-
1
-
-
84938403898
-
-
arXiv:1406. 5774
-
H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. From generic to specific deep representations for visual recognition. arXiv:1406. 5774, 2014. 1,3
-
(2014)
From Generic to Specific Deep Representations for Visual Recognition
, pp. 1-3
-
-
Azizpour, H.1
Razavian, A.S.2
Sullivan, J.3
Maki, A.4
Carlsson, S.5
-
2
-
-
84924322944
-
Decontamination of training samples for supervised pattern recognition methods
-
R. Barandela and E. Gasca. Decontamination of training samples for supervised pattern recognition methods. In ICAPR. 2000. 1,2
-
(2000)
ICAPR
, pp. 1-2
-
-
Barandela, R.1
Gasca, E.2
-
3
-
-
33645505792
-
Convexity, classification, and risk bounds
-
P. L. Bartlett, M. I. Jordan, and 1. D. McAuliffe. Convexity, classification, and risk bounds. lournal o/the American Statistical Association, 2006
-
(2006)
Lournal O/the American Statistical Association
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
6
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-l. Li, K. Li, and L. FeiFei. Imagenet: A large-scale hierarchical image database. In CVPR,2009
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-L.4
Li, K.5
FeiFei, L.6
-
7
-
-
84904482223
-
-
arXiv:1310. 1531
-
J. Donahue, Y. lia, O. Vinyals, 1. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. arXiv:1310. 1531, 2013. 1,3
-
(2013)
Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition
, pp. 1-3
-
-
Donahue, J.1
Lia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
8
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
c. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. TPAMI, 35(8): 1915-1929,2013
-
(2013)
TPAMI
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
9
-
-
84899651693
-
Classification in the presence of label noise: A survey
-
B. Frenay and M. Verleysen. Classification in the presence of label noise: a survey. TNNLS, 25(5):845-869, 2014
-
(2014)
TNNLS
, vol.25
, Issue.5
, pp. 845-869
-
-
Frenay, B.1
Verleysen, M.2
-
10
-
-
84894905366
-
A multi-view embedding space for modeling internet images, tags, and their semantics
-
Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A multi-view embedding space for modeling internet images, tags, and their semantics. JJCV, 106(2):210-233,2014
-
(2014)
JJCV
, vol.106
, Issue.2
, pp. 210-233
-
-
Gong, Y.1
Ke, Q.2
Isard, M.3
Lazebnik, S.4
-
11
-
-
85026927731
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. lia, E. Shelhamer, 1. Donahue, S. Karayev, 1. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM MM, 2014
-
(2014)
ACM MM
-
-
Lia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
12
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
14
-
-
84922375195
-
Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks
-
D.-H. Lee. Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks. In ICML Workshop, 2013. 6,8
-
(2013)
ICML Workshop
, pp. 6-8
-
-
Lee, D.-H.1
-
16
-
-
85026930084
-
Computer aided cleaning of large databases for character recognition
-
N. Matic, I. Guyon, L. Bottou, J. Denker, and V. Vapnik. Computer aided cleaning of large databases for character recognition. In IAPR, 1992
-
(1992)
IAPR
-
-
Matic, N.1
Guyon, I.2
Bottou, L.3
Denker, J.4
Vapnik, V.5
-
17
-
-
85026931863
-
Use of classification algorithms in noise detection and elimination
-
A. L. Miranda, L. P. F. Garcia, A. C. Carvalho, and A. C. Lorena. Use of classification algorithms in noise detection and elimination. In HAIS. 2009. 1,2
-
(2009)
HAIS
, pp. 1-2
-
-
Miranda, A.L.1
Garcia, L.P.F.2
Carvalho, A.C.3
Lorena, A.C.4
-
18
-
-
84867136367
-
Learning to label aerial images from noisy data
-
V. Mnih and G. E. Hinton. Learning to label aerial images from noisy data. In ICML, 2012
-
(2012)
ICML
-
-
Mnih, V.1
Hinton, G.E.2
-
20
-
-
84898030282
-
A study of the effect of different types of noise on the precision of supervised learning techniques
-
D. F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types of noise on the precision of supervised learning techniques. Artificial intelligence review, 33(4):275-306,2010
-
(2010)
Artificial Intelligence Review
, vol.33
, Issue.4
, pp. 275-306
-
-
Nettleton, D.F.1
Orriols-Puig, A.2
Fornells, A.3
-
21
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014. 1,3
-
(2014)
CVPR
, pp. 1-3
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
22
-
-
33845594913
-
Class noise and supervised learning in medical domains: The effect of feature extraction
-
M. Pechenizkiy, A. Tsymbal, S. Puuronen, and O. Pechenizkiy. Class noise and supervised learning in medical domains: The effect of feature extraction. In CBMS, 2006
-
(2006)
CBMS
-
-
Pechenizkiy, M.1
Tsymbal, A.2
Puuronen, S.3
Pechenizkiy, O.4
-
25
-
-
84917742909
-
-
arXiv:1409. 4842
-
c. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv:1409. 4842, 2014
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
26
-
-
16244380722
-
A comparison of noise handling techniques
-
C.-M. Teng. A comparison of noise handling techniques. In FLAIRS,2001. 1,2
-
(2001)
FLAIRS
, pp. 1-2
-
-
Teng, C.-M.1
-
29
-
-
84911443783
-
Panda: Pose aligned networks for deep attribute modeling
-
N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. Panda: Pose aligned networks for deep attribute modeling. In CVPR,2014
-
(2014)
CVPR
-
-
Zhang, N.1
Paluri, M.2
Ranzato, M.3
Darrell, T.4
Bourdev, L.5
-
31
-
-
19544372918
-
Class noise vs attribute noise: A quantitative study
-
1,2
-
X. Zhu and X. Wu. Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review, 22(3): 177-210, 2004. 1,2
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.3
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
|