메뉴 건너뛰기




Volumn 22, Issue 2, 2018, Pages 394-408

Crowdsourcing the character of a place: Character-level convolutional networks for multilingual geographic text classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLEANING; CONVOLUTION; CROWDSOURCING; OPTICAL CHARACTER RECOGNITION; SOCIAL NETWORKING (ONLINE); TEXT PROCESSING;

EID: 85041029948     PISSN: 13611682     EISSN: 14679671     Source Type: Journal    
DOI: 10.1111/tgis.12317     Document Type: Article
Times cited : (27)

References (66)
  • 1
    • 84989252426 scopus 로고    scopus 로고
    • Wãhi, a discrete global grid gazetteer built using linked open data
    • Adams, B. (2017). Wãhi, a discrete global grid gazetteer built using linked open data. International Journal of Digital Earth, 10, 490–503.
    • (2017) International Journal of Digital Earth , vol.10 , pp. 490-503
    • Adams, B.1
  • 8
    • 84861974217 scopus 로고    scopus 로고
    • Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon
    • Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15, 662–679.
    • (2012) Information, Communication & Society , vol.15 , pp. 662-679
    • Boyd, D.1    Crawford, K.2
  • 9
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining & Knowledge Discovery, 2, 121–167.
    • (1998) Data Mining & Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 10
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • Cheng, G., Zhou, P., & Han, J. (2016). Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54, 7405–7415.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 14
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 17
    • 82155178491 scopus 로고    scopus 로고
    • Geo-parsing messages from microtext
    • Gelernter, J., & Mushegian, N. (2011). Geo-parsing messages from microtext. Transactions in GIS, 15, 753–773.
    • (2011) Transactions in GIS , vol.15 , pp. 753-773
    • Gelernter, J.1    Mushegian, N.2
  • 19
    • 36749037169 scopus 로고    scopus 로고
    • Citizens as sensors: The world of volunteered geography
    • Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69, 211–221.
    • (2007) GeoJournal , vol.69 , pp. 211-221
    • Goodchild, M.F.1
  • 25
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • In, Chemnitz, Germany
    • Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the 10th European Conference on Machine Learning (pp. 137–142). Chemnitz, Germany.
    • (1998) Proceedings of the 10th European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 36
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278–2324.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 41
    • 84979518892 scopus 로고    scopus 로고
    • Automated geocoding of textual documents: A survey of current approaches
    • Melo, F., & Martins, B. (2017). Automated geocoding of textual documents: A survey of current approaches. Transactions in GIS, 21, 3–38.
    • (2017) Transactions in GIS , vol.21 , pp. 3-38
    • Melo, F.1    Martins, B.2
  • 42
    • 84878443397 scopus 로고    scopus 로고
    • The geography of happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place
    • Mitchell, L., Frank, M. R., Harris, K. D., Dodds, P. S., & Danforth, C. M. (2013). The geography of happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place. PLoS One, 8, e64417.
    • (2013) PLoS One , vol.8
    • Mitchell, L.1    Frank, M.R.2    Harris, K.D.3    Dodds, P.S.4    Danforth, C.M.5
  • 43
    • 84982786494 scopus 로고    scopus 로고
    • A survey on the geographic scope of textual documents
    • Monteiro, B. R., Davis, C. A., & Fonseca, F. (2016). A survey on the geographic scope of textual documents. Computers & Geosciences, 96, 23–34.
    • (2016) Computers & Geosciences , vol.96 , pp. 23-34
    • Monteiro, B.R.1    Davis, C.A.2    Fonseca, F.3
  • 44
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • Nogueira, K., Penatti, O. A., & dos Santos, J. A. (2017). Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognition, 61, 539–556.
    • (2017) Pattern Recognition , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.2    dos Santos, J.A.3
  • 48
  • 49
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 51
    • 0010836411 scopus 로고    scopus 로고
    • Feature engineering for text classification
    • #x0026;, In, I. Bratko, &, S. Dzeroski, (Eds.),, San Francisco, CA, Morgan Kaufmann
    • Scott, S., & Matwin, S. (1999). Feature engineering for text classification. In I. Bratko & S. Dzeroski (Eds.), Proceedings of ICML-99, 16th International Conference on Machine Learning (pp. 379–388). San Francisco, CA: Morgan Kaufmann.
    • (1999) Proceedings of ICML-99, 16th International Conference on Machine Learning , pp. 379-388
    • Scott, S.1    Matwin, S.2
  • 52
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1–47.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 54
    • 0027073545 scopus 로고
    • An equal-area map projection for polyhedral globes
    • Snyder, J. P. (1992). An equal-area map projection for polyhedral globes. Cartographica, 29(1), 10–21.
    • (1992) Cartographica , vol.29 , Issue.1 , pp. 10-21
    • Snyder, J.P.1
  • 61
    • 85153149104 scopus 로고    scopus 로고
    • UTF-8 A transformation format of ISO 10646, Retrieved from
    • Yergeau, F. (2003). UTF-8: A transformation format of ISO 10646. Retrieved from https://tools.ietf.org/html/rfc3629
    • (2003)
    • Yergeau, F.1
  • 64
    • 85153163895 scopus 로고    scopus 로고
    • ADADELTA An adaptive learning rate method
    • Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. https://arxiv.org/abs/1212.5701
    • (2012)
    • Zeiler, M.D.1
  • 65
    • 84919967775 scopus 로고    scopus 로고
    • Geocoding location expressions in Twitter messages: A preference learning method
    • Zhang, W., & Gelernter, J. (2014). Geocoding location expressions in Twitter messages: A preference learning method. Journal of Spatial Information Science, 2014, 37–70.
    • (2014) Journal of Spatial Information Science , vol.2014 , pp. 37-70
    • Zhang, W.1    Gelernter, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.