메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 2691-2699

Learning from massive noisy labeled data for image classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VISION; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84959207049     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298885     Document Type: Conference Paper
Times cited : (1313)

References (31)
  • 2
    • 84924322944 scopus 로고    scopus 로고
    • Decontamination of training samples for supervised pattern recognition methods
    • R. Barandela and E. Gasca. Decontamination of training samples for supervised pattern recognition methods. In ICAPR. 2000. 1,2
    • (2000) ICAPR , pp. 1-2
    • Barandela, R.1    Gasca, E.2
  • 8
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • c. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. TPAMI, 35(8): 1915-1929,2013
    • (2013) TPAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 9
    • 84899651693 scopus 로고    scopus 로고
    • Classification in the presence of label noise: A survey
    • B. Frenay and M. Verleysen. Classification in the presence of label noise: a survey. TNNLS, 25(5):845-869, 2014
    • (2014) TNNLS , vol.25 , Issue.5 , pp. 845-869
    • Frenay, B.1    Verleysen, M.2
  • 10
    • 84894905366 scopus 로고    scopus 로고
    • A multi-view embedding space for modeling internet images, tags, and their semantics
    • Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A multi-view embedding space for modeling internet images, tags, and their semantics. JJCV, 106(2):210-233,2014
    • (2014) JJCV , vol.106 , Issue.2 , pp. 210-233
    • Gong, Y.1    Ke, Q.2    Isard, M.3    Lazebnik, S.4
  • 12
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 14
    • 84922375195 scopus 로고    scopus 로고
    • Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks
    • D.-H. Lee. Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks. In ICML Workshop, 2013. 6,8
    • (2013) ICML Workshop , pp. 6-8
    • Lee, D.-H.1
  • 15
  • 16
    • 85026930084 scopus 로고
    • Computer aided cleaning of large databases for character recognition
    • N. Matic, I. Guyon, L. Bottou, J. Denker, and V. Vapnik. Computer aided cleaning of large databases for character recognition. In IAPR, 1992
    • (1992) IAPR
    • Matic, N.1    Guyon, I.2    Bottou, L.3    Denker, J.4    Vapnik, V.5
  • 17
    • 85026931863 scopus 로고    scopus 로고
    • Use of classification algorithms in noise detection and elimination
    • A. L. Miranda, L. P. F. Garcia, A. C. Carvalho, and A. C. Lorena. Use of classification algorithms in noise detection and elimination. In HAIS. 2009. 1,2
    • (2009) HAIS , pp. 1-2
    • Miranda, A.L.1    Garcia, L.P.F.2    Carvalho, A.C.3    Lorena, A.C.4
  • 18
    • 84867136367 scopus 로고    scopus 로고
    • Learning to label aerial images from noisy data
    • V. Mnih and G. E. Hinton. Learning to label aerial images from noisy data. In ICML, 2012
    • (2012) ICML
    • Mnih, V.1    Hinton, G.E.2
  • 20
    • 84898030282 scopus 로고    scopus 로고
    • A study of the effect of different types of noise on the precision of supervised learning techniques
    • D. F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types of noise on the precision of supervised learning techniques. Artificial intelligence review, 33(4):275-306,2010
    • (2010) Artificial Intelligence Review , vol.33 , Issue.4 , pp. 275-306
    • Nettleton, D.F.1    Orriols-Puig, A.2    Fornells, A.3
  • 21
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014. 1,3
    • (2014) CVPR , pp. 1-3
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 22
    • 33845594913 scopus 로고    scopus 로고
    • Class noise and supervised learning in medical domains: The effect of feature extraction
    • M. Pechenizkiy, A. Tsymbal, S. Puuronen, and O. Pechenizkiy. Class noise and supervised learning in medical domains: The effect of feature extraction. In CBMS, 2006
    • (2006) CBMS
    • Pechenizkiy, M.1    Tsymbal, A.2    Puuronen, S.3    Pechenizkiy, O.4
  • 26
    • 16244380722 scopus 로고    scopus 로고
    • A comparison of noise handling techniques
    • C.-M. Teng. A comparison of noise handling techniques. In FLAIRS,2001. 1,2
    • (2001) FLAIRS , pp. 1-2
    • Teng, C.-M.1
  • 31
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study
    • 1,2
    • X. Zhu and X. Wu. Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review, 22(3): 177-210, 2004. 1,2
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.