메뉴 건너뛰기




Volumn 3, Issue 2, 2016, Pages 119-131

Interactive machine learning for health informatics: when do we need the human-in-the-loop?

Author keywords

Health informatics; Interactive machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; COMPUTATIONAL COMPLEXITY; HEALTH; HEURISTIC ALGORITHMS; REINFORCEMENT LEARNING; SPEECH RECOGNITION;

EID: 85048560245     PISSN: 21984018     EISSN: 21984026     Source Type: Journal    
DOI: 10.1007/s40708-016-0042-6     Document Type: Article
Times cited : (751)

References (98)
  • 1
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):210–229
    • (1959) IBM J Res Dev , vol.3 , Issue.3 , pp. 210-229
    • Samuel, A.L.1
  • 2
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: trends, perspectives, and prospects
    • Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260
    • (2015) Science , vol.349 , Issue.6245 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 3
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 4
    • 0001185873 scopus 로고
    • An essay towards solving a problem in the doctrine of chances (posthumous communicated by Richard Price)
    • Bayes T (1763) An essay towards solving a problem in the doctrine of chances (posthumous communicated by Richard Price). Philos Trans 53:370–418
    • (1763) Philos Trans , vol.53 , pp. 370-418
    • Bayes, T.1
  • 5
    • 0002096055 scopus 로고
    • Studies in the history of probability and statistics: IX. Thomas Bayes’s essay towards solving a problem in the doctrine of chances
    • Barnard GA, Bayes T (1958) Studies in the history of probability and statistics: IX. Thomas Bayes’s essay towards solving a problem in the doctrine of chances. Biometrika 45(3/4):293–315
    • (1958) Biometrika , vol.45 , Issue.3-4 , pp. 293-315
    • Barnard, G.A.1    Bayes, T.2
  • 9
    • 38349162051 scopus 로고    scopus 로고
    • Zhong N, Liu JM, Yao YY, Wu JL, Lu SF, Li KC, (eds), Lecture Notes in Artificial Intellience 4845, Springer, Berlin
    • Zhong N, Liu JM, Yao YY, Wu JL, Lu SF, Qin YL, Li KC, Wah B (2007) Web intelligence meets brain informatics. In: Zhong N, Liu JM, Yao YY, Wu JL, Lu SF, Li KC (eds) Web intelligence meets brain informatics., Lecture Notes in Artificial Intellience 4845Springer, Berlin, pp 1–31
    • (2007) Web intelligence meets brain informatics , pp. 1-31
    • Zhong, N.1    Liu, J.M.2    Yao, Y.Y.3    Wu, J.L.4    Lu, S.F.5    Qin, Y.L.6    Li, K.C.7    Wah, B.8
  • 10
    • 85006376999 scopus 로고    scopus 로고
    • Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning
    • Holzinger A (2014) Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. IEEE Intell Inform Bull 15(1):6–14
    • (2014) IEEE Intell Inform Bull , vol.15 , Issue.1 , pp. 6-14
    • Holzinger, A.1
  • 13
    • 84905228273 scopus 로고    scopus 로고
    • Knowledge discovery and interactive data mining in bioinformatics-state-of-the-art, future challenges and research directions
    • Holzinger A, Dehmer M, Jurisica I (2014) Knowledge discovery and interactive data mining in bioinformatics-state-of-the-art, future challenges and research directions. BMC Bioinform 15(S6):I1
    • (2014) BMC Bioinform , vol.15 , Issue.S6 , pp. I1
    • Holzinger, A.1    Dehmer, M.2    Jurisica, I.3
  • 14
    • 84946747098 scopus 로고    scopus 로고
    • Google car takes the test
    • Spinrad N (2014) Google car takes the test. Nature 514(7523):528–528
    • (2014) Nature , vol.514 , Issue.7523 , pp. 528
    • Spinrad, N.1
  • 16
    • 84885807915 scopus 로고    scopus 로고
    • Human–computer interaction and knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together?
    • Cuzzocrea A, Kittl C, Simos DE, Weippl E, Lida X, (eds), Springer Lecture Notes in Computer Science LNCS 8127, Springer, Heidelberg
    • Holzinger A (2013) Human–computer interaction and knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Cuzzocrea A, Kittl C, Simos DE, Weippl E, Lida X (eds) Multidisciplinary research and practice for information systems., Springer Lecture Notes in Computer Science LNCS 8127Springer, Heidelberg, pp 319–328
    • (2013) Multidisciplinary research and practice for information systems , pp. 319-328
    • Holzinger, A.1
  • 18
    • 0020920305 scopus 로고
    • Massively parallel architectures for Al: NETL, Thistle, and Boltzmann machines
    • Genesereth MR, (ed), AAAI, Washington, DC
    • Fahlman SE, Hinton GE, Sejnowski TJ (1983) Massively parallel architectures for Al: NETL, Thistle, and Boltzmann machines. In: Genesereth MR (ed) AAAI-83. AAAI, Washington, DC, pp 109–113
    • (1983) AAAI-83 , pp. 109-113
    • Fahlman, S.E.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 20
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1–2):177–196
    • (2001) Mach Learn , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 21
    • 84905218519 scopus 로고    scopus 로고
    • Biomedical text mining: state-of-the-art, open problems and future challenges
    • Holzinger A, Jurisica I, (eds), Lecture Notes in Computer Science LNCS 8401, volume 8401, Springer, Berlin
    • Holzinger A, Schantl J, Schroettner M, Seifert C, Verspoor Karin (2014) Biomedical text mining: state-of-the-art, open problems and future challenges. In: Holzinger A, Jurisica I (eds) Interactive knowledge discovery and data mining in biomedical informatics., Lecture Notes in Computer Science LNCS 8401, volume 8401Springer, Berlin, pp 271–300
    • (2014) Interactive knowledge discovery and data mining in biomedical informatics , pp. 271-300
    • Holzinger, A.1    Schantl, J.2    Schroettner, M.3    Seifert, C.4    Verspoor, K.5
  • 22
  • 24
    • 85048541432 scopus 로고    scopus 로고
    • Wilson AG, Dann C, Lucas, Xing EP The human kernel. arXiv preprint arXiv:1510.07389
    • Wilson AG, Dann C, Lucas, Xing EP (2015) The human kernel. arXiv preprint arXiv:1510.07389
    • (2015)
  • 25
    • 84945939718 scopus 로고    scopus 로고
    • Witnesses for the doctor in the loop
    • Guo Y, Friston K, Aldo F, Hill S, Peng H, (eds), Lecture Notes in Artificial Intelligence LNAI 9250, Springer, heidelberg
    • Kieseberg P, Schantl J, Früwirt P, Weippl E, Holzinger A (2015) Witnesses for the doctor in the loop. In: Guo Y, Friston K, Aldo F, Hill S, Peng H (eds) Brain informatics and health., Lecture Notes in Artificial Intelligence LNAI 9250Springer, heidelberg, pp 369–378
    • (2015) Brain informatics and health , pp. 369-378
    • Kieseberg, P.1    Schantl, J.2    Früwirt, P.3    Weippl, E.4    Holzinger, A.5
  • 26
    • 33746036483 scopus 로고    scopus 로고
    • Introspective subgroup analysis for interactive knowledge refinement. In Sutcliffe G, Goebel R (ed), FLAIRS nineteenth international florida artificial intelligence research society conference
    • Atzmüller M, Baumeister J, Puppe F (2006) Introspective subgroup analysis for interactive knowledge refinement. In Sutcliffe G, Goebel R (ed), FLAIRS nineteenth international florida artificial intelligence research society conference. AAAI Press, pp 402–407
    • (2006) AAAI Press , pp. 402-407
    • Atzmüller, M.1    Baumeister, J.2    Puppe, F.3
  • 27
    • 77956001401 scopus 로고    scopus 로고
    • Finding meaning on YouTube: tag recommendation and category discovery. In IEEE conference on computer vision and pattern recognition (CVPR 2010)
    • G Toderici, H Aradhye, M Paca, L Sbaiz, J Yagnik (2010) Finding meaning on YouTube: tag recommendation and category discovery. In IEEE conference on computer vision and pattern recognition (CVPR 2010), IEEE, pp 3447–3454
    • (2010) IEEE , pp. 3447-3454
    • Toderici, G.1    Aradhye, H.2    Paca, M.3    Sbaiz, L.4    Yagnik, J.5
  • 28
    • 85006418960 scopus 로고    scopus 로고
    • Discovering medical knowledge using visual analytics a survey on methods for systems biology and omics data. In Bühler K, Linsen L, John NW (eds) Eurographics workshop on visual computing for biology and medicine
    • Sturm W, Schreck T, Holzinger A, Ullrich T (2015) Discovering medical knowledge using visual analytics a survey on methods for systems biology and omics data. In Bühler K, Linsen L, John NW (eds) Eurographics workshop on visual computing for biology and medicine, Eurographics EG, pp 71–81
    • (2015) Eurographics EG , pp. 71-81
    • Sturm, W.1    Schreck, T.2    Holzinger, A.3    Ullrich, T.4
  • 29
    • 65449157709 scopus 로고    scopus 로고
    • Morpheus: interactive exploration of subspace clustering. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining KDD 08, ACM
    • Müller E, Assent I, Krieger R, Jansen T, Seidl T (2008) Morpheus: interactive exploration of subspace clustering. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining KDD 08, ACM, pp 1089–1092
    • (2008) pp 1089–1092
    • Müller, E.1    Assent, I.2    Krieger, R.3    Jansen, T.4    Seidl, T.5
  • 30
    • 84945899836 scopus 로고    scopus 로고
    • Analysis of patient groups and immunization results based on subspace clustering
    • Guo Y, Friston K, Aldo F, Hill S, Peng H, (eds), Lecture Notes in Artificial Intelligence LNAI 9250, vol 9250, Springer International Publishing, Cham
    • Hund M, Sturm W, Schreck T, Ullrich T, Keim D, Majnaric L, Holzinger A (2015) Analysis of patient groups and immunization results based on subspace clustering. In: Guo Y, Friston K, Aldo F, Hill S, Peng H (eds) Brain informatics and health., Lecture Notes in Artificial Intelligence LNAI 9250, vol 9250Springer International Publishing, Cham, pp 358–368
    • (2015) Brain informatics and health , pp. 358-368
    • Hund, M.1    Sturm, W.2    Schreck, T.3    Ullrich, T.4    Keim, D.5    Majnaric, L.6    Holzinger, A.7
  • 31
    • 34250926052 scopus 로고
    • The analysis of proximities: multidimensional scaling with an unknown distance function
    • Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27(2):125–140
    • (1962) Psychometrika , vol.27 , Issue.2 , pp. 125-140
    • Shepard, R.N.1
  • 32
    • 84878964157 scopus 로고    scopus 로고
    • Comparison
    • Glatzeder B, Goel V, Müller A, (eds), Springer, Berlin
    • Goldstone RL, Day S, Son JY (2010) Comparison. In: Glatzeder B, Goel V, Müller A (eds) Towards a theory of thinking. Springer, Berlin, pp 103–121
    • (2010) Towards a theory of thinking , pp. 103-121
    • Goldstone, R.L.1    Day, S.2    Son, J.Y.3
  • 33
    • 85048548293 scopus 로고    scopus 로고
    • Local algorithms for interactive clustering. In: Proceedings of the 31th international conference on machine learning
    • Awasthi P, Balcan M-F, Voevodski K (2014) Local algorithms for interactive clustering. In: Proceedings of the 31th international conference on machine learning, pp 550–558
    • (2014) pp 550–558
    • Awasthi, P.1    Balcan, M.-F.2    Voevodski, K.3
  • 35
    • 0028015988 scopus 로고
    • The protein threading problem with sequence amino-acid interaction preferences is np-complete
    • Lathrop RH (1994) The protein threading problem with sequence amino-acid interaction preferences is np-complete. Protein Eng 7(9):1059–1068
    • (1994) Protein Eng , vol.7 , Issue.9 , pp. 1059-1068
    • Lathrop, R.H.1
  • 36
    • 84880973546 scopus 로고    scopus 로고
    • Crowdsourcing for bioinformatics
    • Good BM, Andrew I (2013) Crowdsourcing for bioinformatics. Bioinformatics 29(16):1925–1933
    • (2013) Bioinformatics , vol.29 , Issue.16 , pp. 1925-1933
    • Good, B.M.1    Andrew, I.2
  • 38
    • 84948712005 scopus 로고    scopus 로고
    • Collective intelligence for translational medicine: Crowdsourcing insights and innovation from an interdisciplinary biomedical research community
    • Jane Budge E, Maria Tsoti S, James Howgate D, Sivakumar S, Jalali M (2015) Collective intelligence for translational medicine: Crowdsourcing insights and innovation from an interdisciplinary biomedical research community. Ann Med 47(7):570–575
    • (2015) Ann Med , vol.47 , Issue.7 , pp. 570-575
    • Jane Budge, E.1    Maria Tsoti, S.2    James Howgate, D.3    Sivakumar, S.4    Jalali, M.5
  • 39
    • 33745629638 scopus 로고    scopus 로고
    • On k-anonymity and the curse of dimensionality. In: Proceedings of the 31st international conference on Very large data bases VLDB
    • Aggarwal CC (2005) On k-anonymity and the curse of dimensionality. In: Proceedings of the 31st international conference on Very large data bases VLDB, pp 901–909
    • (2005) pp 901–909
    • Aggarwal, C.C.1
  • 41
    • 0036811143 scopus 로고    scopus 로고
    • Achieving k-anonymity privacy protection using generalization and suppression
    • Sweeney L (2002) Achieving k-anonymity privacy protection using generalization and suppression. Int J Uncertain Fuzziness Knowl Based Syst 10(5):571–588
    • (2002) Int J Uncertain Fuzziness Knowl Based Syst , vol.10 , Issue.5 , pp. 571-588
    • Sweeney, L.1
  • 43
    • 34548805858 scopus 로고    scopus 로고
    • Li N, Li T, Venkatasubramanian S () t-Closeness: privacy beyond k-anonymity and l-diversity. ICDE 2007, IEEE, pp 106–115
    • Li N, Li T, Venkatasubramanian S (2007) t-Closeness: privacy beyond k-anonymity and l-diversity. In: IEEE 23rd international conference on data engineering, ICDE 2007, IEEE, pp 106–115
    • (2007) In: IEEE 23rd international conference on data engineering
  • 44
    • 77951765129 scopus 로고    scopus 로고
    • Delta-presence without complete world knowledge
    • Nergiz ME, Clifton C (2010) Delta-presence without complete world knowledge. IEEE Trans Knowl Data Eng 22(6):868–883
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , Issue.6 , pp. 868-883
    • Nergiz, M.E.1    Clifton, C.2
  • 45
    • 0002988210 scopus 로고
    • Computing machinery and intelligence
    • Turing AM (1950) Computing machinery and intelligence. Mind 59(236):433–460
    • (1950) Mind , vol.59 , Issue.236 , pp. 433-460
    • Turing, A.M.1
  • 46
    • 84930647882 scopus 로고    scopus 로고
    • Reinforcement learning improves behaviour from evaluative feedback
    • Littman ML (2015) Reinforcement learning improves behaviour from evaluative feedback. Nature 521(7553):445–451
    • (2015) Nature , vol.521 , Issue.7553 , pp. 445-451
    • Littman, M.L.1
  • 48
    • 77955790905 scopus 로고    scopus 로고
    • Algorithms for reinforcement learning
    • Szepesvri C (2010) Algorithms for reinforcement learning. Synth Lect Artif Intell Mach Learn 4(1):1–103
    • (2010) Synth Lect Artif Intell Mach Learn , vol.4 , Issue.1 , pp. 1-103
    • Szepesvri, C.1
  • 53
    • 80052975468 scopus 로고    scopus 로고
    • Effect of human guidance and state space size on interactive reinforcement learning. In: 20th IEEE international symposium on robot and human interactive communication. IEEE
    • Suay HB, Chernova S (2011) Effect of human guidance and state space size on interactive reinforcement learning. In: 20th IEEE international symposium on robot and human interactive communication. IEEE, pp 1–6
    • (2011) pp 1–6
    • Suay, H.B.1    Chernova, S.2
  • 54
    • 84894644116 scopus 로고    scopus 로고
    • Multiagent-based simulation of temporal-spatial characteristics of activity-travel patterns using interactive reinforcement learning
    • Yang M, Yang YX, Wang W, Ding HY, Chen J (2014) Multiagent-based simulation of temporal-spatial characteristics of activity-travel patterns using interactive reinforcement learning. Math Probl Eng. doi:10.1155/2014/951367
    • (2014) Math Probl Eng
    • Yang, M.1    Yang, Y.X.2    Wang, W.3    Ding, H.Y.4    Chen, J.5
  • 56
    • 17444418317 scopus 로고    scopus 로고
    • Learning to rank
    • Trotman A (2005) Learning to rank. Inf Retr 8(3):359–381
    • (2005) Inf Retr , vol.8 , Issue.3 , pp. 359-381
    • Trotman, A.1
  • 58
    • 85048592501 scopus 로고    scopus 로고
    • Learning to rank
    • Schlkopf B: Platt JC (eds) NIPS Workshop
    • Agarwal S, Cortes C, Herbrich R (2005) Learning to rank. In: Weiss Y, Schlkopf B, Platt JC (eds) NIPS Workshop
    • (2005) In: Weiss Y
    • Agarwal, S.1    Cortes, C.2    Herbrich, R.3
  • 61
    • 0034609774 scopus 로고    scopus 로고
    • Minimization of Boolean complexity in human concept learning
    • Feldman J (2000) Minimization of Boolean complexity in human concept learning. Nature 407(6804):630–633
    • (2000) Nature , vol.407 , Issue.6804 , pp. 630-633
    • Feldman, J.1
  • 62
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • Lake BM, Salakhutdinov R, Tenenbaum JB (2015) Human-level concept learning through probabilistic program induction. Science 350(6266):1332–1338
    • (2015) Science , vol.350 , Issue.6266 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 64
    • 31844453751 scopus 로고    scopus 로고
    • Preference learning with gaussian processes. In: Proceedings of the 22nd international conference on machine learning. ACM
    • Chu W, Ghahramani Z (2005) Preference learning with gaussian processes. In: Proceedings of the 22nd international conference on machine learning. ACM, pp 137–144
    • (2005) pp 137–144
    • Chu, W.1    Ghahramani, Z.2
  • 65
    • 58149426837 scopus 로고
    • A law of comparative judgment
    • Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34(4):273–286
    • (1927) Psychol Rev , vol.34 , Issue.4 , pp. 273-286
    • Thurstone, L.L.1
  • 66
    • 0001491619 scopus 로고
    • A mathematical model for simple learning
    • Bush RR, Mosteller F (1951) A mathematical model for simple learning. Psychol Rev 58(5):313–323
    • (1951) Psychol Rev , vol.58 , Issue.5 , pp. 313-323
    • Bush, R.R.1    Mosteller, F.2
  • 67
    • 84865214307 scopus 로고    scopus 로고
    • Preference-based reinforcement learning: a formal framework and a policy iteration algorithm
    • Fürnkranz J, Hüllermeier E, Cheng W, Park S-H (2012) Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Mach Learn 89(1–2):123–156
    • (2012) Mach Learn , vol.89 , Issue.1-2 , pp. 123-156
    • Fürnkranz, J.1    Hüllermeier, E.2    Cheng, W.3    Park, S.-H.4
  • 68
    • 70449449564 scopus 로고    scopus 로고
    • Reinforcement learning design for cancer clinical trials
    • Zhao Y, Kosorok MR, Zeng D (2009) Reinforcement learning design for cancer clinical trials. Stat Med 28(26):3294–3315
    • (2009) Stat Med , vol.28 , Issue.26 , pp. 3294-3315
    • Zhao, Y.1    Kosorok, M.R.2    Zeng, D.3
  • 71
    • 84898932762 scopus 로고    scopus 로고
    • Learning trajectory preferences for manipulators via iterative improvement. In: Advances in neural information processing systems
    • Jain A, Wojcik B, Joachims T, Saxena A (2013) Learning trajectory preferences for manipulators via iterative improvement. In: Advances in neural information processing systems, pp 575–583
    • (2013) pp 575–583
    • Jain, A.1    Wojcik, B.2    Joachims, T.3    Saxena, A.4
  • 73
    • 84873596567 scopus 로고    scopus 로고
    • Morgan and Claypool, San Rafael
    • Settles B (2012) Active learning. Morgan and Claypool, San Rafael
    • (2012) Active learning
    • Settles, B.1
  • 76
    • 71149114227 scopus 로고    scopus 로고
    • Joachims T (2009) Interactively optimizing information retrieval systems as a dueling bandits problem
    • ICML: ACM
    • Yue Y, Joachims T (2009) Interactively optimizing information retrieval systems as a dueling bandits problem. In: Proceedings of the 26th annual international conference on machine learning (ICML), ACM, pp 1201–1208
    • Proceedings of the 26th annual international conference on machine learning , pp. 1201-1208
    • Yue, Y.1
  • 79
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant LG (1984) A theory of the learnable. Commun ACM 27(11):1134–1142
    • (1984) Commun ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 80
    • 14344277592 scopus 로고    scopus 로고
    • A model of inductive bias learning
    • Baxter J (2000) A model of inductive bias learning. J Artif Intell Res 12:149–198
    • (2000) J Artif Intell Res , vol.12 , pp. 149-198
    • Baxter, J.1
  • 81
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM
    • Evgeniou T, Pontil M (2004) Regularized multi-task learning. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 109–117
    • (2004) pp 109–117
    • Evgeniou, T.1    Pontil, M.2
  • 82
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10:207–244
    • (2009) J Mach Learn Res , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 84
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: the sequential learning problem
    • Bower GH, (ed), 24, Academic Press, San Diego
    • McCloskey M, Cohen NJ (1989) Catastrophic interference in connectionist networks: the sequential learning problem. In: Bower GH (ed) The psychology of learning and motivation, vol 24. Academic Press, San Diego, pp 109–164
    • (1989) The psychology of learning and motivation , pp. 109-164
    • McCloskey, M.1    Cohen, N.J.2
  • 85
    • 0032923221 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks
    • French Robert M (1999) Catastrophic forgetting in connectionist networks. Trends Cogn Sci 3(4):128–135
    • (1999) Trends Cogn Sci , vol.3 , Issue.4 , pp. 128-135
    • French, R.M.1
  • 87
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan SJ, Yang QA (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.A.2
  • 88
    • 68949157375 scopus 로고    scopus 로고
    • Transfer learning for reinforcement learning domains: a survey
    • Taylor ME, Stone P (2009) Transfer learning for reinforcement learning domains: a survey. J Mach Learn Res 10:1633–1685
    • (2009) J Mach Learn Res , vol.10 , pp. 1633-1685
    • Taylor, M.E.1    Stone, P.2
  • 89
    • 0032096675 scopus 로고    scopus 로고
    • Multiagent systems
    • Sycara KP (1998) Multiagent systems. AI Mag 19(2):79
    • (1998) AI Mag , vol.19 , Issue.2 , pp. 79
    • Sycara, K.P.1
  • 91
    • 84909522870 scopus 로고
    • Reaching a consensus
    • DeGroot MH (1974) Reaching a consensus. J Am Stat Assoc 69(345):118–121
    • (1974) J Am Stat Assoc , vol.69 , Issue.345 , pp. 118-121
    • DeGroot, M.H.1
  • 93
    • 0031013987 scopus 로고    scopus 로고
    • Assessing rater performance without a gold standard using consensus theory
    • Weller SC, Mann NC (1997) Assessing rater performance without a gold standard using consensus theory. Med Decis Mak 17(1):71–79
    • (1997) Med Decis Mak , vol.17 , Issue.1 , pp. 71-79
    • Weller, S.C.1    Mann, N.C.2
  • 94
    • 64149119332 scopus 로고    scopus 로고
    • Consensus and cooperation in networked multi-agent systems
    • Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. In: Proceedings of the IEEE, vol 95(1), pp 215–233
    • (2007) Proceedings of the IEEE , vol.95 , Issue.1 , pp. 215-233
    • Olfati-Saber, R.1    Fax, J.A.2    Murray, R.M.3
  • 95
    • 57649207906 scopus 로고    scopus 로고
    • Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission
    • Roche B, Guegan JF, Bousquet F (2008) Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission. BMC Bioinform 9:435
    • (2008) BMC Bioinform , vol.9 , pp. 435
    • Roche, B.1    Guegan, J.F.2    Bousquet, F.3
  • 96
    • 33748543203 scopus 로고    scopus 로고
    • Collaborative multiagent reinforcement learning by payoff propagation
    • Kok JR, Vlassis N (2006) Collaborative multiagent reinforcement learning by payoff propagation. J Mach Learn Res 7:1789–1828
    • (2006) J Mach Learn Res , vol.7 , pp. 1789-1828
    • Kok, J.R.1    Vlassis, N.2
  • 97
    • 0038503354 scopus 로고    scopus 로고
    • A hybrid system for the recognition of hand-written characters. In: Ferri FJ, Iñesta JM, Amin A, Pudil P (eds) Advances in pattern recognition, LNCS, vol 1876. Springer, Heidelberg, pp 67–76
    • Freund R, Neubauer M, Summerer M, Gruber S, Schaffer J, Swoboda R (2000) A hybrid system for the recognition of hand-written characters. In: Ferri FJ, Iñesta JM, Amin A, Pudil P (eds) Advances in pattern recognition, LNCS, vol 1876. Springer, Heidelberg, pp 67–76. doi:10.1007/3-540-44522-6_7
    • (2000) doi:10.1007/3-540-44522-6_7
    • Freund, R.1    Neubauer, M.2    Summerer, M.3    Gruber, S.4    Schaffer, J.5    Swoboda, R.6
  • 98
    • 36348988954 scopus 로고    scopus 로고
    • Hybrid multi-agent systems: integrating swarming and BDI agents. In: Brueckner SA., Hassas S, Jelasity M, Yamins D (eds) Engineering self-organising systems, LNCS, vol 4335. Springer, Berlin, pp 1–14
    • Parunak HVD, Nielsen P, Brückner S, Alonso R (2007) Hybrid multi-agent systems: integrating swarming and BDI agents. In: Brueckner SA., Hassas S, Jelasity M, Yamins D (eds) Engineering self-organising systems, LNCS, vol 4335. Springer, Berlin, pp 1–14. doi:10.1007/978-3-540-69868-5_1
    • (2007) doi:10.1007/978-3-540-69868-5_1
    • Parunak, H.V.D.1    Nielsen, P.2    Brückner, S.3    Alonso, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.