725519 scopus 로고    scopus 로고
    • Image super-resolution via double sparsity regularized manifold learning
    • Dec.
    • X. Lu, Y. Yuan, and P. Yan, "Image super-resolution via double sparsity regularized manifold learning, " IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 12, pp. 2022-2033, Dec. 2013.
    • (2013) IEEE Trans. Circuits Syst. Video Technol. , vol.23 , Issue.12 , pp. 2022-2033
    • Lu, X.1    Yuan, Y.2    Yan, P.3
  • 33
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 34
    • 84907033525 scopus 로고    scopus 로고
    • Active learning for sparse Bayesian multilabel classification
    • New York, NY, USA
    • D. Vasisht, A. Damianou, M. Varma, and A. Kapoor, "Active learning for sparse Bayesian multilabel classification, " in Proc. ACM SIGKDD, New York, NY, USA, 2014, pp. 472-481.
    • (2014) Proc. ACM SIGKDD , pp. 472-481
    • Vasisht, D.1    Damianou, A.2    Varma, M.3    Kapoor, A.4
  • 37
    • 79952368651 scopus 로고    scopus 로고
    • Active learning in multimedia annotation and retrieval: A survey
    • M. Wang and X.-S. Hua, "Active learning in multimedia annotation and retrieval: A survey, " ACM Trans. Intell. Syst. Technol., vol. 2, no. 2, pp. 1-21, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.2 , pp. 1-21
    • Wang, M.1    Hua, X.-S.2
  • 38
    • 84897484375 scopus 로고    scopus 로고
    • Near-optimal batch mode active learning and adaptive submodular optimization
    • Y. Chen and A. Krause, "Near-optimal batch mode active learning and adaptive submodular optimization, " J. Mach. Learn. Res., vol. 28, no. 1, pp. 160-168, 2013.
    • (2013) J. Mach. Learn. Res. , vol.28 , Issue.1 , pp. 160-168
    • Chen, Y.1    Krause, A.2
  • 39
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification, " J. Mach. Learn. Res., vol. 2, pp. 45-66, 2001.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 40
    • 84863267844 scopus 로고    scopus 로고
    • Uncertainty-based active learning with instability estimation for text classification
    • J. Zhu and M. Ma, "Uncertainty-based active learning with instability estimation for text classification, " ACM Trans. Speech Lang. Process., vol. 8, no. 4, pp. 1-21, 2012.
    • (2012) ACM Trans. Speech Lang. Process. , vol.8 , Issue.4 , pp. 1-21
    • Zhu, J.1    Ma, M.2
  • 41
    • 84877778022 scopus 로고    scopus 로고
    • Bayesian active learning with localized priors for fast receptive field characterization
    • Nevada City, CA, USA
    • M. Park and J. W. Pillow, "Bayesian active learning with localized priors for fast receptive field characterization, " in Proc. NIPS, Nevada City, CA, USA, 2012, pp. 2357-2365.
    • (2012) Proc. NIPS , pp. 2357-2365
    • Park, M.1    Pillow, J.W.2
  • 42
    • 84898968890 scopus 로고    scopus 로고
    • Latent structured active learning
    • Lake Tahoe, CA, USA
    • W. Luo, A. Schwing, and R. Urtasun, "Latent structured active learning, " in Proc. NIPS, Lake Tahoe, CA, USA, 2013, pp. 728-736.
    • (2013) Proc. NIPS , pp. 728-736
    • Luo, W.1    Schwing, A.2    Urtasun, R.3
  • 43
    • 84898957551 scopus 로고    scopus 로고
    • Active learning for probabilistic hypotheses using the maximum Gibbs error criterion
    • Lake Tahoe, CA, USA
    • N. V. Cuong, W. S. Lee, N. Ye, K. M. A. Chai, and H. L. Chieu, "Active learning for probabilistic hypotheses using the maximum Gibbs error criterion, " in Proc. NIPS, Lake Tahoe, CA, USA, 2013, pp. 1457-1465.
    • (2013) Proc. NIPS , pp. 1457-1465
    • Cuong, N.V.1    Lee, W.S.2    Ye, N.3    Chai, K.M.A.4    Chieu, H.L.5
  • 44
    • 84861449161 scopus 로고    scopus 로고
    • Active learning for hierarchical text classification
    • Berlin, Germany: Springer
    • X. Li, D. Kuang, and C. X. Ling, "Active learning for hierarchical text classification, " in Advances in Knowledge Discovery and Data Mining, Berlin, Germany: Springer, 2012, pp. 14-25.
    • (2012) Advances in Knowledge Discovery and Data Mining , pp. 14-25
    • Li, X.1    Kuang, D.2    Ling, C.X.3
  • 45
    • 84888318327 scopus 로고    scopus 로고
    • Clustering based active learning for evolving data streams
    • Berlin, Germany: Springer
    • I. Dino, B. Albert, Z. Indre, and P. Bernhard, "Clustering based active learning for evolving data streams, " in Discovery Science, Berlin, Germany: Springer, 2013, pp. 79-93.
    • (2013) Discovery Science , pp. 79-93
    • Dino, I.1    Albert, B.2    Indre, Z.3    Bernhard, P.4
  • 46
    • 84866039306 scopus 로고    scopus 로고
    • Batch mode active sampling based on marginal probability distribution matching
    • Beijing, China
    • R. Chattopadhyay et al., "Batch mode active sampling based on marginal probability distribution matching, " in Proc. ACM SIGKDD, Beijing, China, 2012, pp. 741-749.
    • (2012) Proc. ACM SIGKDD , pp. 741-749
    • Chattopadhyay, R.1
  • 47
    • 84897441570 scopus 로고    scopus 로고
    • Active learning without knowing individual instance labels: A pairwise label homogeneity query approach
    • Apr.
    • Y. Fu, B. Li, X. Zhu, and C. Zhang, "Active learning without knowing individual instance labels: A pairwise label homogeneity query approach, " IEEE Trans. Knowl. Data Eng., vol. 26, no. 4, pp. 808-822, Apr. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.4 , pp. 808-822
    • Fu, Y.1    Li, B.2    Zhu, X.3    Zhang, C.4
  • 48
    • 84922594422 scopus 로고    scopus 로고
    • Transductive active learning- A new semi-supervised learning approach based on iteratively refined generative models to capture structure in data
    • Feb.
    • T. Reitmaier, A. Calma, and B. Sick, "Transductive active learning- A new semi-supervised learning approach based on iteratively refined generative models to capture structure in data, " Inf. Sci., vol. 293, pp. 275-298, Feb. 2015.
    • (2015) Inf. Sci. , vol.293 , pp. 275-298
    • Reitmaier, T.1    Calma, A.2    Sick, B.3
  • 49
    • 85016811324 scopus 로고    scopus 로고
    • Querying discriminative and representative samples for batch mode active learning
    • San Jose, CA, USA
    • Z. Wang and J. Ye, "Querying discriminative and representative samples for batch mode active learning, " in Proc. ACM SIGKDD, San Jose, CA, USA, 2013, pp. 158-166.
    • (2013) Proc. ACM SIGKDD , pp. 158-166
    • Wang, Z.1    Ye, J.2
  • 50
    • 84885613809 scopus 로고    scopus 로고
    • Combining semi-supervised and active learning for hyperspectral image classification
    • Singapore
    • M. Li, R. Wang, and K. Tang, "Combining semi-supervised and active learning for hyperspectral image classification, " in Proc. CIDM, Singapore, 2013, pp. 89-94.
    • (2013) Proc. CIDM , pp. 89-94
    • Li, M.1    Wang, R.2    Tang, K.3
  • 51
    • 78650296072 scopus 로고    scopus 로고
    • Combining committee-based semisupervised learning and active learning
    • M. F. A. Hady and F. Schwenker, "Combining committee-based semisupervised learning and active learning, " J. Comput. Sci. Technol., vol. 25, no. 4, pp. 681-698, 2010.
    • (2010) J. Comput. Sci. Technol. , vol.25 , Issue.4 , pp. 681-698
    • Hady, M.F.A.1    Schwenker, F.2
  • 54
    • 78649934709 scopus 로고    scopus 로고
    • School Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep. 213
    • A. Frank and A. Asuncion, "UCI Machine Learning Repository, " School Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep. 213, 2010.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 56
    • 0001872520 scopus 로고
    • Central limit theorem for integrated square error of multivariate nonparametric density estimators
    • P. Hall, "Central limit theorem for integrated square error of multivariate nonparametric density estimators, " J. Multivariate Anal., vol. 14, no. 1, pp. 1-16, 1984.
    • (1984) J. Multivariate Anal. , vol.14 , Issue.1 , pp. 1-16
    • Hall, P.1
  • 57
    • 0001912663 scopus 로고
    • Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates
    • N. H. Anderson, P. Hall, and D. M. Titterington, "Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates, " J. Multivariate Anal., vol. 50, no. 1, pp. 41-54, 1994.
    • (1994) J. Multivariate Anal. , vol.50 , Issue.1 , pp. 41-54
    • Anderson, N.H.1    Hall, P.2    Titterington, D.M.3
  • 58
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • Cambridge, U. K.: Cambridge Univ. Press
    • C. McDiarmid, "On the method of bounded differences, " in Surveys Combinatorics, vol. 141. Cambridge, U. K.: Cambridge Univ. Press, 1989, pp. 148-188.
    • (1989) Surveys Combinatorics , vol.141 , pp. 148-188
    • McDiarmid, C.1
  • 59
    • 78649326338 scopus 로고    scopus 로고
    • Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions
    • Jan.
    • K. Chen and S. Wang, "Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 129-143, Jan. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.1 , pp. 129-143
    • Chen, K.1    Wang, S.2
  • 60
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • L. Zhang et al., "Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding, " Pattern Recognit., vol. 48, no. 10, pp. 3102-3112, 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.1
  • 61
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines, " ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011, Art. ID 21.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3
    • Chang, C.-C.1    Lin, C.-J.2
  • 62
    • 84928737713 scopus 로고    scopus 로고
    • Leveraging in-batch annotation bias for crowdsourced active learning
    • Shanghai, China
    • H. Zhuang and J. Young, "Leveraging in-batch annotation bias for crowdsourced active learning, " in Proc. ACM WSDM, Shanghai, China, 2015, pp. 243-252.
    • (2015) Proc. ACM WSDM , pp. 243-252
    • Zhuang, H.1    Young, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.